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Liver is the primary organ for energy metabolism and detoxification in the human body. Not
surprisingly, a derangement in liver function leads to several metabolic diseases.
Autophagy is a cellular process, which primarily deals with providing molecules for
energy production, and maintains cellular health. Autophagy in the liver has been
implicated in several hepatic metabolic processes, such as, lipolysis, glycogenolysis,
and gluconeogenesis. Autophagy also provides protection against drugs and pathogens.
Deregulation of autophagy is associated with the development of non-alcoholic fatty liver
disease (NAFLD) acute-liver injury, and cancer. The process of autophagy is synchronized
by the action of autophagy family genes or autophagy (Atg) genes that perform key
functions at different steps. The uncoordinated-51-like kinases 1 (ULK1) is a proximal
kinase member of the Atg family that plays a crucial role in autophagy. Interestingly, ULK1
actions on hepatic cells may also involve some autophagy-independent signaling. In this
review, we provide a comprehensive update of ULK1 mediated hepatic action involving
lipotoxicity, acute liver injury, cholesterol synthesis, and hepatocellular carcinoma,
including both its autophagic and non-autophagic functions.
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INTRODUCTION

Liver is a metabolic hub with several functions including synthesis of proteins such as albumin, lipid
and carbohydrate catabolism, hormone synthesis, and detoxification. The hepatic cells are enriched
with lysosomes and autophagosomes, which are the two cellular organelles that play a key role in liver
physiology (Ueno and Komatsu, 2017). Hepatic autophagy is highly sensitive to the circulating
hormone and amino acid concentrations, and provides glucose, amino acids, and free fatty acids,
under starvation, for the production and synthesis of new macromolecules. Autophagy begins with
membrane biogenesis and initiation of a pre-autophagosomal structure by the action of
uncoordinated-51-like kinases 1 (ULK1) kinase complex (Ueno and Komatsu, 2017; Zachari and
Ganley, 2017). The ULK1 kinase complex is comprised of ULK1, ATG13, RB1-inducible coiled-coil
protein 1 (RB1CC1, also known as FIP200) and ATG101 (Ueno and Komatsu, 2017; Zachari and
Ganley, 2017). The subsequent nucleation of the isolation membrane requires the class III PI3K
complex (Ueno and Komatsu, 2017; Zachari and Ganley, 2017). The ATG12 and microtubule-
associated protein 1A/1B-light chain 3 (LC3) conjugation systems play a critical role in the
elongation and enclosure of the isolation membrane. The adaptor proteins such as SQSTM1/p62
possess a LC3-interacting region (LIR) that enables to bind LC3 and target proteins which have been
ubiquitinated. After the engulfment of the cellular cargo, the autophagosomal membrane closes by
the action of Syntaxin-17 (STX17) and then fuses with the help of the soluble N-ethylmaleimide-
sensitive factor activating protein receptor (SNARE) proteins, synaptosomal-associated protein 29
(SNAP29) and vesicle-associated membrane protein 8 (VAMP8) assisted by the beclin 1-associated
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autophagy-related key regulator (also known as ATG14 or
BARKOR), Pleckstrin homology domain containing family M
member 1 (PLEKHM1) and Ras-related protein, Rab7 (Ueno and
Komatsu, 2017; Zachari and Ganley, 2017). Autophagy
derangement is associated with certain pathological symptoms
and liver disorders, including fatty liver disease, viral hepatitis,
acute liver injury, and hepatocellular carcinoma (HCC) (Ueno
and Komatsu, 2017). The autophagy-related processes are
coordinated by the Atg genes that encode the ATG proteins.
Of these Atg genes, ULK1 which is the proximal gene responsible
for the initiation of autophagy, has recently gained interest owing
to its druggability and non-classical autophagy-independent
actions (Alers et al., 2012; Papinski and Kraft, 2016; Saleiro
et al., 2016; Nazio and Cecconi, 2017; Wang and Kundu,
2017). This review aims to recapitulate our present knowledge
of ULK1 canonical and non-canonical signaling across different
aspects of liver physiological and pathological processes.

ULK1 REGULATORS AND TARGETS

Atg1, a conserved serine/threonine kinase (Matsuura et al., 1997),
is the only autophagy related kinase discovered in S. cerevisiae.
The loss of Atg1 in yeast results in early termination of autophagy
(Matsuura et al., 1997). The Atg1 homologues in mammals
include uncoordinated-51-like kinases 1 and 2 (ULK1 and
ULK2). ULK1 and ULK2 act in a redundant manner, and
ULK1 deficiency causes a mild phenotype, in mice (Kundu
et al., 2008). In mammals, ULK1 forms a multimeric complex
binding to FIP200 (focal adhesion kinase family interacting
protein of 200kD), ATG13 (autophagy-related 13), and
ATG101 (autophagy-related 101) forming a complex termed
as “autophagy initiation complex” or ULK1-ATG13-FIP200-
ATG101 complex that initiates autophagy (Papinski and Kraft,
2016).

ULK1 is under direct control of the nutrient and energy
sensors MTORC1 (mechanistic target of rapamycin complex
1) and AMP activated protein kinase (AMPK). Under
nutrient rich environment, MTORC1 acts as a negative
regulator of autophagy, and the starvation or rapalog
mediated inhibition of MTORC1 elevates ULK1 kinase
activity in the mammalian cells (Ravikumar et al., 2004).
Studies show that both ULK1 and ATG13 of the initiation
complex may be regulated through directed phosphorylation
by MTORC1 (Hosokawa et al., 2009). ULK1 Ser757
phosphorylation by MTORC1 has been reported to inhibit
its activity by interfering with its association with AMPK
(Shang et al., 2011). In contrast to phosphorylation by
MTORC1, AMPK mediated phosphorylation activates
ULK1 to induce autophagy. The phosphorylation of
Ser467, Ser555, Thr574, and Ser637 in ULK1 by AMPK
during amino acid starvation, shows a direct link between
AMPK and the ULK1 complex for the autophagic
degradation of mitochondria (mitophagy) (Egan et al.,
2011). The phosphorylation of ULK1 Ser555 by AMPK
seems to regulate its mitochondrial translocation in
hypoxia-induced mitophagy (Tian et al., 2015).

ULK1 regulates autophagy via direct phosphorylation of the
key regulators of mammalian autophagy machinery. First, it
phosphorylates its binding partners ATG13, FIP200, and
ATG101 (Papinski and Kraft, 2016). ULK1 also
phosphorylates many key members of the autophagy-specific
PI3KC3 complex 1: Beclin-1, Vps34/PIK3C3 (vacuolar protein
sorting 34/phosphatidylinositol 3-kinase catalytic subunit type 3),
and AMBRA (Papinski and Kraft, 2016). Similarly, the
mitophagy adaptor FUN14 domain containing 1 (FUNDC1)
phosphorylation by ULK1 is essential for the coherent binding
of LC3 to FUNDC1 and the progression of mitophagy (Wu et al.,
2014). Additionally, ULK1 also invokes a reciprocal regulation of
MTORC1 complex via an inhibitory phosphorylation of its
subunit, Raptor, thereby sustaining autophagic flux (Dunlop
et al., 2011). However, a negative feedback loop with AMPK
phosphorylation also exists in context to ULK1 regulated
autophagy (Loffler et al., 2011).

Intriguingly, several non-autophagic roles of ULK1 have been
described recently, including its role in interferon signaling, ER-
to–Golgi cargo transport, glycolysis, and immune response
(Konno et al., 2013; Joo et al., 2016; Joshi et al., 2016; Li et al.,
2016). Additionally, the regulation of the transcriptional activity
of nuclear receptors involved in hepatic lipid metabolism by the
autophagy-independent action of ULK1, has also been
documented (Sinha et al., 2017; Rajak et al., 2020a). Owing to
the pivotal role of ULK1 in both autophagy and non-autophagic
processes (Wang and Kundu, 2017), along with its draggability,
new ULK1 inhibitors have been recently developed (Egan et al.,
2015).

ULK1 AND HEPATIC “MITOPHAGY”

The liver was the organ where the process of autophagy was first
described by Christian De duve, in 1960s (Appelmans et al.,
1955). Although autophagy was originally designated as a non-
selective and bulk degradative system that releases
macromolecules under starvation, it is now well recognized as
a highly selective process (Ueno and Komatsu, 2017). This type of
autophagy, termed as selective autophagy, is recognized by the
shuttling of its degraded products into the highly
spatiotemporally regulated metabolic pathways of the liver.
This process of selective autophagy has a role in degrading
specific hepatic macromolecules including glycogen, lipids,
proteins, and intracellular organelles such as mitochondria
(Ueno and Komatsu, 2017). In the liver cells, the
mitochondria play a key role in fat oxidation, and in the
process, generate reactive oxygen species (ROS). The excessive
ROS production in mitochondria may lead to mitochondrial
damage resulting in hepatocyte injury. Therefore, maintaining
mitochondrial health is crucial to sustain cellular metabolism and
health. The AMPK driven activation of ULK1 and the consequent
translocation of injured/fatigued mitochondria, results in
mitophagic priming in the liver cells (Egan et al., 2011; Sinha
et al., 2015; Tian et al., 2015) (Figure 1). This mechanism of
ULK1 mediated mitophagy in liver is also associated with the
direct phosphorylation of a mitophagy adaptor protein FUNDC1
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(Wu et al., 2014; Singh et al., 2018). In this connection, thyroid
hormone induced liver mitophagy but not bulk autophagy is
regulated by ULK1, suggesting its exclusive role in selective vs.
general autophagy. Furthermore, the silencing of ULK1 impaired
mitophagy results in decreased thyroid hormone induced hepatic
lipid oxidation (Sinha et al., 2015).

ULK1 AND HEPATIC LIPOTOXICITY

Lipotoxicity is a term used to define tissue damage originating
from the excessive accumulation of lipid species in the non-
adipose tissues such as liver, pancreas, muscle and heart
(Wasilewska and Lebensztejn, 2021). Lipotoxicity in the liver
is associated with NAFLD, wherein excessive lipid accumulation
drives liver inflammation, hepatocyte death, and fibrosis
(Wasilewska and Lebensztejn, 2021). Autophagy plays a
crucial role in controlling lipotoxicity during NAFLD, and the
concurrent downregulation of the autophagy genes has been
shown in advanced NAFLD, also termed as non-alcoholic
steatohepatitis (NASH) (Czaja, 2016; Ramos et al., 2021).
Autophagy protects against lipotoxicity by several mechanisms.
First, autophagy is involved in the lysosome mediated
degradation of intracellular lipid droplets within the
hepatocytes. This selective autophagic process known as
“lipophagy” is a key mechanism of action of several anti-
steatosis agents (Sinha et al., 2014; Sinha et al., 2020a; Sinha
et al., 2020b). Furthermore, autophagy may help to minimize
injury in NASH by eliminating the damaged cell organelles or

proteins which contribute to cellular dysfunction (Sinha and Yen,
2016). Autophagy defects increase the sensitization of the
hepatocytes to endoplasmic and oxidative stress induced tissue
damage and the induction of several proinflammatory cytokine
expression from immune cells (Liu et al., 2015). Autophagy also
helps in the prevention of the death receptor-mediated apoptosis
from TNFα and Fas, which are involved in hepatocellular injury,
in NASH (Amir et al., 2013).

ULK1, which is down-regulated in human NASH (Sinha et al.,
2017), protects against hepatic lipotoxicity via both autophagy
dependent and independent mechanisms (Figure 1). The
activation of ULK1 has been implicated in hepatic lipophagy
(Guha et al., 2019). Similarly, in a study by Park et al., the authors
found that ULK1 prevented cellular lipotoxicity through the
activation of NFE2L2 (Park et al., 2020). The NFE2L2/NRF2
(nuclear factor erythroid 2 like factor 2)-KEAP1 (kelch like ECH
associated protein 1) pathway offers cytoprotection against
cellular oxidative stress. Under normal conditions, KEAP1
suppresses NFE2L2 activation through its direct binding to the
NFE2L2-CUL3-RBX1 complex, leading to NFE2L2 degradation
(Ichimura and Komatsu, 2018). However, in absence of KEAP1,
NFE2L2 is stabilized and enters the nucleus to activate the
transcription of its target genes including NQO1 (NAD[P]H
quinone dehydrogenase 1), GSTA1 (glutathione S-transferase
alpha 1), and HMOX1/HO-1 (heme oxygenase 1) (Ichimura
and Komatsu, 2018). SQSTM1/p62 is an autophagy receptor
protein which activates the NFE2L2-KEAP1 pathway by
specific binding to KEAP1, resulting in the stabilization of
NFE2L2 (Ichimura and Komatsu, 2018). In this regard, ULK1
mediates the enhanced interactions between SQSTM1 and
KEAP1 in the hepatocytes, which causes autophagic KEAP1
degradation and hence NFE2L2 activation (Lee et al., 2020;
Park et al., 2020). Increased NEF2L2 levels are responsible for
the induction of several anti-oxidant genes which protect against
oxidative stress (Lee et al., 2020) (Figure 1). Furthermore, ULK1
is required for mitophagy and to enhance binding between
SQSTM1 and PINK1 (PTEN induced kinase 1), in response to
lipotoxicity (Park et al., 2020) (Figure 1). Apart from this
autophagy-mediated mechanism, ULK1 also protects against
lipotoxicity via a non-autophagic process (Sinha et al., 2017).
ULK1 is known to phosphorylate and inactivate RPS6KB1
(ribosomal protein S6 kinase, polypeptide 1) that, in turn,
regulates the nuclear entry of NCOR1 (nuclear receptor co-
repressor 1), a nuclear corepressor. In the absence of ULK1 in
hepatocytes, RPS6KB1 promotes the nuclear entry of NCOR1
which, in turn, inhibits the transcription of SCD1 (stearoyl-
coenzyme A desaturase 1) by LXRs (Liver X receptors) (Sinha
et al., 2017). SCD1 converts the lipotoxic saturated fatty acids into
less toxic monounsaturated fats, therefore, the loss of SCD1
transcription due to low ULK1 expression leads to increased
lipotoxic injury by saturated fats (Sinha et al., 2017) (Figure 1).

ULK1 AND ACUTE LIVER INJURY

Acute liver injury (ALI) refers to cellular damage due to the action
of drugs and chemicals, characterized by oxidative stress,

FIGURE 1 | ULK1 and hepatic lipotoxicity. Uncoordinated-51-like
kinases 1 (ULK1) via both autophagic and non-autophagic mechanisms limit
cytotoxicity induced by saturated fats and oxidative stress in hepatocytes. The
autophagy dependent mechanisms include selective degradation of
damaged mitochondria or “mitophagy” and secondly by degradation of kelch
like ECH associated protein 1 (KEAP1) thereby activating nuclear factor
erythroid 2 like factor 2 (NRF2) anti-oxidant response. A non-autophagic
pathway includes inhibition of ribosomal protein S6 kinase, polypeptide 1
(RPS6KB1)- nuclear receptor co-repressor 1 (NCOR1) signaling and thereby
relieving liver X receptors (LXRs) mediated stearoyl-coenzyme A desaturase 1
(SCD1) transcription leading to conversion of saturated fats to their
unsaturated species.
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inflammation, and necrosis, and may often lead to liver failure
(Hu et al., 2020). Drug-induced ALI commonly leads to
mitochondrial damage and apoptosis. In humans, the intake of
several drugs including antipyretics, antivirals, and
chemotherapeutics, induces ALI (Hu et al., 2020). The
overdose of acetaminophen (APAP), a commonly used
antipyretic and analgesic, is reported to trigger ALI in
mammals (Hu et al., 2020). The activation of autophagy
appears to rescue hepatic injury induced by APAP (Hu et al.,
2020). Rapamycin is known to significantly augment the
autophagic process and decrease APAP-induced cell death in
the cultured primary hepatocytes and mouse liver (Ni et al.,
2012). Additionally, the induction of mitophagy protects against
APAP induced mitochondrial damage in hepatocytes (Wang
et al., 2019). Although the knockdown of autophagy-genes led
to the aggravation of chemically induced liver injury, it exhibited
a contrasting effect with respect to the genetic deletion of ULK1.
In mice, the genetic silencing of autophagy gene Atg7 worsened
APAP-induced liver injury by the activation of caspases and c-Jun
N-terminal kinase (JNK), resulting in the mitochondrial
membrane depolarization, mitochondrial ROS accumulation,
and hepatocyte apoptosis (Igusa et al., 2012). Interestingly, the
Ulk1/2 knockout displayed strong resistance to the APAP-
induced ALI through the activation of JNK signaling in
animals and in vitro (Sun et al., 2018). Mechanistically, the
APAP-induced inhibition of MTORC1 activates ULK1 via
decrease in its MTORC1 site phosphorylation. The activated
ULK1 directly phosphorylates and enhances the kinase activity
of MKK4/7 (mitogen-activated protein kinase 4 and 7), upstream
kinases and the activator of JNK, to mediate the APAP-induced
hepatic injury (Sun et al., 2018). These findings present an
autophagy independent role of ULK1 in promoting APAP
induced liver injury. However, ULK1 activation has been
associated with protection against acute hepatic ischaemia-
reperfusion (IR) injury, in an autophagy-dependent manner
(Liu et al., 2019; Mohamed et al., 2021). Further studies using
specific ULK1 inhibitors or genetic knock out models remain to
be performed to evaluate the direct role of ULK1 in protecting
against IR injury in liver.

ULK1 AND CHOLESTEROL BIOGENESIS

In a recent study by Rajak et al., it was shown that ULK1 regulates
the hepatic mevalonate (MVA) pathway via a non-autophagic
mechanism (Rajak et al., 2020a). Cholesterol may be synthesized
both endogenously via the MVA pathway in the liver or obtained
from the food sources. Interestingly, the hepatic synthesis of
cholesterol has been more closely linked to developing
cardiovascular complications. The study unveiled a novel role
of ULK1 signaling in regulating the expression of hepatic de novo
cholesterol biosynthesis/mevalonate pathway genes, using an
unbiased transcriptomics approach. The genetic silencing of
ULK1 in non-starved mouse (AML-12) and human (HepG2)
hepatic cells as well as in the mouse liver, followed by
transcriptomics analysis, uncovered a significant down-
regulation of the genes involved in the mevalonate/cholesterol

biosynthesis pathway, in the cells lacking ULK1. The loss of ULK1
caused impaired AKT activation, thereby, reducing the inhibitory
phosphorylation of its target protein, FOXO3a, leading to its
increased nuclear shuttling (Figure 2). Following its nuclear
translocation, FOXO3a transcriptionally represses SREBF2/
SREBP2 (sterol regulatory element binding factor 2)
expression. The decreased levels of SREBF2 further lead to the
decreased expression of its target genes in the MVA pathway
(Figure 2). This study identified ULK1 as a novel regulator of
cholesterol biosynthesis and a druggable target to control
cholesterol-associated pathologies, as an adjunct with the
existing drugs such as statins.

ULK1 AND HEPATIC INFLAMMATORY
RESPONSE

Autophagy plays an important role in regulating inflammation
under various hepatic injury. Anti-inflammatory action of
autophagy in liver macrophages, such as Kupffer cells, involves
limiting inflammasome activation and release of interleukin 1
beta (IL-1β) cytokine (Lodder et al., 2015) associated with liver
fibrosis. A recent study demonstrates that loss of ULK1 mediated
autophagy in macrophages leads to increased inflammasome
activation and pyroptosis (Shen et al., 2020). Interestingly, a
non-autophagic contribution of ULK1 in repressing innate
immune response is via phosphorylation of STING (Konno
et al., 2013). The activation of the stimulator of interferon
genes (STING) pathway in macrophages and non-
parenchymal cell is responsible for increased cytokine
production associated with NAFLD and may eventually lead
to the development of HCC (Chen et al., 2021). Imbalance in
the proportion of T helper cell 17 (Th17) and regulatory T cell
(Treg) is associated with the progression of chronic liver disease
(Drescher et al., 2020). In this context, autophagy has been shown
to be an essential cell intrinsic process required to maintain
functional integrity of Treg (Wei et al., 2016). Given the
proximal role of ULK1 in the autophagic signaling, it may

FIGURE 2 | ULK1 and hepatic cholesterol biogenesis. Uncoordinated-
51-like kinases 1 (ULK1) via a non-autophagic mechanisms regulates the
biosynthesis of hepatic mevalonate/cholesterogenic genes. Loss of ULK1
leads to inhibition of protein kinase B (AKT) mediated Forkhead box class
O 3a (FOXO3a) regulation in liver cells, wherein activated FoxO3a translocate
to the nucleus and inhibits the transcription of sterol regulatory element
binding factor 2 (Srebf2) required for the synthesis of cholesterol
biogenesis genes.
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regulate hepatic inflammation by maintaining TH17/Treg
balance, which needs to be further investigated. Therefore,
targeting ULK1 signaling may be useful in countering the pro-
inflammatory milieu often associated with liver diseases.

ULK1 AND HEPATIC CANCERS

Autophagy has a pleiotropic role in the initiation and establishment
of HCC. The loss of Atg genes in the animal models, leads to the
development of HCC via different mechanisms. The genetic loss of
Atg5 and Atg7 increased the levels of SQSTM1/p62, oxidative stress,
mitochondrial swelling, and genomic damage observed in the
primary hepatocytes, and the deletion of the p62 gene reduced
the tumor size in Atg7 deficient hepatic tumors (Umemura et al.,
2016). The increased levels of p62, lead to the activation of Nrf2 that
confers protection of the HCC-initiating cells from oxidative stress-
induced cell death (Umemura et al., 2016). Notobaly, a high
expression of p62 is observed in HCC tissues (Bao et al., 2014).
Similarly, a higher incidence of spontaneous tumors, includingHCC,
was seen on the deletion of the autophagy regulatory gene Beclin-1,
in mice (Yue et al., 2003). Mechanistically, Beclin-1 facilitates PP2A
mediated degradation of c-Myc, leading to decreased cell division
and cancer cell proliferation, indicating that Beclin-1 acts as a
haploinsufficiency tumor suppressor gene (TSG) in cancer
(Cianfanelli et al., 2015).

Autophagy is known to enhance cancer cell survival and acts as a
pro-survival and pro-metastatic process. Deregulated transcription
of Atg genes is observed in HCC (Ji et al., 2019). Autophagy
induction in HCC promotes cancer growth via induction of
JNK/Bcl2 (Deng et al., 2018) and Wingless/Integrated (WNT)
signaling (Fan et al., 2018). Autophagy is also implicated in the
establishment of chemoresistance in response to the anti-HCC drug,
Sorafenib. Furthermore, autophagy inhibitors sensitize HCC to
sorafenib treatment (Shimizu et al., 2012; Zhao et al., 2021).
Additionally, the expression of autophagy-related marker, LC3
has been linked to the poor outcomes in HCC patients with
surgical resection (Lee et al., 2013).

Besides LC3, ULK1 has also been shown as an important
prognostic marker in HCC (Xu et al., 2013; Wu et al., 2018).
ULK1 expression in paired HCC and para-cancerous tissues
displayed a significant association with the tumor size after sex,
age, histologic grade, cirrhosis and tumor, nodes, and metastases
(TNM) adjustment (Xu et al., 2013). Upon survival analysis, the
patients with high ULK1 expression showed worse survival time
compared to those with low ULK1 expression (Xu et al., 2013).
Additionally, both the genetic and pharmacological inhibition of
ULK1 led to the inhibition of the proliferation and invasion of
human HCC cells, andUlk1 deletion abrogated the tumor growth in
a xenograft mouse model (Xue et al., 2020). Furthermore, the
inhibition of ULK1, in combination with sorafenib, significantly
suppressed the HCC progression as compared with sorafenib alone
or vehicle treatment alone (Xue et al., 2020). Similarly, ULK1 was
also found to regulate the expression of the oncogenic factor,
FOXM1 by an autophagy dependent mechanism in HCC cell

FIGURE 3 | Role of ULK1 in hepatocellular carcinoma. Uncoordinated-
51-like kinases 1 (ULK1)/autophagy inhibition reduces the expression of
forkhead box protein M1 (FOXM1) oncogene and its downstream target
genes regulating cell cycle progression in human hepatoma cells thereby
limiting hepatocellular carcinoma (HCC) growth.
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lines (Figure 3). FOXM1 promotes the growth of humanHCC by its
action on the transcription of genes related to proliferation,
chemoresistance and metastasis (Figure 3). Inhibition of ULK1
by using siRNA or pharmacological inhibitors significantly down-
regulated FOXM1 and its target gene transcription in HCC cell line
(Rajak et al., 2020b) (Figure 3). Furthermore, a combinatorial
administration of ULK1 and FOXM1 inhibitor synergistically
decreased HCC proliferation (Rajak et al., 2020b). In summary,
these studies unveil ULK1 as a novel therapeutic target for HCC (Liu
et al., 2020) and indicate that targeting ULK1, in combination with
other anti-cancer therapies, may be a promising interventional
strategy for the treatment of HCC (Wang et al., 2018).

SUMMARY AND CONCLUSION

ULK1 serves as a critical regulator of autophagy needed to
regulate divergent yet interconnected metabolic processes
executed by the hepatic cells (Figure 4). However, not all
actions of ULK1 lie within the bonafide domain of autophagy,
suggesting that it may not be an exclusively autophagy-related
gene, but in fact a kinase, which can also mediate non-

autophagic functions (Figure 4). Finally, given the
implications of ULK1 in several liver associated pathologies
and its attribute to be a druggable kinase, future studies need to
be directed to find specific and clinically relevant
pharmacological modulators of ULK1 for the treatment of
hepatic pathologies in humans.
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