
Molecules 2012, 17, 10429-10445; doi:10.3390/molecules170910429 
 

molecules 
ISSN 1420-3049 

www.mdpi.com/journal/molecules 

Article 

Computational Prediction of Blood-Brain Barrier Permeability 
Using Decision Tree Induction 

Claudia Suenderhauf 1, Felix Hammann 1,2 and Jörg Huwyler 1,* 

1 Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences,  

University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland 
2 Psychiatric Hospital of the University of Basel, Wilhelm-Klein-Str. 27, 4012 Basel, Switzerland 

* Author to whom correspondence should be addressed; E-Mail: joerg.huwyler@unibas.ch;  

Tel.: +41-61-267-15-00. 

Received: 8 June 2012; in revised form: 17 August 2012 / Accepted: 27 August 2012 /  

Published: 31 August 2012 

 

Abstract: Predicting blood-brain barrier (BBB) permeability is essential to drug 

development, as a molecule cannot exhibit pharmacological activity within the brain 

parenchyma without first transiting this barrier. Understanding the process of permeation, 

however, is complicated by a combination of both limited passive diffusion and active 

transport. Our aim here was to establish predictive models for BBB drug permeation that 

include both active and passive transport. A database of 153 compounds was compiled 

using in vivo surface permeability product (logPS) values in rats as a quantitative 

parameter for BBB permeability. The open source Chemical Development Kit (CDK) was 

used to calculate physico-chemical properties and descriptors. Predictive computational 

models were implemented by machine learning paradigms (decision tree induction) on 

both descriptor sets. Models with a corrected classification rate (CCR) of 90% were 

established. Mechanistic insight into BBB transport was provided by an Ant Colony 

Optimization (ACO)-based binary classifier analysis to identify the most predictive 

chemical substructures. Decision trees revealed descriptors of lipophilicity (aLogP) and 

charge (polar surface area), which were also previously described in models of passive 

diffusion. However, measures of molecular geometry and connectivity were found to be 

related to an active drug transport component.  
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1. Introduction 

Experimental determination of blood-brain barrier (BBB) permeability for small molecules is 

notoriously difficult. In small experimental animals (i.e., mouse or rat), pharmacokinetic experiments 

are used to determine brain tissue clearance. The volume cleared per unit time is designated as the 

BBB permeability-surface area (PS) product (logPS), a parameter obtained from in situ brain perfusion 

studies in which a (radiolabeled) test compound is directly injected into the internal carotid artery [1–3]. 

This procedure is considered superior to other methods such as blood to brain drug partition 

measurements at steady state (logBB), as it lacks systemic distribution effects, which distort brain 

penetration substantially [4]. logPS is a complex parameter, because it encompasses passive 

transcellular diffusion across the BBB as well as a possible contribution by active transport. Small 

lipophilic agents (e.g., ethanol) cross the endothelial cell membrane by passive diffusion [5]. The 

process of passive permeation is well characterized [6–9]. According to Fick’s law of diffusion, the 

rate of passive diffusion of a small molecule across a phospholipid membrane will be proportional to 

the partition coefficient of the drug between the membrane and the external medium, the diffusion 

coefficient of the drug within the membrane and the concentration gradient across the membrane [10]. 

Major physico-chemical determinants for the process of membrane binding and diffusion are 

lipophilicity, molecular weight, and measures of molecular polarity [11]. However, such rules do not 

accurately reflect the complexity of membrane interactions in vivo, as they disregard non-specific 

membrane binding and biochemical processes mediated by transport proteins (i.e., facilitated transport 

or active transport) [12].  

Typically, anticancer drugs, corticosteroids, and anti-epileptics are well-documented examples in 

which high passive cellular permeability is counteracted by an active drug efflux transport [13,14]. 

Physiologically, the involved ATP-binding cassette (ABC) transporters or solute carriers (SLC) 

mediate active transport across the BBB and constitute a biochemical barrier to protect brain tissue 

from potentially toxic compounds, such as blood borne xenobiotics. P-glycoprotein (MDR1 or P-gp) 

and breast cancer resistance protein (ABCG2 or BCRP) are the most prominent and best characterized 

representatives [15–19] and show the highest mRNA expression levels of all ABC-transporters of the 

human BBB [20]. Their impact on brain uptake of xenobiotics has been shown to be of clinical 

relevance [21]. Despite favorable molecular properties, central nervous system (CNS) concentrations 

of these drugs are significantly lower than expected. This results in suboptimal exposure and therefore 

poor pharmacological activity in the target tissue.  

As an alternative to invasive animal experiments, in vitro and in silico screening methods have been 

introduced to assist in the development of CNS active drugs. As compared to cell culture based assays, 

computational models provide a very high throughput and offer a mechanistic insight into molecular 

mechanisms of BBB transport. There are different strategies covering the use and application of such 

models. Calculated or measured physico-chemical properties may give first indications on the  

BBB permeability of a test compound. For example, compounds with a molecular weight less than 

400–600 Da [11], a polar surface < 70 Å2 [22] and an octanol to water partition coefficient close to  

3.4 [23] are said to have the potential to transit the BBB by passive diffusion. As opposed to such 

simplistic rules, more sophisticated in silico methods have be devised to establish statistical 

correlations between a given biological endpoint (such as blood-brain barrier permeability) and 
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physico-chemical properties and molecular descriptors (for reviews see [24–26]). Here again, specific 

molecular properties can potentially be identified that favor BBB permeability. 

In view of the shortcomings of existing computational models, the aim of the present project was as 

follows: first, a comprehensive and consistent data set of a complex but highly predictive biological 

endpoint (logPS) was compiled from literature data. In some instances, data from different literature 

sources were available. In case of differences, experimental protocols were analyzed and priority was 

given studies where standardized protocols were used. The final dataset comprised 153 compounds 

and is provided as Supplementary Information. Because the majority of data found in the literature was 

gathered in rats, we decided to omit data acquired in other species. We thus avoided interspecies 

variability and artifacts introduced by different surgical procedures as established, for example, in 

smaller animals such as mice. In particular, the ligation of the pterygoplatine artery, a small tributary, 

is done in the rat but is not possible in very small animals (i.e., mouse) [27–29]. 

Second, modern machine learning algorithms were applied to predict logPS values from calculated 

physico-chemical descriptors. We did not exclude drugs from our dataset that are suspected of being 

actively transported. This is in line with current practice, for example in the prediction of enzyme-drug 

interactions [26] or the discrimination between substrates, inhibitors, and inducers of P-glycoprotein [30]. 

Our model thus predicts brain penetration in general and thereby accounts for passive diffusion as well 

as a putative contribution by active transport. Third, computational tools and algorithms were selected 

with a focus on ease of use. Our dataset did not contain proprietary information. The final predictive 

model can be implemented easily, because it is based on open-source software packages that encourage 

free redistribution and access their design and implementation details. Fourth, the ant colony 

optimization (ACO) computing paradigm was used to identify relevant molecular substructures. Such 

motifs can be used to identify features of prototypic CNS drugs. 

2. Results and Discussion 

2.1. Data Set 

The prerequisite for any QSAR modeling approach is the availability of a high quality dataset of 

biological endpoints. With respect to drug uptake into the central nervous system, comprehensive 

datasets have been established based on in vivo pharmacokinetic studies in which brain exposure is 

determined after intravenous peripheral administration of a test compound [9,31]. However, such 

blood to brain (logBB) drug partition measurements may be misleading due to drug metabolism and 

distribution in peripheral tissues [4]. In the present study, a dataset of 153 small molecules was 

therefore compiled (Supplementary Information, Appendix Table 1) using more reliable in vivo BBB 

permeability-surface area (logPS) products, which are obtained by direct internal carotid artery 

perfusion [32–44]. 

This method has the advantage of high sensitivity, as there is no systemic exposure of the test 

compound prior to its transport across the blood-brain barrier (BBB). Due to demanding and time 

consuming surgical and experimental procedures needed for this technology, our dataset can be 

considered high quality (but of comparably small size). In contrast to other studies, we focused on data 

from wild type animals and did not exclude suspected substrates of active transporters. Therefore, we 
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were able to take into consideration a possible contribution by active transport. Active transport plays a 

major role in BBB permeation and can alter the pharmacokinetics of a drug substantially [45]. It is 

important to note that a contribution by active transport can be accounted for in our models, as 

demonstrated previously [30]. Moreover, one can hardly assure purity of a dataset if only passively 

transported molecules are included. The characterization of active transport mechanisms is still an 

ongoing topic of research and active transport mediated by yet unknown transporters may remain 

undetected when saturation occurs at very low concentrations.  

2.2. Chemical Space and Compound Classification 

The low level of chemical similarity (Tanimoto coefficient = 0.282 for our dataset of n = 120 

compounds used for classification learning) reflects the broad chemical space covered by our dataset. 

The range of physico-chemical properties of the dataset is indicated in Table 1. 

Table 1. Range of physico-chemical properties of the dataset (n = 120) used for classification learning. 

Parameter Range of values 

Molecular weight 46–1201 Da 
Partition coefficient (aLogP) −4.3–2.4 

Polar surface area (tPSA) 3.2–279 Å2 

Rotatable bonds count 0–18 
Hydrogen bond acceptor count 1–23 

In the past, criticism arose that binning into CNS positive and CNS negative substances is often 

based on presence or absence of pharmacological CNS activity, respectively [12]. We agree that 

pharmacological activity is a qualitative and inadequate measure of brain permeation ability, because 

the pharmacodynamic action of a compound is linked to unbound drug concentrations in the brain and 

not solely to its permeation ability. We therefore used a quantitative permeability measure (i.e., logPS) 

for classification.  

The paradigms used in the present study were classification algorithms. Data were therefore split in 

two classes, according to cut-off values published in literature [46,47]. The distinction of positively 

(CNSp+) and negatively (CNSp−) classified molecules refers to compounds with logPS values ≥ −2 

and ≤−3, respectively. To achieve better separability and due to the scarcity of data points in this 

range, logPS values between −2.1 and −2.9 were exempt from classification learning. It should be 

noted that alternative splitting and classification schemes might be applied to the present dataset 

provided in Appendix, Table 1. In fact, inclusion of a third middle class with a reduced representativity 

(i.e., datapoints covering the range of logPS values between −2.1 and −2.9) will increase the 

complexity of the proposed models but might in return offer additional benefits. 

2.3. Descriptors and Modeling 

Modern machine learning algorithms were applied to predict in vivo BBB permeability represented 

by logPS values. An initial survey of current machine learning methodologies, which have been 

applied to similar problems (e.g., regression analysis, support vector machines, artificial neural 

networks), yielded no well-performing models (data not shown) and lacked the interpretability of DTI 
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and fragment-based analysis. The DTI paradigm is an efficient and powerful method to solve even 

linearly inseparable problems. Two widely used paradigms were used to induce decision trees. A first 

model (using the CHAID chi-squared automatic interaction detector) first described in 1964 [48], is 

shown in Figure 1. 

Figure 1. Decision tree built with the chi-squared automatic interaction detector (CHAID) 

on CDK descriptors. Prediction of strong (CNSp+, grey boxes) or weak (CNSp−, grey 

boxes) blood-brain barrier permeation is based on the splitting criteria (white boxes) of the 

partition coefficient (aLogP), rotatable bonds count, charge weighted partial positive 

surface area divided by total molecular surface area (fPSA3), and hydrogen bond acceptor 

count (hBondAcceptors).  

 

The 10-fold cross-validated model achieved a high corrected classification rate (CCR) of 90.9% and 

a Matthews correlation coefficient (MCC) of 81.7%. Splitting criteria are summarized in Table 2.  

Table 2. Features revealed by decision tree induction (DTI) to predict brain penetration 

(logPS). Definition of selection criteria used for the DTI paradigms shown in Figure 1 and 

Figure 2. 

Paradigm Splitting criteria Comment 
CHAID aLogP Partition coefficient according to Ghoose-Crippen 

 fPSA3 Charge weighted partial positive surface area/total molecular surface area 
 hBondAcceptors Hydrogen bond acceptor count 
 rotatable bonds Rotatable bonds count 

CART aLogP Partition coefficient according to Ghoose-Crippen 
 BCUTS The number of highest eigenvalue, weighted for the lowest atom 
 tPSA Topological polar surface area 
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A second model, the CART classification and regression tree algorithm [49], achieved comparable 

performance (CCR: 89.8%, MCC: 79.9%). The corresponding tree and the decision criteria are shown 

in Figure 2 and Table 1. The number of instances can vary greatly among branches of a decision tree. 

In order to maintain the readability of the diagrams, information on the classification accuracy of 

individual nodes is not shown. However, overall model performance is provided by the composite 

measures of CCR and MCC. It should be noted that both applied performance measures, i.e., CCR and 

MCC, take into account falsely and correctly classified instances. This addresses the problem of 

performance being overestimated by methods that assign the majority class of the dataset to any new 

structure that they classify (i.e., overfitting bias). We are aware of the redundancy of these measures, 

but we decided to present both, for reasons of better comparability to other work. 

Figure 2. Classification and regression tree (CART) based on CDK descriptors. Prediction 

of strong (CNSp+, grey boxs) or weak (CNSp−, grey boxes) blood-brain barrier 

permeation is based on the splitting criteria (white boxes) of partition coefficient (aLogP), 

topological polar surface area (tPSA), and the number of highest eigenvalue of the Burden 

matrix weighted for the lowest atomic weight.  

 

Implementation of decision tree models is convenient and straightforward. Their output can be 

interpreted intuitively, which is an advantage when decision rules have to be implemented. Application 

of the models is illustrated in Table 3. The extracellular marker sucrose is a small and hydrophilic 

compound that is characterized by a high polar surface area. Based on the aLogP < −1.0028, the 

compound is immediately classified as CNSp− in the CHAID model. In contrast, the CNS active 

compound midazolam qualifies in the same model as CNSp+ due to its high lipophilicity and the low 

number of rotatable bonds. These results can be corroborated in the CART model, taking into 

consideration, for sucrose, its low aLogP value and a BCUTS > 11.9. Midazolam would again qualify 

as CNSp+ in CART based on a high aLogP value and a small topological polar surface area. 
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Table 3. Example of the implementation of decision tree models. Calculated physico-

chemical descriptors are used for the prediction of strong (CNSp+) or weak (CNSp−) 

blood-brain barrier permeation of two test compounds. 

Chemical structure 

 

Substance Sucrose Midazolam 

Molecular weight 342.12 Da 325.08 Da 

aLogP −4.3105 0.4073 

tPSA 189.53 Å2 27.96 Å2 

fPSA3 0.072136 0.033577 

Rotatable bonds 5 1 

BCUTS 11.9962 11.9974 

Prediction (CHAID/CART) CNSp− CNSp+ 

It can be said that our models classified BBB permeability with excellent performance, but also 

provided profound insight into the biological processes involved. Interestingly, some of the features 

revealed by our models were also used in the past to predict passive brain permeation. Descriptors of 

lipophilicity and charge are frequently used to predict membrane permeation. It is therefore not 

surprising that three out of four paradigms selected the partition coefficient (aLogP) and/or polar 

surface area (fPSA3, tPSA) descriptors as splitting criteria. However, we found that both DTI 

paradigms set a much lower threshold for splitting on aLogP than earlier defined rules [6,50–52]. This 

could be an indicator of active transport involvement. Recent studies refer to increasing lipophilicity as 

a major rate-limiting feature for P-gp interactions and it played a predominant role in DTI models that 

predict P-gp inhibitors and substrates [30,53]. We were thus not able to confirm the assumption that 

high lipophilicity would be generally associated with good brain permeation [54]. While we found that 

it was clearly an important feature by which to split data, aLogP unfolded its predictive power for the 

present combined endpoint only in combination with other descriptors.  

Polar surface area was present in both models. Other groups observed a similar role of this feature 

in their work [54]. Generally, our models revealed that higher values for PSA corresponded with poor 

BBB permeation. The cutoff value for classification varied substantially between our models, but 

generally speaking, higher molecular polarity hindered passage into the hydrophobic milieu of the 

brain endothelial cells. The tree grown by CART used tPSA as a splitting criterion. Earlier work 

implies that PSA values over 60–90 Å2 are generally associated with poor brain permeation. In our 

model this threshold is much higher (150 Å2). Such a finding of a higher value was previously 

suspected to be a consequence of active transport [22,31,50]. Other groups reported an association 

between high polar interaction capacity and P-gp substrates [30,55]. Again, DTI paradigms seem to 
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account for complex phenomena such as active transport. This is in agreement with previous findings 

and supports the applicability and validity of the present modeling approach [56,57]. 

CHAID predicted good BBB permeation for compounds with less than four hydrogen acceptors. 

This is an interesting finding, as it is generally agreed that hydrogen bond acceptors are less restrictive 

in terms of passive diffusion than are donors. Additionally, thresholds for classification were set by 

other authors at much higher levels (usually around 8 or 10) than our model suggests. One could argue 

that this finding could be an artefact emerging from the present dataset. However, we can see parallels 

to other work, where high hydrogen bond basicity was associated with P-gp substrates [58]. 

Accordingly, Norinder and Haeberlein reported that compounds exhibiting less than five nitrogen and 

oxygen entities would readily enter the brain [24]. This threshold corresponds with the cutoff value set 

in our model. 

In the CHAID model, an increase in rotatable bonds was associated with poor BBB permeability. 

Interestingly, these findings contrast with work of Iyer et al. [54], who proposed an association 

between high molecular flexibility and increasing permeation ability. In addition, Iyer and colleagues 

refer to a proportional relationship of this feature with molecular weight. Consequently, an increase in 

rotatable bonds would infer a relationship between molecular weight and brain permeation. But in our 

dataset, we found a mediocre correlation between these two descriptors (R2 = 0.74). This finding is in 

accordance with the opinion of Abraham, who stated that molecular weight might not be as significant 

in predicting uptake into brain parenchyma as certain rules of thumb imply [59]. Diminished 

permeation ability with increasing number of rotatable bonds could also refer to potential 

conformational changes in molecular shape, i.e., an increase in bulkiness of a compound. Rotatable 

bonds are defined as any single bond not involved in a ring structure or connected to a non-terminal 

heavy atom. An extended conformation could roll up into a spherical and rather bulky shape. In other 

words, owing to its geometry, a molecule could potentially permeate the BBB to a lesser extent than its 

molecular weight would indicate. The number of rotatable bonds would then add additional 

information to models by also taking into account geometrical features rather than simply considering 

molecular mass. Similar correlations between molecular geometry (cross-sectional surface area) and 

BBB permeability have recently been reported [60]. The importance of geometry in predicting BBB 

penetration was substantiated by the use of BCUTS descriptors. Spectral indices such as mass 

weighted Burden matrix (BCUTS) refer to topology and complexity of a molecule as a whole. 

2.4. Fragment Based Predictors 

The question arises whether BBB permeating molecules in our dataset might share certain common 

molecular characteristics besides their numerical physic-chemical characteristics. We therefore 

performed a fragment-based analysis using an algorithm recently described by our group [61]. Ant 

colony optimization (ACO) is a natural computing paradigm introduced by Bonabeau et al. [62].The 

algorithm uses an abstraction of ant foraging behavior to find select, meaningful features. Higher-

dimensional QSAR studies, e.g., ligand docking, routinely apply ACO alongside other optimization 

paradigms. With a few modifications, ACO can be used as a feature selector, i.e., to identify attributes 

that carry information about the endpoint of interest. In the present project, structural fingerprints were 
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calculated and compared by binary ACO classification. The best performing subset of bits revealed by 

ACO are summarized in Table 4. 

Table 4. Fingerprints selected from the MACCS keys are given along with their internal 

number (No), SMARTS code, and a short explanation of the substructure. In the sample 

structure, “A” stands for any atom, “X” for a heteroatom, and “R” for any molecular 

substructure. 

No Sample Structure SMARTS Description 

23 

 

[#7]~[#6](~[#8])~[#8] 
Nitrogen connected to carbon atom, which is 

connected to two oxygen atoms. 

36 

 

[#16R] Any heterocycle containing a sulfur atom. 

60 
 

[#16]=[#8] Oxygen and sulfur connected by a double bond. 

82 
 

*~[CH2]~[!#6;!#1;!H0]

Any atom connected to CH2, which is itself 

connected to a heteroatom with at least one 

hydrogen atom. 

122 

 

*~[#7](~*)~* 
Any atom connected to nitrogen. Nitrogen has to 

be connected with any two additional atoms. 

130 
 

[!#6;!#1]~[!#6;!#1] Two heteroatoms connected to each other. 

145 
 

*1~*~*~*~*~*~1 
Six ring structure, occurring twice in molecule. 

(They do not have to be directly connected) 

150 

 

*!@*@*!@* One intramolecular chirality center. 

156 

 

[#7]~*(~*)~* Nitrogen connected to any three atoms. 

This subset of chemical substructures achieved an acceptable CCR of 82.0% and a MCC of 0.64. 

The subset consisted of nine fingerprints selected from the MACCS key set (n = 166).  

Figure 3 shows the receiver operating characteristic (ROC) curve and cutoff point. The ROC 

analysis is a diagnostic tool by which true positive rate (sensitivity of the prediction) is plotted versus 

false positive rate (one minus the specificity or true negative rate). The corresponding area under the 

curve (AUC) was 0.89, indicating a high discrimination threshold of the binary classifier system. 

Selected fingerprints confirmed our findings from descriptor based machine learning (Table 4). The 

repeated inclusion of ring features indicates a strong contribution of lipophilicity, which is involved in 

passive and active transport processes across the BBB. Heteroatoms were present in seven out of nine 

fingerprints, of which four included explicitly nitrogen and/or oxygen atoms. This could relate, in 
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analogy to our findings using DTI, to hydrogen bonding capacity and molecular polarity. However, an 

interesting structural feature was fingerprint No. 150, which refers to anticlockwise chirality. To our 

knowledge, stereoselectivity has not yet been used to predict BBB penetration ability. However,  

in vivo studies confirm involvement of stereoselectivity for drug transit across the BBB [63,64]. 

Figure 3. Analysis of molecular fingerprints according to receiver operating characteristic 

(ROC). Attributes were identified by ant colony optimization (ACO). Fingerprints were 

selected from the MACCS key set and consisted of nine fingerprints (Table 4). Cut-off 

value is denoted with a small circle. 

 

3. Experimental 

3.1. Data Set 

A dataset of 153 small molecules from literature was compiled containing information on in vivo 

BBB permeability-surface area (PS) products, usually given as logarithm (logPS) values determined in 

the rat species [32–44]. The complete dataset is provided as supplementary information (Appendix 

Table 1). There was no discrimination between passively transported molecules and suspected 

substrates of active transporters. logPS values ≥ −2 were judged as readily penetrating and received the 

label “CNSp+” (n = 65), while values ≤ −3 were labeled “CNSp−” (n = 55), or non-penetrating. 

Values between −2.1 and −2.9 were exempt from classification learning (n = 33). The final dataset 

consisted of 120 compounds. Structural information was retrieved from the National Library of Health 

database PubChem (http://pubchem.ncbi.nlm.nih.gov/). For salts, the counterion was removed. 

Stereochemical information are provided in all relevant locations. Conversion to three-dimensional 

structure representation was performed by using lowest energy conformers within the Ghemical force 

field [65]. 
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3.2. Physicochemical Descriptors 

Open source software was used to calculate 81 descriptors from the open source Chemical 

Development Kit (CDK; Version 1.2.3; http://cdk.sourceforge.net/) [66]. Chemical structures were 

encoded as SMILES (simplified molecular input line entry specification). Substructural patterns in 

molecules were specified using the SMARTS (SMiles ARbitrary Target Specification) notation. 

Three-dimensional structure-data representations required for conformational energy minimization 

were defined using Open Babel software (Version 2.3; http://openbabel.sourceforge.net/) [67]. 

3.3. Chemical Fingerprints 

Chemical fingerprints are hash codes, evaluating the presence or absence of a list of substructural 

motifs (e.g. ketone groups, halogen atoms, etc.). The fingerprint darkness refers to the number of 

positive bits set, i.e., features found in the structure. The 166 bit MDL fingerprint key (MACCS) 

available in the Chemical Development Kit (CDK) was used [66]. 

3.4. Decision Tree Induction (DTI) 

Decision trees were induced using two different paradigms. Chi-squared automatic interaction 

detector (CHAID) [48] selects attributes for splitting based on chi-squared testing. Classification and 

regression tree algorithm (CART) [49] uses the Gini coefficient [68] to find suitable splitting criteria. 

CHAID and CART were grown to a maximum depth of 3 and 5, respectively. We set minimum cases 

for parent nodes to 10 instances and allowed five cases in the child nodes. DTI was performed with 

PASW Statistics version 18 for Windows (http://www.spss.com/statistics/). 

3.5. Ant Colony Optimization Classification (ACO) 

A variant of ant colony optimization (ACO) classification, recently published by our group, was 

applied to gain specific structural insights [61]. The ACO paradigm selects fingerprint features of 

interests and tests their information gain with a heuristic fitness function. Quality measures of the 

fitness function are receiver operating characteristics (ROC), their areas under the curve (AUC), and 

additional parameters (CCR and MCC, see below). The Youdens J Index was used to determine the 

cut-off point in ROC curves [69]. 

3.6. Validation 

A 10-fold cross-validation strategy was used to estimate performance of the models presented here [70]. 

The dataset was randomly divided into ten subsets, where nine sample folds were recombined for 

building the first tree which was tested against the remaining subset. This process is repeated ten times 

until all instances have been used for training and testing the model which is generally acknowledged 

to be a reasonable measure for model predictivity. Misclassification risk is estimated by applying the 

tree to the left out sample. The finally reported performance is calculated as the average of the risk of 

all trees generated. Although the here presented dataset spans a reasonable chemical space, it has to be 
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pointed out that classification performance of compounds not covered in it could diverge from the here 

reported values as the final tree was not additionally validated with external data [71]. 

3.7. Chemical Similarity 

Structural similarity of molecules is usually measured by assessing their distance in a 

multidimensional space spanned by their descriptors or fingerprints. MACCS fingerprints were 

compared using the Tanimoto coefficient available in the Open Babel tool kit [72]. This coefficient 

reports the average distance between all molecules.  

3.8. Quality Measures 

As quality measures, the Corrected Classification Rate (CCR) and the Matthews Correlation 

Coefficient (MCC) were used as defined below:  

CCR  1

2

TN

N0

 TP

N1









 

where TN and TP refer to compounds classified as true negative and true positive instances. N0 are all 

negative and N1 are all positive instances: 

MCC  TNTP FN FP

(TP FP )(TP FN )(TN FP )(TN FN )
 

In the MCC formula, falsely negative (FN) and falsely positive (FP) classified molecules are 

additionally considered. 

4. Conclusions 

Decision tree induction is a convenient strategy to classify molecules according to their potential to 

permeate the blood-brain barrier. Due to their compactness, our DTI models are easily understood and 

have the potential to reconfirm our mechanistic understanding of the underlying processes involved in 

BBB permeation. Our models confirm the involvement of lipophilicity, size, and charge in predicting 

brain penetration. We were also able to identify additional contributing features such as molecular 

geometry, connectivity, stereochemistry, and relevant substructural motifs. Quite interestingly, our 

models seem to account for a potential involvement of active transport. One could argue that the data 

underlying our models were derived from rodents and might not accurately reflect the situation in 

humans. However, invasive BBB permeation measurements in man are not feasible. There is little data 

from intraoperative microdialysis experiments conducted in patients who underwent neurosurgery. But 

these reports most likely reflect pathophysiological conditions and are therefore inadequate to model 

the healthy blood-brain barrier. Therefore, the degree to which our models might reflect the situation 

in the human being and whether they might be adopted to predict BBB permeation in human remains 

to be elucidated.  
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Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/17/9/10429/s1. 
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