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Abstract

Respondent-driven sampling (RDS) is used to measure trait or disease prevalence in populations that are

difficult to reach and often marginalized. The authors evaluated the performance of RDS estimators under

varying conditions of trait prevalence, homophily, and relative activity. They used large simulated net-

works (N = 20,000) derived from real-world RDS degree reports and an empirical Facebook network

(N = 22,470) to evaluate estimators of binary and categorical trait prevalence. Variability in prevalence

estimates is higher when network degree is drawn from real-world samples than from the commonly

assumed Poisson distribution, resulting in lower coverage rates. Newer estimators perform well when the

sample is a substantive proportion of the population, but bias is present when the population size is

unknown. The choice of preferred RDS estimator needs to be study specific, considering both statistical

properties and knowledge of the population under study.
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Probability-based sampling is the gold standard for unbiased estimation of the preva-

lence of a trait or disease in a population. However, when the target population is mar-

ginalized, or otherwise hidden among the general population, no sampling frame

exists. Respondent-driven sampling (RDS) (Heckathorn 1997), a chain-referral tech-

nique, is a well-established method for estimating disease prevalence in these hidden

populations by leveraging information about the underlying social network. RDS esti-

mators can account for the increased likelihood of sampling people with larger social

networks, the tendency of people to cluster by disease status (homophily), and differ-

ences in number of personal connections for different groups (relative activity) to

allow asymptotically unbiased and accurate estimation of trait or disease prevalence.
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Early estimators were based on the assumption that recruitment could be approxi-

mated by a Markov chain. A key insight was that the likelihood of inclusion in an RDS

sample is inversely proportional to the number of connections a person has with other

members of the target population, that is, their personal network degree. Salganik and

Heckathorn (2004) developed the RDS-I or SH estimator, an early estimator of preva-

lence in RDS studies. This estimator infers the prevalence of disease in a population

from the cross-group ties observed in the sample and each respondent’s reported

degree. A subsequent estimator, developed by Volz and Heckathorn (2008), the RDS-

II or VH estimator, is an inverse-probability weighted estimator and remains the most

commonly reported estimator of RDS prevalence (Abdesselam 2019). Both of these

estimators have the advantage of relying solely on sample data, without requiring addi-

tional knowledge of the target population.

Gile’s (2011) successive sampling (SS) estimator was the first to model a true RDS

process, of sampling without replacement, and was shown to be more accurate than

RDS-II when the sample size is not a small fraction of the population size. Fellows

(2019) suggested an improvement on Gile’s SS estimator: on the basis of a homophily

configuration graph (HCG), this estimator iteratively estimates network degrees and

the proportion of cross-group ties until the prevalence estimate converges. Several

studies have investigated the performance of RDS-specific estimators for trait preva-

lence (Baraff, McCormick, and Raftery 2016; Fellows 2019; McCreesh et al. 2012;

Verdery et al. 2015; Wejnert 2009). However, as Gile et al. (2018) noted, none has

identified a uniformly best estimator. Recently, Spiller et al. (2018:40) stated that the

SS estimator is superior to the RDS-II estimator unless the population size is

“dramatically underestimated,” and Fellows (2019) provided evidence that the HCG

estimator is less biased than earlier estimators when the sample size is large relative to

the population and the population size is known.

As Goel and Salganik (2010) noted, performance of RDS estimators is often poor

because of the high variability of the resulting estimates. This variability is also linked

to the sampling process; sampling with replacement results in larger design effects

than sampling without replacement (Baraff et al. 2016; Fellows 2019; Goel and

Salganik 2010). Variance estimation is also a challenge in RDS studies, and prior

work has reported lower than expected coverage rates (e.g., Baraff et al. 2016; Goel

and Salganik 2010; McCreesh et al. 2012; Spiller et al. 2018). Spiller et al. (2018) con-

ducted a systematic review of commonly used variance estimators in RDS and

reported the best coverage with Gile’s SS estimator coupled with a bootstrap estimate

of variance, and unacceptably low coverage for the naive sample proportion. Baraff

et al. (2016) proposed tree bootstrapping over the RDS recruitment trees to calculate

confidence intervals around the RDS-II estimator, and Green, McCormick, and

Raftery (2020) showed the consistency of the method, but to our knowledge this

method has yet to be implemented in practice. To date, all validation work has been

conducted on binary outcomes and with relatively small networks.

The absence of large networks makes it difficult to validate RDS prevalence esti-

mators. Spiller et al. (2018) created synthetic networks with N = 10,000 on the basis

of the properties of the National HIV Behavioral Surveillance system surveys (2009–
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2012) conducted by the Centers for Disease Control and Prevention in the United

States using exponential random graph modeling (ERGM). Gile (2011) also used

ERGM to simulate networks but modeled a maximum population size of N = 1,000,

which is likely small for many populations in urban areas. Synthetic networks gener-

ated using ERGM can have a specified level of homophily, relative activity, and mean

degree, and tend to produce Poisson-like degree distributions (Crawford 2016).

Fellows (2019) sampled from a Poisson distribution for network degree in his simula-

tions evaluating RDS estimators. A recent survey of 53 RDS samples encompassing

more than 36,000 participants indicated that reported degree from every RDS sample

was considerably more skewed than a Poisson distribution and was approximately log-

normal across all sample types (migrants, men who have sex with men, drug users,

sex workers) and geographies (North America, India, Papua New Guinea) (Avery

et al. 2021). The effect of degree distribution on estimator accuracy has not yet been

examined.

Although estimation methods have been extended to categorical outcomes, valida-

tion of RDS estimators has focused on binary outcomes, likely because large networks

with categorical outcomes with which to perform validation are rare. The National

Longitudinal Study of Adolescent to Adult Health (Harris and Udry 2021) and

Facebook College (Rozemberczki, Allen, and Sarkar 2021) data sets have been used

extensively in RDS validation (Abdesselam 2019; Abdesselam et al. 2020; Fellows

2019; Goel and Salganik 2010; Handcock, Gile, and Mar 2014; Spiller et al. 2018;

Verdery et al. 2015). However, as Spiller et al. (2018) noted, these data sets are “unlike

the hidden populations networks through which RDS coupons are typically passed”

(p. 30). These populations are relatively small (N = 1,249 in National Longitudinal

Study of Adolescent to Adult Health, N = 1,259 in Facebook College), and instead of

reported network degree, a truncated proxy is used, further restricting the degree range.

In summary, our goal is to extend the existing literature on estimator validity by incor-

porating observed real-world reported network degrees into larger simulated networks

and to explore estimator performance on categorical outcomes using both real-world

and synthetic networks.

DESCRIPTION OF RDS DATA

Properties of RDS Samples

The goal of RDS sampling is to estimate the trait prevalence, p. Sampling begins with

the selection of seeds (often about 10), usually purposefully chosen from the popula-

tion of interest. Each seed is given a fixed number of coupons (usually 2–5) with which

to recruit other members of the population. Participants complete a survey to determine

(1) their outcome status (yi = 1 for those with the trait of interest, yi = 0 otherwise) and

(2) the number of other members of the target population they know, referred to as

their network degree, di.

Researchers also often ask questions to ascertain whether the participant belongs to

the target population. From the recruitment coupons, researchers can link each partici-

pant with their recruiter. From a total population of N , n participants are sampled. In
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the underlying population, the sum of the network degrees is twice the number of net-

work edges
PN

i = 1

di = 2T , where, in the situation of two groups T = T00 + T11 + T01 are the

connections among those with yi = 0 (T00), among those with yi = 1 (T11) and between

groups (T01), respectively. Throughout this article, we refer to the mean degree of those

with (d1) and without (d0) a trait and use Gile’s (2011) notation:

d0 =

PN
i = 1 di(1� yi)
PN

i = 1 (1� yi)
, d1 =

PN
i = 1 di(yi)
PN

i = 1 (yi)
, d =

PN
i = 1 (di)

N
:

Population homophily quantifies the relative likelihood of within-group to between-

group connections (i.e., the degree to which birds of a feather flock together).

Definitions for homophily are varied in the literature, but we chose the definition con-

sistent with the RDS package available for R (Handcock et al. 2021), such that

H =
p(1� p)d0d1N

dT01

:

Relative activity (v) describes the difference in the connectivity of the groups and is

simply the ratio of the mean degree between groups:

v =
d1

d0

:

Simulated Networks

Figure 1 provides an overview of the study work flow. We created networked popula-

tions of size N = 20, 000 with varying levels of trait prevalence, homophily, and rela-

tive activity. Nodes corresponding to study participants were indexed from

i = 1, 2, 3, :::N . We set trait prevalence, p, to either 0.20 to enable comparisons with

Fellows (2019) or 0.05 to model rarer traits. We drew reported network degree, di,

with replacement, from one of two distributions: (1) actual reported degree compiled

from 17 samples of men who have sex with men (Lachowsky et al. 2019; Solomon

et al. 2019; Weikum et al. 2019) or (2) Poisson distributed with mean of 6, for com-

parison with results from Fellows (2019). These degree distributions are illustrated in

the bottom row of Figure 2. Each node, ni, was assigned di edge-ends, corresponding

to network degree. For a fixed-degree distribution, trait prevalence, and level of homo-

phily, we were unable to precisely fix the relative activity. We therefore chose to con-

trast equal activity with elevated activity.

We assigned group membership (yi) depending on the desired level of relative activ-

ity as follows:

To produce a population with equal activity (v = 1): for group 1, randomly select

n1 = pN nodes and assign them yi = 1 (representing nodes with the trait). For all other

nodes, set yi = 0 (group 0).
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To produce a population with elevated activity (v.1): for group 1, randomly sam-

ple 0:75pN nodes from nodes with di.dq50 and the remaining 0:25pN nodes from

nodes with di � dq50, where dq50 refers to the median degree across all groups. For all

other nodes, set yi = 0 (group 0).

We used the following process to network population nodes:

1. Population homophily levels of no homophily (H = 1), moderate homophily

(H = 1.25), and strong homophily (H = 10) were investigated. The number of between

group ties was calculated as

T10 =

PN
i = 1 di(yi)

PN
i = 1 di(1� yi)

H
PN

i = 1 di

:

2. The resulting number of ties within groups is then T00 =
PN

i = 1 di(1� yi)� T10 and

T11 =
PN

i = 1 di(yi)� T10.

3. Unconnected edge-ends from group 0 were randomly drawn and connected. If a self-

connection formed, it was discarded and the draw repeated. This process was repeated

until there were T00 ties within group 0.

4. The previous step was repeated for group 1.

5. The remaining edge-ends from groups 0 and 1 were randomly drawn and connected to

form cross-group ties.

6. For all ties t01, reciprocal ties were created, t10, so that the graph was undirected.

Figure 1. Overview of study work flow.
Note: CI = confidence interval; HCG = homophily configuration graph; HIV = human immunodeficiency

virus; RDS = respondent-driven sampling; RMSE = root-mean-square error; SS = successive sampling.
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In this manner, we set the exact degree distribution, trait prevalence, and homophily

for a synthetic network with no self-loops to mimic a real-world network.

Empirical Data

Project 90. The Project 90 study collected full network data on a community of indi-

viduals at high risk for human immunodeficiency virus transmission. Originally pub-

lished by Potterat et al. (2004), we used the partial data set reported by Goel and Salganik

(2010). These data have subsequently been used in a number of papers assessing RDS

methods (e.g., Baraff et al. 2016; Crawford 2016; Fellows 2019; Goel and Salganik 2010).

The data set is available from the Office of Population Research (https://opr.princeton.edu/

archive/p90/) and contains information on 15 characteristics of 5,475 individuals. Previous

work has focused on the single largest connected network. Here we include all individuals

and perform RDS sampling whereby if recruitment stalls, additional seeds are added. RDS

estimators assume a connected network, but this is untestable in practice and our goal was

to replicate real-world conditions as much as possible.

Figure 2. Comparison of estimator performance between population with Poisson-distributed
degree (left) and degree drawn from real-world reported degrees (right). Panel A: Distribution
of estimated prevalence from simulated samples. Panel B: Coverage rate across simulated
samples. Panel C: Distribution of network degree in the simulated population.
Note: HCG = homophily configuration graph; RDS = respondent-driven sampling; SS = successive sampling.
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Facebook Pages. The Large Facebook network (Rozemberczki et al. 2021) is a net-

work of 22,470 verified Facebook sites (network nodes), classified by Facebook as

politicians, companies, television shows, or government organizations. The sites were

connected by 171,002 mutual “like” linkages, which serve as the network edges. Data

were extracted through the Facebook Graph API in November 2017 as part of the mul-

tiscale attributed node embedding project and are available at GitHub (https://github

.com/benedekrozemberczki/MUSAE). Unlike the Project 90 participant characteris-

tics, the four page categories are mutually exclusive and represent a single categorical

variable.

Additional Populations Based on Preliminary Findings. Preliminary findings

from the simulated and empirical networks prompted further study. In light of large

variability in the RDS-I and HCG estimates of the categorical trait in the Large

Facebook network under strong homophily, we modified additional simulated net-

works to create a categorical trait for further testing of estimator performance. We

added a categorical variable to populations 6 and 11 from Table 1 (strong homophily)

on the basis of the original binary outcome as follows:

� Group a: randomly selected from group 0 with probability 0.25.

� Group b: all others from group 0.

� Group c: randomly selected from group 1 with probability 0.25.

� Group d: all others from group 1.

RDS Sampling Process

For each population (simulated and empirical), we drew 1,000 RDS samples to repre-

sent real-world conditions.

Table 1. Characteristics of the Simulated Populations

Population
Degree

Distribution Prevalence Homophily
Relative
Activity

Observed
v

Observed
H

1 Poisson .20 No homophily Equal activity .97 .99
2 Real world .05 No homophily Equal activity 1.16 1.00
3 Real world .05 Moderate homophily Equal activity .83 1.24
4 Real world .20 No homophily Equal activity .98 1.00
5 Real world .20 Moderate homophily Equal activity .96 1.24
6 Real world .20 Strong homophily Equal activity .97 9.32
7 Real world .05 No homophily Elevated activity 1.66 1.00
8 Real world .05 Moderate homophily Elevated activity 1.52 1.23
9 Real world .20 No homophily Elevated activity 1.71 1.00
10 Real world .20 Moderate homophily Elevated activity 1.78 1.24
11 Real world .20 Strong homophily Elevated activity 1.63 9.51

Note: The desired prevalence was achieved in each population. The actual observed relative activity (v) and

homophily (H) for each population are reported in the right two columns.
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1. Ten seeds were randomly selected from the network nodes. This method was chosen to

reflect the fact that researchers often purposely choose seeds to best reflect a population

and are unlikely to choose seeds biased with respect to the trait of interest. Furthermore,

in Fellows’s (2019) study examining these same estimators, biased seeds had little

effect on estimator performance.

2. Available neighbors were defined as connected nodes not already in the sample (i.e.,

sampling without replacement).

3. For each node, between 0 and 3 recruits were sampled from the available neighbors

with probability (0.35, 0.15, 0.4, 0.1). These probabilities are based on the observed

number of recruits reported across many RDS samples (unpublished data).

4. Steps 2 and 3 were repeated until a sample size of 5,000 was reached; we obtained

smaller samples of n = 500 by taking the first 500 recruits.

5. If recruitment stopped, then 10 new seeds were added and recruitment continued from

step 2.

Statistical Analysis

We investigated the naive sample proportion, RDS-I, RDS-II, Gile’s SS estimator, and

the HCG estimator. The RDS package version 0.9-2 (Handcock et al. 2021), available

in the R statistical programming language (R Core Team 2021), was used for all para-

meter estimation. For the HCG estimator, we used sampling wave as a proxy for

recruitment time, because this information is reliably available to researchers in prac-

tice. We also evaluated a modified RDS-I estimator in an attempt to resolve situations

in which extreme estimates of 0 or 1 were produced. This situation arises when there

are no observed recruitment links from one group to another. From Salganik and

Heckathorn (2004), the RDS-I estimator of the prevalence of condition A, for a binary

outcome with possible values A and B is

p̂A =
d�BCBA

d�ACAB + d�BCBA

,

where d� are sample-based estimates of mean degree, and CAB and CBA are the prob-

ability of recruitment from group A to B and from B to A, respectively, calculated

from the observed group-group recruitment matrix (tij). If either CAB = 0 or CBA = 0,

the resulting estimates will be 0 or 1. When an outcome is binary, it is unlikely, espe-

cially in large samples, that no cross-group recruitments will be observed. However,

with rare traits or categorical outcomes, the likelihood increases. To overcome this

limitation, we created a slightly modified estimator (RDS-I*) by replacing zero values

in the off-diagonal elements of the observed group-group recruitment matrix with 1,

thereby preventing extreme values in the Markov transition probabilities (CAB and

CBA).

We assessed accuracy of the estimators using the root-mean-square error (RMSE).

Estimator coverage was calculated as the proportion of samples for which the 95 per-

cent confidence interval contained the true population proportion. Estimator bias was

calculated as a ratio of the difference between the mean point estimate across samples
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and the population parameter to the population parameter (bias = p̂�p
p

). For each sam-

ple, we also estimated homophily using the RDS package, and relative activity using

both the ratio of mean degree between groups and the ratio of the Salganik-Heckathorn

estimates of mean degree used in the RDS-I estimator (Salganik and Heckathorn

2004).

Because the SS and HCG estimators require knowledge of the population size,

which is often unknown, we computed three variations of each of these estimators:

using the known, true population size (N ), using half the population size (N=2), and

using twice the population size (2N ). We examined further sensitivity of the HCG

estimator to misspecification of N for cases where HCG was the preferred estimator.

For the Facebook Pages data, in addition to the confidence intervals calculated in

the RDS package using the analytic variance estimators, we used the tree bootstrap to

calculate confidence intervals around the RDS-I and RDS-II estimators. The

RDStreeboot package (Baraff 2016) provides these confidence intervals around only

the RDS-II estimator. We used the package to draw tree bootstrap samples and then

modified the code to produce confidence intervals around the RDS-I* estimator. To

limit calculation times in these large networks, we drew 100 tree bootstrap samples to

calculate the confidence intervals. It is more common to use 2,000 bootstraps, but it

was necessary to reduce this substantially in a simulation setting.

RESULTS

Table 1 details the achieved population-level homophily and relative activity for each

of the simulated populations. A survey of RDS studies indicated that degree distribu-

tions in many real-world populations are approximately log-normally distributed

(Avery et al. 2021). To allow comparison with previous literature and estimate real-

world performance, Figure 2 shows the effect of personal network degree distribution

on estimator variability for populations with equal relative activity and no homophily.

Log-normally distributed degrees produce RDS-adjusted estimates with a small nega-

tive bias, more variability, and lower coverage rates than Poisson-distributed degrees.

The coverage rate for RDS-I is near nominal levels when degree is Poisson distributed,

but lower than the other estimators for real-world reported degrees.

Figure 3 illustrates the RMSE for the simulated populations with n \\ N (A) and

n/N = 0.25 (B). We calculated the SS and HCG estimates with three different possible

population sizes: the correct size (N̂ = N ), half the true population size (N̂ = N=2), and

double the true population size (N̂ = 2N ). The HCG estimator performed well at these

levels and was superior to the SS in the presence of homophily, so we performed addi-

tional simulations exploring N̂ = 4N and N̂ = 10N . All RDS estimators perform simi-

larly in most circumstances, with differences arising under conditions of strong

homophily. When strong homophily is present, the adjusted RDS-I* estimator has the

lowest error when n \\ N, and when (n/N = 0.25) the HCG has the lowest error,

even when the population size is misspecified. Note that the accuracy of RDS-II is on

par with that of HCG.
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Figure 4 presents relative bias for the same scenarios. In general, bias is small across

all RDS estimators when activity is equal between trait groups and in the absence of

homophily. The presence of either homophily or differential activity increases bias, as

does low trait prevalence. In the presence of strong homophily, all estimators are

biased and there is no clearly preferred estimator. When elevated activity is present,

the SS and HCG estimates are biased toward 1 when the population size is underesti-

mated and toward 0 when the population size is overestimated.

Tables S1 and S2 in the online supplement provide the coverage rate and median

confidence interval width for the simulated populations. Although none of the RDS

estimators achieve the nominal coverage rate, the RDS-II estimator has relatively good

coverage and does not depend on knowledge of the population size. When the sample

is a large proportion of the population and strong homophily exists, coverage of all

estimators is poor. The tree bootstrap has increased coverage rate, but the width of the

resulting confidence interval is double or even triple those of other estimators. Tables

S3 and S4 in the online supplement provide the relative bias and RMSE of the RDS

estimators for the simulated populations.

Figure 3. RMSE of estimators across simulated populations. Dichotomous traits with small
sample fraction (A) and large sample fraction (B).
Note: HCG = homophily configuration graph; RDS = respondent-driven sampling; RMSE = root-mean-

square error; SS = successive sampling.
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Project 90 Network

Figure S5 in the online supplement illustrates the degree distribution of the Project 90

and the Large Facebook Pages networks. Figure 5 presents sample estimates for the

Project 90 data, and Table 2 presents the accuracy, bias, and coverage. Population

properties, which vary by trait, are given in Table S6 in the online supplement. The

RDS estimators perform similarly and have improved accuracy over the naive sample

mean, which exhibits large bias for most traits. The RDS-II estimator has the lowest

error except for the sex work client trait, where the HCG estimator (assuming accurate

knowledge of the population size) is preferred. None of the estimators could capture

the prevalence of drug dealers or non-White ethnicity.

Simulated Categorical Outcomes and Large Facebook Pages Network

Figure S7 in the online supplement examines the performance of the estimators on the

categorical outcomes from the Facebook Pages network and simulated populations.

For the Facebook network, all categories exhibited similarly strong homophily, rang-

ing from 5.3 to 5.7, but varied in their relative activity, which ranged from 0.40 to

2.46 (see the plot labels). The simulated networks were populations 6 and 11, with

Figure 4. Relative bias of estimators across simulated populations. Dichotomous traits with
small sample fraction (A) and large sample fraction (B).
Note: HCG = homophily configuration graph; RDS = respondent-driven sampling; SS = successive

sampling.
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strong homophily, but this was moderated with the creation of the categorical out-

comes. Traits a, b, and c had little homophily (1.0–1.8) for both populations, and only

trait d had moderate homophily (i.e., 2.8 in the equal activity group and 2.6 in the ele-

vated activity group). The RDS-I estimator produced many and extreme outliers, esti-

mating prevalence of 1.0 or 0; in comparison, the modified RDS-I produced fewer

outliers. The HCG estimator also produced large outliers, but never estimates of 0 or

1. The RDS-II and SS estimators performed similarly in all cases, as expected, because

n \\ N. Coverage rates for all estimators are unacceptably low for categorical esti-

mates (see Tables S8 and S9 in the online supplement).

Homophily and Relative Activity. For the simulated networks, we estimated the

homophily and relative activity for each sample (see Figure S10 in the online supple-

ment). On the basis of the large variability in the sample estimates, we strongly caution

against drawing inferences about these population characteristics from RDS samples.

The sample homophily estimates are unbiased for populations with no or moderate

homophily, but they underestimate strong population homophily. Elevated activity at

the population level was not detected by a simple ratio of the mean network degree

Figure 5. Estimates of trait prevalence for the Project 90 network across 1000 samples.
Note: HCG = homophily configuration graph; RDS = respondent-driven sampling; SS = successive

sampling.
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between groups. Conversely, degree ratio on the basis of the Salganik-Heckathorn

mean degree estimates overestimated relative activity. We found large variability in

homophily and relative activity when trait prevalence was low. The difficulty in esti-

mating population features from RDS samples provides impetus for identifying an esti-

mator that performs well under varied conditions.

Table 2. Coverage Rate, Root-Mean-Square Error, and Relative Bias of RDS Estimators for
the Population Characteristics in the Project 90 Data Set

Status Naive RDS-I RDS-II SS HCG

Coverage rate
Drug cook .98 .77 .83 .83 .85
Homeless .96 .66 .83 .83 .83
Retired .91 .88 .93 .93 .91
Thief .20 .49 .86 .84 .87
Pimp .18 .44 .81 .76 .77
Housewife .91 .80 .89 .88 .89
Disabled .58 .67 .86 .86 .86
Sex work client .52 .87 .91 .89 .84
Drug dealer .00 .45 .85 .80 .78
Gender .38 .86 .97 .97 .96
Sex worker .02 .48 .92 .90 .91
Unemployed .00 .75 .97 .95 .94
Non-White .20 .31 .45 .43 .45

Root-mean-square error
Drug cook .00 .01 .00 .00 .01
Homeless .01 .01 .01 .01 .01
Retired .01 .02 .02 .01 .02
Thief .03 .01 .01 .01 .01
Pimp .03 .01 .01 .01 .01
Housewife .01 .02 .02 .02 .02
Disabled .02 .01 .01 .01 .01
Sex work client .03 .04 .04 .03 .04
Drug dealer .09 .03 .03 .03 .03
Gender .06 .03 .03 .03 .04
Sex worker .08 .02 .02 .02 .02
Unemployed .14 .03 .03 .03 .03
Non-White .14 .11 .11 .11 .12

Bias
Drug cook .29 .10 .04 .05 .09
Homeless .49 .10 .11 .14 .15
Retired 2.04 .19 .18 .17 .20
Thief 1.17 .26 .27 .32 .32
Pimp 1.78 .24 .20 .29 .36
Housewife .04 2.02 2.03 2.02 .00
Disabled .49 .03 .01 .04 .06
Sex work client 2.22 .13 .15 .13 .08
Drug dealer 1.36 .24 .24 .31 .32
Gender .12 2.01 2.02 2.01 .00
Sex worker 1.46 .06 .08 .16 .17
Unemployed .86 .06 .06 .10 .12
Non-White .40 .26 .27 .27 .29

Note: HCG = homophily configuration graph; RDS = respondent-driven sampling; SS = successive sampling.
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DISCUSSION

We explored the properties of commonly used and reported RDS estimators in larger

populations with degree distributions sampled from actual reported degree under con-

ditions of equal and elevated relative activity and varying levels of homophily. We

were able to achieve our target levels of prevalence and homophily and create popu-

lations with equal and elevated relative activity (Table 1) for networks with

Poisson-distributed degree as well as from real-world reported degree samples. Note

that neither homophily nor relative activity were precisely estimated from the RDS

samples (see Figure S10 in the online supplement), and the level of precision

depends on trait prevalence. Population relative activity is poorly estimated by the

ratio of mean degree between groups. Because individuals with larger degree are

more likely to be included in RDS samples (especially simulated ones), the overall

degree of RDS samples is biased upward. Coupled with the log-normal degree distri-

butions observed in real RDS samples, the mean degrees of both groups are higher

in RDS samples than in the population, and their ratio tends to be biased toward 1.

Thus, even when relative activity is present in the population, it is difficult to detect

on the basis of sample information. As Figure S10 in the online supplement indi-

cates, the estimate can be somewhat improved by using the inverse weighting

employed by Salganik and Heckathorn (2004) in the RDS-I estimator, but substan-

tial variability remains. The inability to assess network characteristics from RDS

samples makes guidelines on estimator utility on the basis of these characteristics

difficult in the absence of external knowledge about the target population.

Characteristics of the underlying population influence the accuracy of prevalence

estimation from RDS samples. In particular, degree distribution affects the variance of

RDS estimates (Figure 2) and must be considered when evaluating estimator validity.

Previous RDS validation research has relied on degree distributions generated using

ERGM or Poisson distributions, which have less variation than degrees reported by

participants in real-world studies. A comprehensive survey of RDS samples showed

that self-reported degree is log-normally distributed across a variety of population

types (sex workers, men who have sex with men, people who inject drugs, migrants)

and geographies (North America, India, Europe) (Avery et al. 2021). The degree distri-

butions of the Project 90 and Large Facebook Pages networks (Figure S5 in the online

supplement) indicate similar distributions. Thus, although our results are consistent

with previous research with respect to the relative performance of the estimators, we

report lower coverage rates and demonstrate increased variability, which we believe is

more consistent with real-world performance. A Poisson-generated degree distribution

resulted in coverage near nominal levels for the sample proportion and RDS-I estima-

tor and near perfect coverage for the RDS-II, SS, and HCG (the latter two assuming

that the population size was known exactly). When degree was sampled from real-

world reported degrees, the coverage dropped considerably for all the RDS-specific

estimators (Figure 2).

The naive sample proportion is a poor estimator for RDS samples. It has large bias

when there is elevated activity in the group with the trait of interest, and it is espe-

cially poor (regardless of relative activity) when the prevalence is low. One then needs
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to decide which of the RDS-specific estimators to use. If relative activity between

groups in the underlying population is equal, then the RDS-II estimator is preferred on

the basis of low bias (common to all but the naive sample mean), low error, reasonable

coverage, and no required knowledge of the population size (see Figures 3 and 4 and

Tables S1–S4 in the online supplement). Note, though, that equal activity cannot be

established from an RDS sample: the assumption of equal activity must be made using

external knowledge of the target population. For example, it may be reasonable to

assume that a hidden trait, such as blood type, would lead to groups with equal activ-

ity. The HCG and RDS-I estimators are biased, even under equal activity when homo-

phily is strong. This was corrected with the modified RDS-I*, indicating that the bias

is caused by extreme prevalence estimates resulting from no observed recruitments

between groups in one direction. This supports use of the RDS-I estimator, because

extreme prevalence estimates are easily identified.

We also recommend the RDS-II estimator when elevated activity is present. Despite

a negative bias, the accuracy of the RDS-II is on par with the HCG estimator and

importantly, the bias is consistent. In contrast, the bias of the HCG estimator depends

on the direction of misspecification of the population size, with prevalence overesti-

mated when population size is underestimated and vice versa. Finally, the coverage of

the RDS-II estimator is comparable to the HCG, although reduced for elevated activity

in combination with strong homophily. This can be partially rectified using the tree

bootstrap (Table S1 in the online supplement). We evaluated the tree bootstrap confi-

dence interval for sample sizes of 500, and it provides coverage near to the nominal

rate unless strong homophily is present. The penalty for these accurate confidence

intervals is uncertainty, with the width of confidence intervals greater than the trait

prevalence, and nearly double the prevalence when strong homophily is present. For

example, in a population with equal activity and no homophily, the coverage rate of

the tree bootstrap for the RDS-II estimator was 0.97 for a trait prevalence of 0.2, with

a median width of 0.22, indicating some confidence that the true prevalence is between

0.09 and 0.31. In contrast, the analytic estimator offers only 80 percent coverage, but

the median width of the confidence interval is 0.04. The presence of strong network

homophily increases the variability of all the estimators, naive and RDS specific. In

this situation, too, the RDS-I estimator is more likely to fail and produce an extreme

estimate of 0 or 1; this occurred in both simulated populations with strong homophily.

Similar to Gile (2011) and Fellows (2019), we found that the second-generation

RDS estimators, Gile’s SS and the HCG, have improved accuracy and coverage

relative to the earlier RDS-I and RDS-II estimators in the presence of elevated

activity when the sample size is a substantial fraction of the population (in our study,

n/N = 0.25). However, as Figures 3 and 4 indicate, the HCG and SS estimators are

sensitive to misspecification of the population size in the presence of strong homo-

phily. We varied N̂ from N/2 to 10N (the imbalance was necessary because the sample

size was N/4), and the interquartile range of HCG estimates was consistent with that

of RDS-II. The bias of the HCG and SS estimators is related to the direction of the

misspecification, and because the true population size is unknown, this introduces

another layer of uncertainty in these estimates. It also raises the question of how a
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researcher with a single RDS sample would know if a substantial fraction of the popu-

lation had been captured. The consistency of the RDS-II estimator may prove useful

for surveillance studies in which the underlying population is dynamic and not easily

estimated.

The Project 90 data support our simulation results, specifically that relative activity

and strong homophily influence estimator performance. For the characteristics with

elevated activity—gender, drug dealer, non-White, sex worker, and unemployed—the

naive estimator overestimated prevalence substantially. Conversely, the naive esti-

mator underestimated prevalence for the retired and sex work client traits, which

exhibited reduced activity. The coverage rate, although often below the nominal

level of 0.95, was greater than 0.75, except for the non-White characteristic. Among

all the Project 90 characteristics, ethnicity displayed the greatest homophily, so the

low coverage rate is unsurprising (Table 2). Our results contrast with Fellows

(2019), in that the HCG was not the least biased estimator; instead, the RDS-I esti-

mator performed well for this population and was similar to the RDS-II. The differ-

ences may be partly explained by the different populations used. Fellows restricted

analysis to the single largest connected component of the population, whereas we

drew from the entire population and modified the sampling process to include more

seeds if recruitment stopped before the desired sample size was reached, to mimic

real-world application of RDS.

The Large Facebook Pages network classified pages based on a categorical out-

come: pages were classified as either company, TV show, politician, or government.

There was moderate homophily (H ffi 5) for each group, with varying relative activity.

In this population, the RDS-II estimator was unbiased, as were the RDS-I and SS with

the HCG displaying the greater bias, largest RMSE, and lowest coverage. The tree

bootstrap on the modified RDS-I produced the best, but still lower than nominal cover-

age (Table S8 in the online supplement), again with very wide confidence intervals.

To determine if the poor performance of the HCG estimator was specific to this net-

work, we categorized our binary outcome for the populations with strong homophily,

which had favored the HCG estimator, and we reexamined estimator performance. In

both populations (with equal and elevated activity), the RDS-I and HCG had a large

number of outlying estimates. We observed less variability in the modified RDS-I esti-

mator (Figure S7 in the online supplement), indicating these outlying prevalence esti-

mates are the result of not observing recruitment ties between some of the categories,

which is more likely to occur the more categories there are. Therefore, our recommen-

dation for categorical outcomes is clear: the RDS-II estimator should be used in all

populations when the sample size is a small fraction of the population. Note that the

absence of cross-group ties was observed even in these relatively large, simulated sam-

ples of n = 500.

Findings from the modified RDS-I* indicate that improvements to this estimator

(and therefore the HCG) are possible. Further improvements to these estimators may

reduce the variability observed when the trait prevalence is low. Low coverage is a

problem that persists even with use of the tree bootstrap to calculate confidence
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intervals. Although the tree bootstrap does provide better coverage around the popula-

tion prevalence, the large width of the confidence intervals, which range from double

to quadruple other methods (Table S2 in the online supplement), limits the usefulness

of this approach in practice.

A limitation of our study is the use of real-world reported network degree in our

simulations. Because participants in RDS studies are sampled proportional to their

connectivity, the mean degree of an RDS sample will be higher than the degree in the

underlying population. However, the population-level degree distributions of the Large

Facebook Pages network and the Project 90 network are similar to the reported degrees

(see Figures S5 and S10 in the online supplement) and, even though these reported

degrees may not be an accurate representation of population-level degrees, we believe

this distribution more accurately reflects real-world networks than does the Poisson

distribution. Further research could focus on the effect of mean population degree from

log-normal distributions.

Despite additions to the RDS methodology toolkit, precise trait prevalence estima-

tion remains elusive. Estimator performance depends on population characteristics that

cannot be gleaned from RDS samples. The preferred estimator for each study should

involve careful consideration of the most recent statistical literature and a well-

informed understanding of both the population and the trait under study. Population

homophily and relative activity will affect the choice of preferred estimator, and in the

absence of good statistical estimates of these properties, good fieldwork is essential. If

the goal is disease surveillance, the RDS-II should be considered because it has consis-

tent bias, reasonable coverage, is independent of population size, and has good perfor-

mance with categorical traits. Consistency is especially important in surveillance, in

which accurately assessing change over time is the goal. Future evaluations of RDS

estimators must incorporate real-world network data to capture the true variability in

point estimates and accurately assess coverage rates.
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