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ABSTRACT
The identification of therapeutic strategies exploiting the metabolic alterations of malignant cells is a
relevant area in cancer research. Here, we discuss a novel computational method, based on the COBRA
(COnstraint-Based Reconstruction and Analysis) framework for metabolic networks, to perform this task.
Current and future steps are presented. KEYWORDS

cancer; constraint-based
reconstruction and analysis;
drug targets; essential genes;
genetic minimal cut sets;
metabolic networks;
personalized medicine;
synthetic lethality

The understanding of metabolic alterations in cancer cells con-
stitutes a major topic in oncology. Different works support that
these alterations contribute to cell transformation and tumor
progression and, therefore, the investigation of cellular metabo-
lism as a therapeutic strategy has received much interest in the
last years.1 Holistic systems medicine approaches, driven by
varied biological and clinical data and computational modeling,
are promising to systematically exploit metabolic disorders of
tumor cells and identify metabolic vulnerabilities to be targeted.

One of the most relevant paradigms within computational
systems biology is the COBRA (COnstraint-Based Reconstruc-
tion and Analysis) framework.2 Thanks to the efforts of this
growing community, there are publicly available high-quality
human genome-scale metabolic networks, such as Recon2,3

which stores thousands of metabolites, reactions and genes
reported in human cells (illustrated in Fig. 1). Based on them,
we can mathematically analyze different metabolic questions
related to human health. In particular, the COBRA approach
introduces context-specific constraints on a space of possible
metabolic behaviors and allows the prediction of different met-
abolic phenotypes, including growth rate and gene essentiality.4

Growth rate is modeled as the flux of an artificial reaction, typi-
cally named the biomass equation, which involves the meta-
bolic requirements (essential metabolites), in terms of building
blocks and energy, to produce biomass (Fig. 1). The biomass
equation enables in-silico gene essentiality and synthetic lethal-
ity analysis at metabolic level. Thereby, essential and synthetic
lethal genes are defined as knockout strategies that disrupt the
flux through the biomass reaction, namely by blocking the
biosynthesis of at least one essential metabolite for cellular
proliferation.

The COBRA approach is considered promising to elucidate
novel drug targets in cancer. Using “omics” data, different
COBRA methods aim to exploit the concept of synthetic lethality
in order to elucidate cancer-specific essential genes. To illustrate
this, consider Fig. 1, where g1, g2 and g3 are synthetic lethal
genes, since their simultaneous inhibition disrupts the produc-
tion of metabolite A, essential for tumor cell proliferation and
included in the biomass equation. Assuming that genes g1 and g2
are not expressed in the tumor sample under consideration, g3 is
an essential gene in this context; in other words, g3 is a cancer-
specific metabolic essential gene. Interestingly, cancer-specific
metabolic essential genes provide potential drug targets that can
be further examined by experimental groups.

Our group recently developed a novel COBRA method to
find cancer-specific metabolic essential genes.5 We showed that
our approach presents several advantages with respect to exist-
ing approaches in the literature.6 Firstly, our approach returns
more objective and unbiased results, since gene expression data
is mapped onto the reference metabolic network, avoiding the
use of context-specific metabolic reconstructions, which take
heuristic decisions to reconcile omics data and add unnecessary
noise. Second, our algorithm is more informative, since it cap-
tures the synthetic lethality underlying cancer-specific essential
genes. In the toy example in Fig. 1, our algorithm would return
that g3 is a cancer-specific essential gene, but, additionally, that
g1, g2 and g3 are synthetic lethal genes. This information is lost
with existing algorithms. In the context of personalized medi-
cine, this is valuable to decide which patients could respond to
potential therapies; in the example, the activity of genes A and
B defines the lethality of the knockout of gene g3. Third, our
approach presents a substantially higher sensitivity to predict
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cancer-specific essential genes than competing methods,
according to a side-by-side comparison based on genome-scale
loss-of-function screens provided by the Project Achilles.7

Overall, these three elements make our approach a sensible
contribution to the field of cancer systems biology.

From the mathematical perspective, the prediction of syn-
thetic lethality is based on the concept of minimal cut sets
(MCSs), developed by Steffen Klamt and colleagues,8 and previ-
ous theoretical work by our group,9 which builds on linear opti-
mization, duality theory and linear algebra. Originally, these
methods were constructed for reaction knockout perturbations.
In our work, we extended this method to the gene level, intro-
ducing the concept of genetic minimal cut sets (gMCSs), a
more appropriate concept for cancer studies. We are currently
working to include our algorithm in the COBRA Toolbox,10 an
open-source software in Matlab environment that stores a
number of methods for the reconstruction and analysis of
genome-scale metabolic networks. This will facilitate a simple
and intuitive use of our algorithm in the Systems Biology
community.

Our computational framework was successfully applied to
evaluate the lethality of ribonucleotide reductase catalytic sub-
unit M1 (RRM1) in multiple myeloma (MM), a hematological
cancer that remains an incurable disease. However, we expect
that our algorithm can be used for other questions in cancer.
Currently, we are applying our algorithm to identity drug tar-
gets in prostate cancer, different leukemias and tamoxifen-
resistant breast tumors, with some promising (yet unpublished)
results. In addition, we plan to include drug perturbations in

our model in order to, for example, predict the effect of drugs
targeting metabolic enzymes and pose possible synergistic strat-
egies to reinforce the treatment.

The identification of silent enzymes, either inherited inactive
or lost by the tumor, is indispensable to find metabolic vulner-
abilities in cancer. In our work, we used microarray gene
expression data; however, the use of genomic data, such as
mutations or copy number variations is even more interesting
to exploit synthetic lethality. With the proliferation of DNA-
seq and RNA-seq data, we anticipate a suitable environment
where our COBRA method could be used more accurately to
identify metabolic drug targets.
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Figure 1. COBRA (COnstraint-Based Reconstruction and Analysis) approach and genetic minimal cut set (gMCSs). We show different ingredients in a genome-scale meta-
bolic model: the green squares represent nutrients in the growth medium, lines are reactions and dots are metabolites, while the outlined circles constitute essential
metabolites for cell proliferation (integrated in the biomass equation). In the zoomed in panel, g1, g2 and g3 genes, which catalyze univocally r1, r2 and r3 reactions, respec-
tively, form an example gMCS. These genes are synthetic lethal for the biosynthesis of the biomass precursor metabolite A. Using available transcriptomics data, we
assume that g1 and g2 are not expressed (red color) while g3 is expressed (blue color). In this context, g3 would be a cancer-specific essential gene and, therefore, a poten-
tial drug target.
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