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Abstract

Cryotherapy is successfully used in the clinic to reduce pain and inflammation after muscu-

loskeletal damage, and might prevent secondary tissue damage under the prevalent hyp-

oxic conditions. Whether cryotherapy reduces mesenchymal stem cell (MSC) number and

differentiation under hypoxic conditions, causing impaired callus formation is unknown. We

aimed to determine whether hypothermia modulates proliferation, apoptosis, nitric oxide

production, VEGF gene and protein expression, and osteogenic/chondrogenic differentia-

tion of human MSCs under hypoxia. Human adipose MSCs were cultured under hypoxia

(37˚C, 1% O2), hypothermia and hypoxia (30˚C, 1% O2), or control conditions (37˚C, 20%

O2). Total DNA, protein, nitric oxide production, alkaline phosphatase activity, gene expres-

sion, and VEGF protein concentration were measured up to day 8. Hypoxia enhanced KI67

expression at day 4. The combination of hypothermia and hypoxia further enhanced KI67

gene expression compared to hypoxia alone, but was unable to prevent the 1.2-fold reduc-

tion in DNA amount caused by hypoxia at day 4. Addition of hypothermia to hypoxic cells did

not alter the effect of hypoxia alone on BAX-to-BCL-2 ratio, alkaline phosphatase activity,

gene expression of SOX9, COL1, or osteocalcin, or nitric oxide production. Hypothermia

decreased the stimulating effect of hypoxia on VEGF-165 gene expression by 6-fold at day

4 and by 2-fold at day 8. Hypothermia also decreased VEGF protein expression under hyp-

oxia by 2.9-fold at day 8. In conclusion, hypothermia decreased VEGF-165 gene and protein

expression, but did not affect differentiation, or apoptosis of MSCs cultured under hypoxia.

These in vitro results implicate that hypothermia treatment in vivo, applied to alleviate pain

and inflammation, is not likely to harm early stages of callus formation.
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Introduction

Fractures are generally accompanied by soft tissue trauma that is aggravated by subsequent

surgical stabilization. The interruption of arterial vascular flow causes regional ischaemia and

hypoxia, resulting in inflammation [1]. Cryotherapy seems to be a modulator of the posttrau-

matic inflammatory reaction, but results obtained do not unanimously agree on the way it

affects inflammation. Cryotherapy has been reported to reduce posttraumatic microvascular

dysfunction, inflammation, and structural impairment in a rodent model [2]. However, hypo-

thermia prolongs the inflammatory response systemically and locally in fracture hematomas in

a porcine model [3]. Cryotherapy can be applied in the acute recovery phase of musculoskele-

tal trauma and after orthopaedic surgical interventions, such as knee arthroplasty to prevent

pain and inflammation [4]. Currently, the clinical effect of cryotherapy is being investigated in

postoperative hip fracture patients [5], even though the effect of application of cryotherapy on

osteoblast precursor proliferation and differentiation during bone tissue repair has not been

clearly established.

During the process of bone repair, the interruption of vascular flow activates the coagulation

and formation of a fracture hematoma, which has a remarkable angiogenic capacity [1]. More-

over, hypoxia is a key factor in bone repair [1]. It increases human mesenchymal stem cell

(MSC) migration rates and improves their tissue regenerative potential in a murine hind limb

ischaemia model [6]. Furthermore hypoxia induces recruitment of fibroblasts and osteogenic

progenitor cells via the production of reactive oxygen species (ROS) [7,8]. At low concentrations,

ROS functions as a messenger to enhance wound healing [9]. It targets survival pathways such as

mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/Akt [8,10].

ROS also targets hypoxia-inducible factor-1 (HIF-1), which upregulates gene expression of vas-

cular endothelial growth factor (VEGF), an angiogenesis and vasculogenesis-inducing agent as

well as a bone-metabolism cytokine that stimulates the differentiation and chemotactic migration

of osteoblast precursor cells [11–13]. However, hypoxia is not always beneficial for bone repair.

Physiological ROS formation is disrupted during ischaemia and subsequent reperfusion [14].

Pathological hypoxia sustained during ischaemia causes ROS accumulation [14], which has been

implicated in secondary tissue damage. Cooling of ischaemic tissues using cryotherapy, which

decreases muscle temperature to 23˚C at the thigh of healthy individuals [15], might overcome

some of the adverse effects of the pathological hypoxic state and excessive ROS formation. How-

ever, the effect of cryotherapy on cell metabolism in fracture haematomas is currently unknown.

Cryotherapy diminishes the cell’s metabolic rate of glucose, oxygen, and lactate production

by 2 to 4-fold per 10˚C reduction in the mammalian central nervous system [16]. Synovial lac-

tate concentrations remain stable despite a decrease in blood flow (indicated by increased etha-

nol exchange ratio) when cryotherapy is applied in patients recovering from arthroscopy,

suggesting a decrease in energy requirements [17]. A reduction in ROS concentration by hypo-

thermia has been shown to attenuate the apoptotic cascade in murine nerve cells [18]. Thus,

cryotherapy likely reduces cell metabolism in haematomas of fracture patients, thereby it

might reduce harmful concentrations of ROS. In addition, hypothermia blocks ß-catenin deg-

radation via the PI3K/Akt pathway in a focal ischaemic rat model, resulting in decreased cell

injury and apoptosis [19], and activation of the PI3K/Akt pathway is suggested to enhance

osteogenic differentiation of MSCs [20].

On the other hand, hypothermia reduces osteoblast proliferation and differentiation while

promoting osteoclast function in cultured rat calvariae [21]. Taken together, these findings

warrant further investigation of induced hypothermia effects on early stages of bone healing.

To date no studies have addressed whether hypothermia affects osteogenic differentiation and

proliferation of MSCs, be it in a positive or negative way, under hypoxic conditions.

Hypothermia reduces VEGF-165 expression in hypoxic stem cells
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We aimed to determine whether hypothermia modulates proliferation, apoptosis, nitric

oxide (NO) production, VEGF gene and protein expression, and osteogenic/chondrogenic dif-

ferentiation of human mesenchymal stem cells under hypoxia. We hypothesized that hypoxia

stimulates osteogenic/chondrogenic differentiation, VEGF gene and protein expression, NO

production, and apoptosis, and inhibits MSC proliferation, but that hypothermia attenuates

these hypoxia-induced effects.

Materials and methods

Donors

hASCs were isolated from abdominal subcutaneous adipose tissue as waste material after

abdominoplasty from six Caucasian healthy female donors (age 31–56) at Tergooi Hospital,

Hilversum, The Netherlands. Our study has been conducted within the framework of the

“Medical Research Involving Human Subjects Act (WMO) exemption” as ruled by the Medical

Ethical Committee of the VU University Medical Centre, Amsterdam, The Netherlands (date:

17-03-2016; reference no: 2016.105). The use of all human materials in this study has been

approved by the Medical Ethical Committee of the VU University Medical Centre (“Medisch

Ethische Toetsingscommissie VU medisch centrum”; protocol number 2005/128) after obtain-

ing written informed consent.

hASCs isolation and culture

Human adipose tissue obtained by resection was stored in sterile phosphate buffered saline

(PBS) at 4˚C overnight and processed within 24 h, as described previously [22,23]. In brief,

adipose tissue was minced, washed with PBS, and enzymatically digested with 0.1% collagenase

A (Roche Diagnostics, Mannheim, Germany) in PBS containing 1% bovine serum albumin

(BSA; Roche Diagnostics). The resulting cell pellet containing the hASCs was resuspended,

and viability and cell number was measured with a NucleoCounter1 (NC-100™, ChemoMetec,

Allerod, Denmark). Confirmation of stem cell phenotype has been confirmed earlier by sur-

face marker expression [22,23]. The attached ASCs are virtually all positive for markers CD29

(cell adhesion marker), CD73, CD90, and CD105 (MSC-associated markers), CD166 and

HLA-ABC (leucocyte surface markers), while they do not express leucocyte surface markers

CD45 or HLA-DR [22,23]. For cell culture, single cell suspensions of cryopreserved hASCs

were thawed and seeded at 4-12x104 cells/cm2 in α-Modified Eagle’s Medium (α-MEM;

Gibco, Paisley, UK) supplemented with 5% platelet lysate (PL; VU University Medical Centre,

Amsterdam, The Netherlands), 0.2% (vol/vol) heparin (5,000 U/ml), and 1% antibiotic-anti-

mycotic solution (10,000 U/ml penicillin (Gibco), 10 mg/ml streptomycin (Gibco), and 25 μg/

ml amphotericin B (Sigma)), and cultured under 5% CO2 and 20% O2, at 37˚C. Platelet lysate

is known to induce osteogenic differentiation of hASCs [24,25]. Upon reaching 80–90% con-

fluency, cells were harvested by incubation with 0.25% trypsin/0.1% ethylenediaminetetraace-

tic acid (EDTA; Gibco) in PBS for 5 min at 37˚C. All cells used were from passage 4 or less.

For experiments, hASCs were seeded at 10,000 cells/cm2 in 6-well dishes containing α-MEM

supplemented with 2% PL, 0.2% heparin (5,000 U/ml), and 1% antibiotic/antimycotic solution,

and cultured under hypoxia (37˚C, 1% O2), the combination of hypothermia and hypoxia

(30˚C, 1% O2), or control conditions (37˚C, 20% O2) for 1, 4, and 8 days in α-MEM with sup-

plements, with medium refreshment at day 4. At day 1, 4, and 8, cells were lysed for total RNA

isolation, and quantification of total DNA, protein content, and alkaline phosphatase (ALP)

activity as described below. We have chosen our time points based on earlier findings that

hASCs show changes in proliferation, gene expression of KI67, COL1, and osteocalcin, and

changes in ALP activity at 48 h, 4 days [26,27]. Moreover, since platelet lysate is a strong

Hypothermia reduces VEGF-165 expression in hypoxic stem cells
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inducer of osteogenic differentiation in hASCs, we obtained statistical significant differences

already at relatively early time points.

Culture under hypoxia

For culturing in hypoxia, hASCs were placed in a NAPCO1 incubator (serial number

7101-C1, Precision Scientific Inc., Chicago, IL), in which the oxygen concentration is con-

trolled by flushing with N2. Oxygen levels in the incubator were monitored by an internal oxy-

gen sensor, as well as by external calibration using Dräger Tubes 6728081 (Drägerwerk Ag,

Lübeck, Germany). Hypoxia was defined as 1% O2/5% CO2 in air.

RNA isolation and gene expression analysis

Cells were washed with PBS and lysed with 700 μl TRIzol1 reagent (Life Technologies, Carls-

bad, CA). Total RNA was isolated according to the manufacturer’s instructions. cDNA synthe-

sis was performed using 750 ng of total RNA with reaction mixture Transcriptor First Strand

cDNA synthesis kit (Roche Diagnostics, Mannheim, Germany), in an Applied Biosystems1

GeneAmp1 PCR System 9700, creating 20 μl suspension.

Real-time polymerase chain reaction (PCR) was used to determine gene expression of the

osteogenic markers osteocalcin, collagen type 1 (COL1), and the chondrogenic marker SOX9.

KI67 gene expression was measured as proliferation marker. The ratio of BAX-to-BCL-2 gene

expression was used as an indicator of cell apoptosis. VEGF-165 gene expression was measured

as a marker of vasculogenesis. Three housekeeping genes (TBP,HPRT, and YWHAZ; InVitro-

gen, Carlsbad, CA) were used to correct for the combined effect of hypothermia and hypoxia.

Real-time PCR reactions were performed with 1 μl cDNA (5x dilution) and ready to use hot

start master mix LightCycler1 480 SYBR Green I Master (Roche Diagnostics) in a LightCycler1

480 Real-Time PCR System (Roche Diagnostics). The primer sequences are listed in Table 1.

Total DNA, protein content, and ALP activity

hASCs were lysed with 0.7 ml of ice-cold Milli-Q water, harvested on ice, sonicated for 10 min

in ice-cold water, and centrifuged for 10 min at 2,000 rpm at 4˚C. The supernatants were

immediately analysed for total DNA, protein content, VEGF protein concentration (see

below), and ALP activity. Total DNA was quantified using the CyQUANT1 Cell Proliferation

Assay (Molecular Probes, Eugene, OR) according to the manufacturer’s protocol. ALP activity

was measured in the supernatant according to the method described by Lowry [28]. Total pro-

tein was determined using a BCA Protein Assay Reagent kit (Pierce, Rockford, IL). ALP activ-

ity and protein content were normalized for DNA. Absorbance was measured with a

SynergyTM HT (BioTek Instruments, Winooski, VT) microplate reader in concordance with

the manufacturer’s instructions.

Nitric oxide

NO production was measured as nitrite (NO2
-) accumulation in the conditioned medium

(CM) using Griess reagent containing 1% sulfanilamide, 0.1% naphtylethelene-diamine-dihy-

drochloride, and 2.5 M H3PO4. Serial dilutions of NaNO2 in non-CM were used as a standard

curve. Measurements were performed with a SynergyTM HT microplate reader.

VEGF protein

To determine VEGF protein concentration in the supernatant, a Quantikine1 ELISA kit

(R&D Systems Inc., Minneapolis, MN) was used and the samples were assayed according to

Hypothermia reduces VEGF-165 expression in hypoxic stem cells
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the manufacturer’s protocol. Measurements were performed with a SynergyTM HT micro-

plate reader.

Statistical analysis

All data were checked for normality by using the Kolmogorov Smirnoff’s test. If applicable,

logarithmic transformation was performed to obtain normal distributions. Mixed Model Anal-

ysis included temperature and oxygen concentration as fixed factors. The interaction between

the factors was also evaluated. Statistical differences were considered significant if p<0.05.

Post hoc multiple pairwise comparisons were performed at each time point with an adjusted

significance level of 0.017 using Bonferroni’s method. All data were evaluated using the IBM

SPSS statistical package for Macintosh, Version 20.0 (Armonk, NY).

Results

Hypoxia decreased total DNA at day 4 by 1.2-fold (p = 0.004) compared to controls (Fig 1A).

The combination of hypothermia and hypoxia further reduced total DNA in hASCs at day 1

by 1.4-fold (p = 0.008), and at day 4 by 1.2-fold (p = 0.013), but not at day 8, compared to hyp-

oxia alone.

Hypoxia upregulated KI67 gene expression at day 4 by 5-fold (p = 0.0051) compared to con-

trols (Fig 1B). The combination of hypothermia and hypoxia downregulated KI67 gene

Table 1. Primers used in the real-time PCR assay.

Gene Oligonucleotide sequence Accession no. genebank An. temp (˚C) Amp. length (bp)

Housekeeping genes

TBP Forward 5' GGTCTGGGAAAATGGTGTGC 3' NM_003194.4 56 97

Reverse 5' GCTGGAAAACCCAACTTCTG 3'

HPRT Forward 5' GCTGACCTGCTGGATTACAT 3' NM_000194 56 260

Reverse 5' CTTGCGACCTTGACCATCT 3'

YWHAZ Forward 5' GATGAAGCCATTGCTGAACTTG 3' NM_003406 56 229

Reverse 5' CTATTTGTGGGACAGCATGGA 3'

Genes of Interest

KI67 Forward 5’ CCCTCAGCAAGCCTGAGAA 3’ NM_002417.4 56 202

Reverse 5’ AGAGGCGTATTAGGAGGCAAG 3’

Osteocalcin Forward 5’ AGCCACCGAGACACCATGAGA 3’ NM_199173.5 57 288

Reverse 5’ CTCCTGAAAGCCGATGTGGTC 3’

SOX9 Forward 5’ CCACACTCCTCCTCCGGCATGA 3’ NM_000346 57 188

Reverse 5’ TCCACGTCGCGGAAGTCGAT 3’

VEGF-165 Forward 5' ATCTTCAAGCCATCCTGTGTGC 3' NM_001025368.2 56 224

Reverse 5' CAAGGCCCACAGGGATTTTC 3'

BAX Forward 5' CACCAGCTCTGAGCAGATCAT 3' NM_138761.3 56 345

Reverse 5' CTTGGTGCACAGGGCCTTG 3'

BCL-2 Forward 5' GACTTCGCCGAGATGTCCAG 3' NM_000633 56 232

Reverse 5' AGGTGCCGGTTCAGGTACTC 3'

COL1 Forward 5' TCCGGCTCCTGCTCCTCTTA 3' NM_000088 56 336

Reverse 5' GGCCAGTGTCTCCCTTG 3'

An. temp = annealing temperature; amp. = amplicon; TBP = TATA-box binding protein; HPRT = Homo sapiens hypoxanthine phosphoribosyltransferase 1;

YWHAZ = tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta; SOX9 = SRY-box 9; VEGF-165 = Vascular endothelial growth

factor; BAX = BCL2-associated X protein; BCL-2 = B-cell CLL/lymphoma 2; COL1 = collagen type 1.

doi:10.1371/journal.pone.0171492.t001
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Fig 1. Effect of hypothermia and/or hypoxia on total DNA, KI67 gene expression, and BAX-to-BCL-2

gene expression ratio. (A) Total DNA. The combination hypothermia and hypoxia decreased total DNA at

day 1 by 1.4-fold and at day 4 by 1.2-fold, but not at day 8 under hypoxia. (B) KI67 gene expression. Hypoxia

upregulated KI67 gene expression at day 4 by 5-fold compared to controls. The combination hypothermia and

hypoxia downregulated KI67 gene expression at day 1 by 8.8-fold, but increased KI67 gene expression at day

Hypothermia reduces VEGF-165 expression in hypoxic stem cells
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expression at day 1 by 8.8-fold (p = 0.0007), but increased KI67 gene expression at day 4 by

15-fold (p = 0.001) and at day 8 by 21-fold (p = 0.002), compared to hypoxia alone (Fig 1B).

Hypoxia did not significantly affect BAX-to-BCL-2 gene expression ratio. The combination of

hypothermia and hypoxia decreased the BAX-to-BCL-2 gene expression ratio at day 8 by

5.1-fold (p = 0.016) compared to controls, but not compared to hypoxic conditions (Fig 1C).

Hypoxia reduced cell-associated ALP activity, a marker of osteogenic differentiation, at day

8 by 1.9-fold (p = 0.015) compared to control hASCs (Fig 2A). The combination of hypother-

mia and hypoxia reduced cell-associated ALP activity at day 8 by 4-fold (p = 0.016) compared

to control MSCs, but no effect of hypothermia under hypoxia was found compared to hypoxic

conditions. Hypoxia nor the combination of hypothermia and hypoxia affected the gene

expression of osteogenic markers COL1 and osteocalcin (Fig 2B and 2C).

Hypoxia alone reduced gene expression of the chondrogenic marker SOX9 at day 4 by

2-fold (p = 0.006) compared to controls in hASCs (Fig 3), while the combination of hypother-

mia and hypoxia reduced SOX9 gene expression at day 4 by 2.9-fold (p = 0.006) compared to

controls. As a result, the combination of hypothermia and hypoxia did not affect SOX9 gene

expression compared to hypoxic hASCs.

Hypoxia upregulated VEGF-165 gene expression at day 1 by 3.5-fold (p = 0.008), at day 4 by

15-fold (p = 0.0005), and at day 8 by 2.5-fold (p = 0.007), compared to controls (Fig 4A). The

combination of hypothermia and hypoxia decreased VEGF-165 gene expression at day 4 by

6-fold (p = 0.007) and at day 8 by 2.1-fold (p = 0.002), compared to hypoxia alone (Fig 4A).

Hypoxia increased VEGF protein concentration at day 8 by 2.9-fold (p = 0.003) compared

to controls (Fig 4B). The combination hypothermia and hypoxia decreased VEGF protein con-

centration at day 8 by 1.9-fold (p = 0.0011) compared to hypoxia (Fig 4B).

Hypoxia reduced NO production at day 1 by 1.3-fold (p = 0.006), at day 4 by 1.9-fold

(p = 0.007), and at day 8 by 1.7-fold (p = 0.011), compared to controls (Fig 5). The combination

of hypothermia and hypoxia reduced NO production at day 1 by 1.4-fold (p = 0.0009), at day 4

by 2.2-fold (p = 0.017), and at day 8 by 2.1-fold (p = 0.004), compared to controls. As a result,

NO production by hASCs under the combination of hypothermia and hypoxia was compara-

ble to that by cells under hypoxia alone (Fig 5).

Hypoxia reduced total protein production rate at day 8 by 1.5-fold (p = 0.002), compared to

control hASCs (Fig 6). The combination of hypothermia and hypoxia similarly reduced total

protein production rate at day 8 by 2.1-fold (p = 0.001) compared to controls.

Discussion

Hypothermia is used in fracture patients to enhance recovery [4]. It has been suggested that

this enhanced recovery originates from modulation of the inflammatory reaction [2,3]. Hypo-

thermia may also modulate the effects of ischaemia and hypoxic conditions that are prevalent

in the wound environment, but whether the combined effect of hypothermia and hypoxia is

beneficial for the cells responsible for callus formation is unknown.

The hypoxic environment in which osteoprogenitor cells naturally reside is thought to stim-

ulate proliferation [29]. We found that in our culture conditions hypoxia actually inhibits

4 by 15-fold, and at day 8 by 21-fold under hypoxia. (C) BAX-to-BCL-2 gene expression ratio. The

combination hypothermia and hypoxia did not affect BAX-to-BCL-2 ratio under hypoxia. The combination

hypothermia and hypoxia decreased BAX-to-BCL-2 ratio at day 8 by 5.1-fold compared to controls. Values

are mean ± SEM, n = 10 from 3 independent experiments using ASCs obtained from 5 stem cell donors.

*Significant effect of the combination hypothermia and hypoxia compared to hypoxia alone; ‡Significant effect

compared to controls, p<0.05. Controls: 37˚C, 20% O2. Gene expression is expressed relative to the average

expression of the three housekeeping genes.

doi:10.1371/journal.pone.0171492.g001
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Fig 2. Effect of hypothermia and/or hypoxia on ALP activity, COL1, and osteocalcin gene expression.

(A) ALP activity normalized for cell number. The combination hypothermia and hypoxia did not affect ALP

activity under hypoxia. Hypoxia decreased ALP activity at day 8 by 4-fold compared to controls. (B) COL1

gene expression. Hypoxia and the combination hypothermia and hypoxia did not affect COL1 gene

expression. (C) Osteocalcin gene expression. Hypoxia and the combination hypothermia and hypoxia did not

Hypothermia reduces VEGF-165 expression in hypoxic stem cells
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MSC number. We hypothesized that hypothermia attenuates this hypoxia-induced inhibition

of MSC number. We found that the combination of hypothermia and hypoxia reduced cell

number and KI67 gene expression compared to hypoxic hASCs already after 1 day of culture,

but it stimulated KI67 gene expression at day 4, probably leading to the observed catch-up

effect in cell number after 8 days. This catch-up effect combined with unchanged apoptosis

suggests increased proliferation of hASCs after hypothermia treatment of hypoxic MSCs.

Hypothermia (35.5˚C) has been reported to transiently reduce the number of osteoblasts cul-

tured under normoxia [21]. It initially reduces cell number by 20% after 4 days of culture

under normoxia and recovers to control levels after 7 days [21]. Under normoxia, hypothermia

(33˚C) was also reported to reduce DNA synthesis by 24% in bone marrow MSCs after 4 days

of culture compared to normothermic MSCs [30]. We found that hypoxia reduced hASC pro-

liferation at 37˚C, which agrees with published data showing reduced proliferation of human

bone marrow MSCs cultured under hypoxic conditions (1% O2) [31]. Apparently, the effect of

hypothermia on cell proliferation differs under hypoxic and normoxic conditions.

Hypothermia regulates the expression of various genes involved in necrotic and apoptotic

pathways, such as the PI3K/Akt pathway, but the mechanisms have not been completely eluci-

dated to date [32]. Hypothermia attenuates the increase in Bax gene expression associated with

ischaemic brain damage in a rodent model [33]. Consequently, the pro-apoptotic effect of Bax

protein on mitochondrial membrane potential is reduced by hypothermia, which may cause

an anti-apoptotic effect [33]. We questioned whether apoptosis is stimulated by hypoxia, and

whether hypothermia attenuates the stimulation of apoptosis in hypoxic MSCs. We found that

apoptosis (assessed as BAX-to-BCL-2 gene expression ratio) was not affected by hypoxia, nor

did hypothermia modulate cell apoptosis under hypoxic conditions in hASCs.

affect osteocalcin gene expression. Values are mean ± SEM, from n = 10 of 3 independent experiments using

ASCs obtained from 5 stem cell donors *Significant effect of the combination hypothermia and hypoxia

compared to hypoxia alone; ‡Significant effect compared to controls, p<0.05. Controls: 37˚C, 20% O2. Gene

expression is expressed relative to the average expression of the three housekeeping genes.

doi:10.1371/journal.pone.0171492.g002

Fig 3. Effect of hypothermia and/or hypoxia on SOX9 gene expression. The combination hypothermia

and hypoxia did not affect SOX9 gene expression under hypoxia. Hypoxia reduced SOX9 gene expression at

day 4 by 2.9-fold compared to controls. Values are mean ± SEM, from n = 12 of 3 independent experiments

using ASCs obtained from 6 stem cell donors. Gene expression is expressed relative to the average of the

three housekeeping genes. ‡Significant effect compared to controls, p<0.05. Controls: 37˚C, 20% O2.

doi:10.1371/journal.pone.0171492.g003
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Fig 4. Effect of hypothermia and/or hypoxia on VEGF gene and protein expression. (A) VEGF-165 gene expression. The combination

hypothermia and hypoxia decreased VEGF-165 gene expression at day 4 by 6-fold and at day 8 by 2.1-fold under hypoxia. Hypoxia upregulated

VEGF-165 gene expression at day 1 by 3.5-fold, at day 4 by 15-fold, and at day 8 by 2.5-fold compared to controls. (B) VEGF protein expression. The

combination hypothermia and hypoxia decreased VEGF protein concentration by 2.9-fold compared to hypoxia alone at day 8. Hypoxia increased

VEGF protein concentration by 1.9-fold compared to controls at day 8. Values are mean ± SEM, from n = 12 of 3 independent experiments using

ASCs obtained from 6 stem cell donors for VEGF-165 gene expression, and n = 7 of 3 independent experiments from 4 stem cell donors for VEGF

Hypothermia reduces VEGF-165 expression in hypoxic stem cells
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We determined whether osteogenic differentiation is increased in hypoxia, and if hypother-

mia attenuates the hypoxia-induced stimulation of hASCs. Diverging data exist about the effect

of hypoxia on MSC differentiation [31,34–36]. Bone marrow-derived human MSCs cultured

under a 2% oxygen tension for one month exhibit increased expression of early osteogenic dif-

ferentiation markers osteonectin and alkaline phosphatase activity compared to cells grown

under normoxic conditions [34]. A murine MSC line C3H/10T1/2 pre-incubated with the

hypoxia mimicking agent CoCl2 for 24 h shows enhanced osteogenic differentiation and min-

eralization [35]. In contrast, in vitro osteogenesis and chondrogensis is severely diminished in

hASCs after 3 weeks of culture under a 2% oxygen tension [36]. A decrease in ALP activity in

combination with increased expression of late markers for osteogenesis have been shown in

hypoxic (1% O2) human bone marrow stem cell cultures [31]. This suggests that a hypoxic

environment might alter the timing of sequential gene expression in the osteogenic differentia-

tion process, and consequently early osteogenic differentiation markers are reduced compared

to late markers [31]. This is in partial accordance with our results, as we showed that hypoxia

significantly reduced cell-associated ALP activity, but did not affect COL1 and osteocalcin

compared to control hASCs. It is likely that the timing and degree of hypoxia influences MSC

differentiation. Enhanced expression of late differentiation markers might be possible at later

time points than day 8.

protein concentration. Gene expression is expressed relative to the average expression of the three housekeeping genes. *Significant effect of the

combination hypothermia and hypoxia compared to hypoxia alone; ‡Significant effect compared to controls, p<0.05. Controls: 37˚C, 20% O2.

doi:10.1371/journal.pone.0171492.g004

Fig 5. Effect of hypothermia and/or hypoxia on NO production. The combination hypothermia and hypoxia did not affect NO production under

hypoxia. Hypoxia decreased NO production at day 1 by 1.3-fold, at day 4 by 1.9-fold, and at day 8 by 1.7-fold compared to controls. Values are

mean ± SEM, from n = 12 of 3 independent experiments using ASCs obtained from 6 stem cell donors. ‡Significant effect compared to controls,

p<0.05. Controls: 37˚C, 20% O2.

doi:10.1371/journal.pone.0171492.g005
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Under normoxia, hypothermia (35.5˚C) has been shown to reduce ALP activity, osteocal-

cin, and Col1 gene expression, and to decrease bone formation by 70% in murine osteoblasts

[21]. The combination of hypothermia and hypoxia in our experiments might thus be expected

to result in a stronger inhibition of MSC differentiation than hypoxia alone. In our study with

hASCs we found that, under hypoxia, hypothermia did not affect cell-associated ALP activity,

COL1 gene expression, nor osteocalcin expression in hASCs.

We found that hypoxia reduced gene expression of the chondrogenic marker SOX9 after 4

days of culture compared to controls. SOX9 gene expression is significantly upregulated in

human bone marrow stem cells cultured under 1% O2 compared to normoxia after 14 days

[31]. Moreover, human embryonic stem cells cultured under hypoxia (5% O2) show increased

SOX9 gene expression after 14 days [37]. Murine C3H10/T1/2 cells pre-incubated with a hyp-

oxia mimicking agent, show increased Sox9 gene expression after 3 days of culture [35]. Hyp-

oxia (3% O2) has also been shown to enhance chondrogenesis in ovine bone marrow MSCs

cultured on porous scaffolds for 14 days compared to normoxia [29]. Please note that under

normal physiological conditions, human bone marrow cells reside under 6% O2 [38]. When

cells reside under 3–5% O2 this might not be considered as a severe hypoxic condition (as in

our study) [38]. This could explain the difference between our results and the results reported

in literature. In addition, our 2-dimensional culture conditions do not naturally favour chon-

drogenic differentiation.

We expected an upregulation of SOX9 gene expression under hypoxia since chondrogenesis

is driven by HIF-1α [39], and HIF-1α is upregulated under hypoxia [1]. HIF-1α also affects

VEGF [12,39] and we showed a significant upregulation of VEGF-165 gene expression under

hypoxia after 4 days of culture, even though we were unable to demonstrate an effect of

Fig 6. Effect of hypothermia and/or hypoxia on total protein content normalized for cell number. The combination hypothermia and hypoxia

did not affect total protein under hypoxia. Hypoxia decreased total protein at day 8 by 1.5-fold compared to controls. Values are mean ± SEM, from

n = 12 of 3 independent experiments using ASCs obtained from 6 stem cell donors. ‡Significant effect compared to controls, p<0.05. Controls: 37˚C,

20% O2.

doi:10.1371/journal.pone.0171492.g006
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hypoxia on SOX9 gene expression. Hypothermia significantly reduced VEGF-165 gene expres-

sion, as well as VEGF protein expression under hypoxia, yet we were unable to demonstrate an

effect of hypothermia on SOX9 gene expression under hypoxia in hASCs. Further analysis on

HIF-1α might elucidate these intriguing results.

We found that VEGF-165 gene expression and VEGF protein expression were reduced by

hypothermia under hypoxia. This is in accordance with another study showing that VEGF

production decreases by 30% in hypoxic (1% O2) retinal pigment epithelial (ARPE-19) cells

exposed to moderate (34˚C) hypothermia [40]. VEGF is a bone-metabolism cytokine that

stimulates the proliferation and chemotactic migration of osteoblast precursor cells [11]. Thus

reduced VEGF levels may decrease osteoblast proliferation and possibly also differentiation,

yet we did not find a reduction in ALP activity or osteocalcin gene expression as a result of

hypothermia in our hypoxic culture conditions. This suggests that the early stages of fracture

healing are not adversely affected by hypothermia under hypoxic conditions. Being a powerful

inducer of angiogenesis, VEGF is important for the later stages of bone healing when vasculari-

zation of the callus is warranted [41]. Hence reduced VEGF levels as a result of hypothermia

might have implications for the later stages of bone healing.

Since hypoxia increases oxidative stress, we hypothesized that hypoxia stimulates NO pro-

duction, and that hypothermia attenuates the hypoxia-induced increase in NO production of

MSCs. NO production was consistently reduced under hypoxia compared to control hASCs.

Hypothermia did not affect NO production by hASCs under hypoxia. In physiological condi-

tions, a low NO level maintains vasculature tone [42]. In pathological conditions, such as hyp-

oxia in ischaemic-reperfusion injury, NO levels will ultimately increase by the activity of

inducible NO synthase (iNOS) after reperfusion, thereby contributing to overall oxidative

stress [43,44]. NO production requires oxygen since it is synthesized from L-arginine and O2.

In our experiments, there is no increase in oxygen tension as occurs during reperfusion after

ischaemia. This might explain the lack of an increase in NO production by hASCs cultured

under hypothermia. Mast cells likely play a key role in iNOS-mediated augmentation of oxida-

tive stress, and lack of these cells might not lead to a full-blown cascade with increased NO

concentrations [44].

Some care must be taken when interpreting our results. We used hASCs since these cells

can differentiate along the osteogenic lineage, they can be stimulated by hypoxic conditions

and are readily available, and thereby resemble periosteum-derived osteoprogenitor cells

responsible for bone repair in vivo [8,45–47]. The frequency of BMSCs in human bone marrow

is low, and proliferative and differentiation capacity of BMSC is partially lost during cell

expansion [48]. However, in contrast to bone marrow, adipose tissue contains a high stem cell

to volume ratio [49], and it can be processed within a short time frame to obtain highly

enriched ASC preparations. ASCs show many similarities with BMSCs with regard to surface

marker profiles, multi-lineage potential, and growth properties [50,51]. The hASCs used in

our study have been characterized previously by our group [22,23,51]. Our in vitro data pro-

vide insight in the mechanism of the effect of cryotherapy on MSCs, but in vivo experiments

are needed to draw firm conclusions about the effect of cryotherapy on bone repair. Note that

we tested the effect of hypothermia in cells under hypoxia, but not normoxia, since this was

beyond the scope of our study, where we aimed to mimic the hypoxic fracture environment.

Cell culture was performed under ambient oxygen levels, and therefore the cells were exposed

to acute hypoxia during the course of the experiments. The naturally occurring stem cell niche

in which most stem cells grow or reside is a hypoxic environment, and therefore our control

condition is in fact hyperoxic and might alter hASC characteristics [6]. Most studies cited

[3,18,19,21,30,33] address hypothermia at near physiological temperature (33–37˚C). However

cryotherapy causes hypothermia at a lower temperature, i.e. outside the physiological range

Hypothermia reduces VEGF-165 expression in hypoxic stem cells
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(<33˚C). Cryotherapy lowers the temperature to 23˚C in healthy individuals at 1.5 cm below

the subcutaneous fat layer [15]. Currently no reports are available that show temperature

decline at the bony level after induced hypothermia treatment in fracture patients. One study

measuring the temperature decline found that after induced hypothermia at 1 cm (23.5˚C)

and 2 cm (26.4˚C) below the subcutaneous fat layer found that temperature decline during

induced hypothermia and tissue depth are inversely related [52]. Based on an estimated dis-

tance between the subcutaneous fat layer and the bone (~3 cm), and the inverse relationship

between temperature decline by hypothermia and tissue depth we estimated the temperature

at a deeper bony level of the thigh to be 30˚C. We applied intra-hypoxic hypothermia, i.e.

hypothermia commenced and continued at the same time and as long as hypoxia treatment.

Hence care should be taken when translating these in vitro results to an in vivo situation, since

clinically hypoxia or ischaemia is usually present before starting hypothermia treatment, and

hypothermia treatment might not be applied continuously.

In conclusion, our data show that under hypoxia, hypothermia reduced VEGF-165 gene

expression and VEGF protein expression, but did not affect cell number, nor osteogenic or

chondrogenic differentiation, or NO production by hASCs. Decreased VEGF gene and protein

expression might ultimately reduce vasculogenesis, which may impair later stages of bone heal-

ing in vivo.
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