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Bioluminescent tomography (BLT) has increasingly important applications in preclinical
studies. However, the simplified photon propagation model and the inherent ill-posedness
of the inverse problem limit the quality of BLT reconstruction. In order to improve the
reconstruction accuracy of positioning and reconstruction efficiency, this paper presents a
deep-learning optical reconstruction method based on one-dimensional convolutional
neural networks (1DCNN). The nonlinear mapping relationship between the surface
photon flux density and the distribution of the internal bioluminescence sources is
directly established, which fundamentally avoids solving the ill-posed inverse problem
iteratively. Compared with the previous reconstruction method based on multilayer
perceptron, the training parameters in the 1DCNN are greatly reduced and the learning
efficiency of the model is improved. Simulations verify the superiority and stability of the
1DCNN method, and the in vivo experimental results further show the potential of the
proposed method in practical applications.

Keywords: bioluminescent tomography (BLT), optical reconstruction, deep learning, convolutional neural networks,
inverse problem
1 INTRODUCTION

Bioluminescence tomography (BLT) is an optical molecular imaging method with high sensitivity,
low cost, and noninvasive characteristics (1–3). Traditionally, based on the light propagation model
in biological tissues, the inversion algorithm is used to recover the three-dimensional (3D)
distribution of the internal bioluminescent sources that enables quantitatively monitoring the
pathological and physiological changes of the biological entities (4). In the past decade, BLT has
been widely applied in preclinical studies such as early detection of tumors, monitoring tumor
growth, and metastatic spreading (5–8).

For most BLT applications, both tumor spatial location and morphology are the key problems
need to be addressed. However, the light scattering and limitation of measurement strongly
influence the reconstruction accuracy. Considering the ill-posedness of BLT reconstruction and
the sparseness of the source distribution, researchers have proposed various reconstruction
algorithms combined with different prior information (9–13). Although the positioning accuracy
of the reconstructed source center is gradually improved by these methods, the insufficient
sparseness of the reconstructed results would lead to image artifacts and limit the accuracy of
morphological analysis.
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Deep-learning methods have become a dominant methodology
of choice for analyzing medical images and medical imaging in the
past few years (14, 15). They have shown outstanding performance
on solving a variety of inverse problems (16). Recently, deep-
learning methods have also received increasing attention in optical
molecular tomography. Yoo et al. proposed an encoder-decoder
convolutional structure deep neural network for diffuse optical
tomography (DOT) (17). The experimental results demonstrated
that the trained network performed well and could obtain accurate
locating results in regular phantom without iterative procedure or
linear approximation. Huang et al. proposed a deep convolutional
neural network, gated recurrent unit, and multiple-layer
perception-based method (18) to improve the quality of
fluorescence molecular tomography (FMT) reconstruction. Wang
et al. proposed an inverse-problem solving technology based on a
stacked autoencoder (SAE) network for FMT (19). Simulation
based on a uniform two-dimensional rectangular model shows the
proposed method can retrieve the positions and shapes of the
targets accurately. Lin et al. proposed a three-dimensional deep
encoder-decoder network for FMT (20), which achieved accurate
locating results in regular phantom. Gao et al. proposed a
multilayer perceptron-based inverse problem simulation (IPS)
method, which is the first deep-learning method applied to BLT
(21). The simulations and in vivo experiments demonstrated that
the IPS method has advantages over the traditional direct analysis
and the iterative methods. However, due to the complexity of a
fully connected layer connection, the network training for IPS
needs too many parameters, and it is also difficult to transmit the
gradient during training especially when the fully connected
network layer is deep.

In this study, a deep-learning method based on one-
dimensional convolutional neural networks (1DCNN) is
proposed for BLT. It does not rely on an analytic inversion or
on an iterative data-fit optimization. Here, we use the term
1DCNN to emphasize that the input of the CNN is a one-
dimensional vector of the surface measurement. Unlike the IPS
method, the local connection and weight sharing of CNN greatly
reduce the number of parameters to be trained in the neural
network model. Simulations and in vivo experiments with a
mouse brain orthotopic glioma model are performed to verify
the performance of the proposed method in BLT reconstruction.

This paper is organized as follows. In Section 2, the 1DCNN
network-based reconstruction method, the design of data
collection, and the evaluation index are explained. Simulations
are then presented to verify the reconstruction ability of the
proposed method in Section 3. Section 4 further evaluates the
proposed method with in vivo experiments. Finally, we present a
discussion and conclusion in Section 5.
2 METHODOLOGY

2.1 BLT Reconstruction Based on
1DCNN Method
Here, we present a data-driven reconstruction method based on
deep learning. Unlike the model-based method, neural networks
Frontiers in Oncology | www.frontiersin.org 2
(NNs) form the theoretical architecture of deep-learning
methods. The universal approximation theorem (22)
guarantees that a NN with sufficiently many hidden units and
a linear output layer is capable of representing any arbitrary
function. The CNN is one of the most representative algorithms
of deep learning, which is a kind of feed-forward neural network
including convolution calculation and deep structure. Researches
have shown that the convolutional layer can extract high-level
features from data and obtain more useful information (23).
Therefore, it is possible to use the CNN to solve the inverse
problem of BLT by directly fitting the nonlinear mapping
relationship between the surface photon flux density and the
distribution of the internal bioluminescence sources.

Figure 1 shows the schematic diagram of 1DCNN used in
BLT reconstruction. Basically, the 1DCNN is an end-to-end
learning model including six layers, i.e., an input layer, three
convolutional layers, a fully connected layer, and an output layer.
The model task of 1DCNN is to extract the characteristic
information of the surface photon flux density and predict the
spatial distribution of the internal source, which is different from
that of general classification problems. Considering that the
commonly used pooling mechanism may change the structure
information and thus affect the reconstruction results, we
deprecated the pooling mechanism in the 1DCNN. The input
to the deep network is an N-tuple vector of photon flux density f,
where N is the number of surface nodes. It is a vector with
characteristic information, which is obtained by arranging the
elements of measurement according to the order of surface nodes
in data preprocessing stage. The output of the 1DCNN is an M-
tuple vector of the reconstructed source S, where M is the
number of nodes in the imaging region. By combining the
output with the coordinate information of nodes, the 3D
distribution of internal source can be obtained.

As illustrated in Figure 1, each convolution layer is followed
by an activation function (ReLU). In the leaning system of
1DCNN, the convolution layers are used for feature extraction.
The feature maps produced by the previous layer are convolved
with several convolutional kernels (to be learned in the training
process). The output of the convolution operators along with a
bias (to be learned) is passed by the activation function to form
the feature map for the next layer. This process can be defined
as follows:

hlj = g Sk
i=1h

l−1
i ∗Wl

ij + blj
� �

(1)

where hlj represents the jth feature map (h0 = f) of lth
convolutional layer, Wl

ij represents the weight matrix
connecting the ith feature map of layers l – 1 and the jth
feature map of the layer l, i and j are the indexes of the input
and output feature maps, k represents the number of feature
maps in layers l – 1, and blj is the bias corresponding to each
feature map of the layer l. g(·) is the ReLU activation function:

g(x) = ReLU(x) = max (0, x) (2)

The fully connected layer in Figure 1 is used to connect all the
features and pass the output value to the classifier. The sigmoid
October 2021 | Volume 11 | Article 760689
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function is used as the classifier, and it is defined as follows:

Sigmoid(x) =
1

1 + e−x
(3)

During the network training process, the method attempt to
fit the nonlinear mapping between the bioluminescence source
and the surface photon flux density. The inverse problem of BLT
is optimized as follows:

minjjf1(fjq) − Sjj22 (4)

where f1 is the 1DCNN method with network weight q. f is the
surface photon flux density, and S is the bioluminescence source.
Moreover, the network weight q is updated iteratively during the
network training by minimizing the BCE between the actual and
reconstructed sources.

The adaptive moment estimation (Adam) optimization
function is applied for optimizing the loss function. The training
hyperparameters are set as follows: learning rate a = 0.001, b1 =
0.9, b2 = 0.999, ϵ = 10–8, epochs = 200, and batch size = 32. The
training time of the model is about 5 min. The training parameters
of the 1DCNN is about 105, which has been reduced by 83%
compared with IPS. The related computing configuration
environment of implementing the network model mainly
includes Ubuntu 16.04 system, python3.6, and pytorch1.6. The
whole calculation procedure ran on a server with Intel(R) Xeon(R)
Silver4214CPU @2.20 GHz, 12 GB RAM, and NVIDIA
GTX2080 GPU.

2.2 Data Collection
There is no doubt that the collection of a large amount of
representative data is important for a data-driven reconstruction
method. The datasets used in previous studies were mostly
Frontiers in Oncology | www.frontiersin.org 3
obtained based on the Monte Carlo method since data
acquisition from in vivo experiments is not practical. Although
the Monte Carlo method has high reliability due to its
statistical characteristics, the cost of time is not insignificant.
In our implementation, the simplified spherical harmonics
approximation (SPN) to the radiation transfer equation is solved
numerically to generate simulation training datasets. To balance
efficiency and accuracy in data collection, we use the finite element
method to solve the SP3 equation (24). It takes about 70 h to
obtain the dataset used for the following simulation.

In order to improve the generalization ability of the
experiment, the standard digital mouse model (25) was
selected. Because the brain glioma is a type of intracranial
tumor and only invades inside the brain, we selected the head
of the mouse as the reconstruction region, which includes three
organs: brain, skull, and muscle. The corresponding optical
parameters (26, 27) are presented in Table 1. The tetrahedron
mesh used for simulations includes 5,831 tetrahedron mesh
nodes and 31,826 tetrahedron elements.

Simulation data of single source and dual source were
collected to train the 1DCNN and validate the reconstruction
performance. Since the internal sources can be anywhere in the
mouse brain, the simulated samples should cover brain tissue as
much as possible. We randomly selected a node of the brain
tissue as the internal bioluminescence source center, and then set
October 2021 | Volume 11 | Article 760689
1

TABLE 1 | Optical parameters of main organs.

Organ ma/mm–1 ms/mm–

Brain 0.0389 1.7134
Skull 0.0804 2.0690
Muscle 0.1154 0.4674
FIGURE 1 | The schematic diagram of 1DCNN used in BLT reconstruction.
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the immediate adjacent tetrahedrons containing the center node
as a single source. In this way, we obtain the simulated single
sources by traversing all nodes in the brain region. Due to the
unevenmesh, the simulated single sources were irregular and their
shape and size were not exactly the same, but such operation
increases the diversity of data samples. The minimum volume of
single source is about 3 mm3, and the maximum volume of single
source is about 25 mm3. For the given single source, we can obtain
the corresponding surface photon density by solving the SP3 using
FEM. To generate dual-source data, we use a simple combination
method, i.e., randomly combining two single-source samples to
obtain a dual-source sample. The surface photons density f and
the internal sources X of the assembled source samples were
calculated as follows:

fdbs =oi∈Sn
fi (5)

Xdbsoi∈Sn
Xi (6)

where Sn and n are the sets of selected single-source samples and
the number of selected samples. fi and fdbs are the surface
photons of ith single- and double-source samples, Xi and Xdbs are
the given true bioluminescent sources of the ith single- and
double-source samples. Dual-source samples were created by
randomly selecting two samples (n = 2) from the single-source
samples. According to the above data collection scheme, a total
of 11,635 samples (including 1,035 groups of single-source
samples and 10,600 groups of dual-source samples) were
generated, in which 1,094 simulation samples were used as the
validation sets to determine the optimal model, and 935
simulation samples were used as the test sets to test the model.
By introducing double-source samples, the proportion of single-
source samples in the training dataset is diluted, and the invisible
prior of the model with regard to the number of sources is
confused, so as the generalization ability of the model
is improved.

2.3 Evaluation Index
To justify the utility of the proposed method, simulations and
in vivo experiments are carried out for BLT reconstruction with
1DCNN in comparison with the IPS method. We use two metrics,
the location error (LE) and the Dice index (28), to quantitative
evaluate the location accuracy and the morphological
similarity, respectively.

The LE is the Euclidean distance between the barycenter of
the reconstructed source and that of the true anomaly. The LE is
measured as the function:

LE = jj SCre − SCtr jj2 (7)

SCk = oi∈Sk
Pi � xi

� �
=oi∈Sk

xi (8)

where SCre and SCtr are the barycenter coordinate of the
reconstructed source and true source, respectively. ||•||2 is the
operator of Euclidean distance. SCk is the weighted center
coordinate of source Sk, Pi presents the coordinate vector of
the ith node in Sk, and xi is the reconstructed intensity of Pi.
Frontiers in Oncology | www.frontiersin.org 4
The Dice index reflects the morphological similarity between
the nodes set of the reconstructed source and the real light
source. The higher the Dice index, the better the morphological
similarity.

DICE =
2 S1 ∩ S2j j
S1j j + S2j j (9)

where S1 and S2 are the nodes set of the reconstructed and actual
sources respectively.
3 SIMULATION

3.1 Single-Source Reconstruction
In this section, the 111 single-source samples in the test set were
selected for BLT reconstruction to verify the accuracy of the
1DCNN in single-source reconstruction.

Table 2 presents the average and standard deviation of the LE
and Dice in single-source reconstruction. For the Dice, 1DCNN
performs 10% better than IPS, while the average LE of 1DCNN is
11.3% less than that of IPS.

To further investigate the impacts of depth on the
performance of method, we divided the 111 single-source test
samples into four groups according to the depth range and
analyze the LE and Dice at different depths. The statistical
values are summarized into a boxplot, as shown in Figure 2. It
can be seen that the LE slightly increases with the depth, and the
average value of Dice value goes below 0.6 when the depths of
source range from 6 to 8 mm. In summary, the average
performance of 1DCNN is better than IPS for the samples at
different depths.

For the convenience of intuitive assessment of the reconstruction
results, we choose four groups of single-source sample to compare.
These representative samples are similar in size but locate at
different depths. The depths of these sources are 2.9, 3.5, 4.3, and
6.7 mm, respectively. As we can see in Figure 3, the 1DCNN results
show better morphological similarity than the IPS method at
different source depths. In contrast, more unexpected artifacts
were observed in the IPS results.

3.2 Dual-Source Reconstruction
To evaluate the resolving power of different reconstruction
methods, 824 groups of BLT reconstructions were performed
on dual-source samples. Table 3 summarizes the statistical
results including the average and the standard deviation of
Dice, LE for two individual sources (LE1 and LE2), and total
LE for the two reconstructed sources. Compared with the IPS
method, 1DCNN has obvious advantages in location accuracy
and morphological similarity. The average LE for each
October 2021 | Volume 11 | Article 760689
TABLE 2 | The average and standard deviation of the LE and Dice for the
single-source reconstruction in test set.

Method LE (mm) Dice

IPS 0.42 ± 0.25 0.59 ± 0.18
1DCNN 0.37 ± 0.23 0.65 ± 0.18
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A B

C D

FIGURE 3 | Reconstruction results of 1DCNN and IPS in the single-source case, including the 3D views and the corresponding sagittal views at the true source
center: (A) Depth = 2.9 mm; (B) Depth = 3.5 mm; (C) Depth = 4.3 mm; (D) Depth = 6.7 mm.
A B

FIGURE 2 | (A) The boxplot chart of the LE for all single-source samples, where the samples are divided into four groups according to the depth. (B) The
corresponding boxplot chart of the Dice.
Frontiers in Oncology | www.frontiersin.org October 2021 | Volume 11 | Article 7606895
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reconstructed source is close to 0.5 mm. For the total LE, the
average location error of 1DCNN is lower at 0.44 mm than that
of the IPS method. The average Dice of 1DCNN increases by
38.78% relative to that of IPS.

For dual-source reconstruction, decreasing the separation
increases the difficulty of reconstruction. This can be seen in
the statistical results in the boxplots of Figure 4, which is
obtained by dividing the dual-source samples into four groups
according to the separation. The total LE for dual-source samples
with the separation ranging from 2 to 6 mm are the largest and
the Dice index for this group is also obviously lower than the
other cases. In addition, the boxplot graphs in Figure 4 show that
there was a high level of dispersion and sizable quantity of
outliers within the result of IPS, especially for the total LE.

From the above statistical results, we observed that the 1DCNN
method produces lower LE, which revealed that the 1DCNN
method had better source location-tracing ability than the IPS
method. In addition, it can be seen from the difference between the
maximum and minimum values of LE in different barycenter gaps
that the 1DCNN method produced more stable results.

For visual comparison, we randomly chose three sets of dual-
source samples with different source setups. For case 1, two sources
have a barycenter gap of 3.5 mm, but their sizes are similar. For
cases 2 and 3, the sources have larger volume difference. Figure 5
shows the 3D views and corresponding transverse views of the
reconstruction results obtained by 1DCNN and IPS, respectively. It
can be observed that both methods can reconstruct two separate
sources for cases 1 and 2. However, the 1DCNN results show
better morphological consistency with the true sources. In contrast,
obvious position deviation and more unexpected artifacts were
Frontiers in Oncology | www.frontiersin.org 6
observed in the IPS results. For case 3, due to the huge difference in
volume, IPS fails to recover the smaller source, whereas the
1DCNN successfully identifies two sources.
4 IN VIVO EXPERIMENT

We further conducted BLT reconstruction in a mouse orthotopic
glioma model to evaluate the practicability and the
reconstruction performance of the 1DCNN method for in vivo
animal study. A 4- to 6-week BALB/c nude mouse was prepared.
Animal experiment was implemented under the guidelines
approved by the Institutional Animal Care and Use
Committee. To build the orthotopic glioma model, green
fluorescent protein (GFP)-labeled 87MG-GFP-fLUC cells (29)
were injected into the brain of the mouse. The raw data of CT
was obtained by the micro-CT imaging system (UltraBright,
Bolton, UK). The bioluminescent images were acquired by an
electron-multiplying charge-coupled device (EMCCD) cameras
(iXon888, Andor, Belfast, UK), 20 s exposure. In the process of
bioluminescence image acquisition, a bandpass filter (Semrock,
Rochester, NY, USA) with 670 ± 15 nm was used.T2-weighted
MR images (M3TM, Aspect Imaging, Shoham, Israel) were
acquired with the following parameter: TR 6,000 ms, TE 50
ms, slice thickness 0.7 mm, and slice spacing 0.2 mm.

The CT data were utilized as the structural information, and
the standard mesh was registered to CT data. The cross-modal
registration process of optical data and CT data were responsible
for establishing the mapping relationship between the three-
dimensional physical space of CT and the two-dimensional
image space of BLI. We used physical markers to set six
marked points in the imaging space, then we calculated the
actual physical position of the camera optical center through
enumeration and adjusted the mapping relationship to minimize
the mapping error of the marked points. The required MRI data
were used for evaluating BLT reconstruction.

Figure 6A shows the fusion images used for reconstruction,
including the white light image and the bioluminescent
TABLE 3 | The average and standard deviation of the LE and Dice for the dual-
source reconstruction in test set.

Method LE1 (mm) LE2 (mm) Total LE (mm) Dice

IPS 0.78 ± 0.38 0.69 ± 0.53 1.46 ± 0.63 0.49 ± 0.17
1DCNN 0.52 ± 0.36 0.50 ± 0.41 1.02 ± 0.45 0.68 ± 0.13
A B

FIGURE 4 | (A) The boxplot chart of the total LE for the dual-source samples, where the samples are divided into four classes according to the barycenter gap.
(B) The corresponding boxplot chart of the Dice.
October 2021 | Volume 11 | Article 760689
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image of the glioma-bearing mouse. The reconstructed result
was merged with the corresponding MRI data by the
maximum mutual information registration (30). Figure 6B
shows the 3D view and several transverse section images of the
reconstruction results and the merged images of BLT and MRI
data. For visual comparison, the contour of the MRI highlight
region is drawn in red lines. For quantitative analysis of in vivo
experiments, we calculated Dice index between the different
transverse section images of BLT reconstruction results and 2D
MRI images of corresponding sections. Therefore, the
redefinition of Equation (9) in the in vivo experiment was S1
is the BLT reconstruction result area of transverse section
images and S2 is the area of the highlight region of the MRI
image. Table 4 lists the quantitative results of the calculated
Dice value. The in vivo results revealed that the reconstructed
Frontiers in Oncology | www.frontiersin.org 7
regions given by the 1DCNN method achieved better accuracy
and morphology recovery and were better overlapped with
MRI highlight regions.
5 DISCUSSION AND CONCLUSION

In this paper, we propose a deep-learning method based on one-
dimensional convolutional neural networks to deal with the
inverse problem of BLT reconstruction. This method directly
fits the nonlinear mapping relationship between the surface
measurement and the internal sources to avoid iteratively
solving the inverse problem based on a simplified photon
transmission model. Since the local connection and weight-
sharing characteristics of the convolutional neural network
A

B

C

FIGURE 5 | 3D views and the corresponding transverse views of reconstruction results by the 1DCNN and the IPS in the dual-source cases. (A) Case 1; (B) case
2; (C) case 3.
October 2021 | Volume 11 | Article 760689
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could reduce the number of parameters to be trained in the
network model, this allows the network of 1DCNN to deal with
more complex problems and achieve fast reconstruction than the
IPS method.

The simulation results show that the 1DCNN method can
achieve better tumor resolution, position accuracy, and
morphological fitting. The dual-source results shown in
Figures 4, 5 illustrate that not only does 1DCNN performed
better than IPS in morphological fitting but it also provided
better resolving ability in different source settings. The
quantitative analysis in Tables 2, 3 shows that the proposed
1DCNN method has remarkable advantages especially in dual-
source reconstruction. In vivo experiments have also proved the
feasibility and superiority of the proposed method in tumor
detection. As shown in Figure 6, Table 4, although the BLT
results are not well consistent with the MRI highlight regions in
part of the selected transverse views, the results of 1DCNN are
generally better than that of IPS.

In conclusion, the proposed method solved the ill-posed
inverse problem of BLT based on a deep-learning framework.
Although the data collection stage and network training stage are
time consuming, the computational burden and time cost for
reconstruction are very low compared with traditional iterative
inverse algorithms. However, there are still some shortcomings,
such as the need for additional registration between standard
meshes and the data collection scheme limiting the reconstruction
accuracy. Due to the irregular shape of the digital mouse brain, the
proportions of single-source samples at different depths and dual-
source samples at different barycenter gaps were uneven when
acquiring the dataset. For example, the dual-source samples with
Frontiers in Oncology | www.frontiersin.org 8
barycenter gap of 6–10 mm accounted for 40% of the total samples
in the test set. Therefore, there are more outliers focused on those
intervals, as shown in Figure 4. Our future work will focus on
solving these problems to further improve the generalization
capability and reconstruction accuracy.
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images of BLT reconstruction results and merged images of BLT and MRI data, where the MRI highlight region contour is drawn in red line.
TABLE 4 | Quantitative results of Dice for in vivo BLT reconstruction.

Method z-coordinate for the selected transverse section Mean

Z = 11 mm Z = 12 mm Z = 13 mm Z = 14 mm

IPS 0.09 0.51 0 0 0.15
1DCNN 0.31 0.47 0.77 0.92 0.62
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