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A B S T R A C T   

Medical Ultrasound (US) is one of the most widely used imaging modalities in clinical practice, 
but its usage presents unique challenges such as variable imaging quality. Deep Learning (DL) 
models can serve as advanced medical US image analysis tools, but their performance is greatly 
limited by the scarcity of large datasets. To solve the common data shortage, we develop GSDA, a 
Generative Adversarial Network (GAN)-based semi-supervised data augmentation method. GSDA 
consists of the GAN and Convolutional Neural Network (CNN). The GAN synthesizes and pseudo- 
labels high-resolution, high-quality US images, and both real and synthesized images are then 
leveraged to train the CNN. To address the training challenges of both GAN and CNN with limited 
data, we employ transfer learning techniques during their training. We also introduce a novel 
evaluation standard that balances classification accuracy with computational time. We evaluate 
our method on the BUSI dataset and GSDA outperforms existing state-of-the-art methods. With 
the high-resolution and high-quality images synthesized, GSDA achieves a 97.9% accuracy using 
merely 780 images. Given these promising results, we believe that GSDA holds potential as an 
auxiliary tool for medical US analysis.   

1. Introduction 

Medical Ultrasound (US) has become a widely utilized screening and diagnostic tool in clinical practice due to its absence of 
ionizing radiation, high sensitivity, portability, and relatively low cost [1]. However, there are limitations to be solved. Image quality is 
easily affected by noise and artifacts, inter-operator variability is considerable, and variability across different US systems is usually 
high. Due to these, diagnosing medical US images always heavily relies on radiologists. To address the problem, developing an 
advanced medical US image analysis tool to make medical US diagnosis more objective, accurate, and automatic is essential. In recent 
years, Deep Learning (DL) has emerged as a powerful tool to automate the extraction of useful information from big data. It has enabled 
ground-breaking advances in numerous computer vision tasks [2]. For the classification task, the Convolutional Neural Network (CNN) 
[3] is one of the most dominant methods. However, effectively training a CNN typically requires large datasets, which are often a 
significant obstacle in the medical field. For one thing, the acquisition of medical images typically necessitates the use of specialized 
equipment and requires medical experts for annotation. For another, datasets are usually confidential due to privacy concerns. In this 

* Corresponding author. 
E-mail addresses: e0575844@u.nus.edu (Z. Liu), lvqj5@mail2.sysu.edu.cn (Q. Lv), chau_hung_lee@ttsh.com.sg (C.H. Lee), mpeshel@nus.edu.sg 

(L. Shen).  

Contents lists available at ScienceDirect 

Heliyon 

journal homepage: www.cell.com/heliyon 

https://doi.org/10.1016/j.heliyon.2023.e19585 
Received 11 August 2023; Received in revised form 25 August 2023; Accepted 28 August 2023   

mailto:e0575844@u.nus.edu
mailto:lvqj5@mail2.sysu.edu.cn
mailto:chau_hung_lee@ttsh.com.sg
mailto:mpeshel@nus.edu.sg
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2023.e19585
https://doi.org/10.1016/j.heliyon.2023.e19585
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2023.e19585&domain=pdf
https://doi.org/10.1016/j.heliyon.2023.e19585
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 9 (2023) e19585

2

case, the Transfer Learning (TL) technique is widely implemented in CNN to relieve the common data shortage. The TL allows the 
models to be trained on the larger dataset first to relieve the difficulty of model training. However, given the unique characteristics of 
US images and the acute data shortage, relying solely on TL often fails to guarantee the model performance [4]. 

To further improve the model performance for US image classification, various Data Augmentation (DA) methods have been widely 
adopted. Traditional DA methods typically generate images based on a sequence of transformations such as rotation, flip, etc. While 
such methods are beneficial, they come with several challenges. Firstly, manually designing the type and sequence of transformations 
largely depends on experience and can often lead to suboptimal results. Secondly, the number of combinations is restricted when 
leveraging a small number of transformations. Although expanding the number of transformations can potentially address this, 
excessive transformations might produce meaningless augmented images that drift significantly from the original [5]. Due to this, 
several advanced DA methods are proposed [6,7] and the Generative Adversarial Network (GAN) [8] is one of the most widely 
implemented ones. The GAN is widely implemented for medical image synthesis and is composed of a generator (G) and a discrim
inator (D) playing an adversarial “game”. During training, the G synthesizes images based on the data distribution it learned, and the D 
tries to discriminate whether the images are synthesized or not. 

Several previous works [4,9,10] have utilized GAN for DA and classified medical images in a semi-supervised way. However, there 
are several points to be improved. For one thing, the synthesized images have either low resolution or quality. This can be caused by 
the basic GAN structure as well as the lack of the TL technique during training GAN. For another, the quality of the synthesized images 
is not evaluated quantitatively and the data distribution relationship across real and synthesized images is not investigated. Besides, 
performance across different CNN models is not fully searched. Till now, synthesizing high-resolution and high-quality US images, as 
well as training a high-performance classification model with a small dataset remain challenging. To solve existing problems, here we 
propose GSDA consisting of CNN and GAN. The GAN synthesizes and pseudo-labels the artificial US images with high resolution and 
high quality, whereas the CNN is trained using both real and synthesized images. To enhance image resolution and quality, we adopt 
the state-of-the-art GAN model SGA [11] and employ the TL technique during its training. To evaluate the synthesized images 
quantitatively, we implement widely accepted standards Inception Score (IS) [12] and Fre’chet Inception Distance (FID) [13]. We also 
implement t-SNE for analyzing the data distribution across real and synthesized images. To fully search the performance across 
different CNN models, we implement intensive experiments on several CNN models and compare the results. Moreover, we also 
propose a novel evaluation standard, the Training Efficiency Index (TEI), to balance the accuracy and the training time consumption. 
We evaluate our GSDA on the BUSI dataset [14], and the results show that with high-resolution and high-quality images synthesized, 
our GSDA can obtain a 97.9% accuracy using merely 780 images. To sum up, our main contributions are:  

• We propose a GAN-based semi-supervised DA method GSDA to solve the common data shortage.  
• We leverage state-of-the-art GAN to synthesize high-resolution and high-quality US images.  
• We evaluate the synthesized image quantitatively and analyze the data distribution between real and synthesized images.  
• We propose a novel evaluation standard to balance the classification accuracy and the time consumption. 

The rest of this paper is organized as follows: In Section 2, we illustrate the related works of GAN as well as its application on semi- 
supervised medical image classification. The description of the datasets used, together with the methods proposed are discussed in 
Section 3. Section 4 shows the core experiment results, detailed analysis, and extensive ablation study. We conclude our work and 
point out the future perspective in Section 5. 

2. Related work 

GAN. Many variants of GAN [15–21] have been developed since it was initially proposed. In 2016, Radford et al. [19] developed a 
DCGAN model, in which the convolution operation is introduced into the GAN. In DCGAN, both the D and G are trained once during 
each epoch. One year later, the WGAN was proposed by Arjovsky et al. [22], which employs the Wasserstein distance into GAN and 
uses RMSprop as the optimizer instead of Adam. A variant of it, WGAN-GP, was later proposed [20]. The WGAN-GP adds a gradient 
penalty and applies layer norm [23] in D. However, training these GAN models always needs a large number of images. Besides, the 
resolution of synthesized images is relatively low. In 2020, Karras et al. [11] developed a novel SGA network with advanced archi
tectural design, in which Adaptive Data Augmentation (ADA) is introduced in GAN to handle small data regimes. To effectively handle 
high-resolution images, both the G and D of the SGA are designed with a hierarchical structure. 

GAN-based semi-supervised medical image classification. To overcome the common data shortage in the field of medical image 
classification, several works [4,9,10,24,25] have been proposed to use GAN for DA and classify the images in a semi-supervised way. 
The existing works can be divided into two approaches. The first is to train GAN solely and use the D of GAN as a classifier [9,24]. The 
second is to train GAN first and then use separate CNN as a separate classifier [4,10,25]. We opt for the latter approach, as it allows us 
to employ multiple CNN models and compare their performances. Compared with existing methods, our GSDA has several advantages. 
First, instead of employing basic GAN models, we implement state-of-the-art GAN model SGA to synthesize images with higher res
olution and quality. We observed that most of the existing work using GAN does not introduce the TL technique thus hampering the 
model performance. We thus implement the TL technique rather than solely training from scratch. Second, besides qualitatively 
observing the synthesized quality, we employ IS and FID to evaluate the synthesized images quantitatively. We also visualize and 
analyze the data distribution across real and synthesized images. Third, we implement intensive experiments across different CNN 
models to search for higher performance. Finally, we propose a new evaluation standard TEI to balance the classification accuracy and 
the time consumption. 
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3. Materials and methods 

3.1. Datasets 

We use the BUSI dataset for training and several example figures accessed from it are illustrated in Fig. 1. The BUSI dataset is a 
breast cancer dataset collected among 600 female patients between 25 and 75 years old in 2018. The data is collected using the LOGIQ 
E9 US and LOGIQ E9 Agile US systems. The BUSI dataset contains 780 images and is divided into three subsets, including benign, 
malignant, and normal, as illustrated in Fig. 1a–c, respectively. Each subset corresponds to different breast cancer conditions. The 
benign, malignant, and normal subsets contain 437, 210, and 133 images, respectively. The average resolution of the images is around 
500 × 500. Besides the BUSI dataset, four large datasets are selected as the source datasets of the TL technique. For synthesis, Flickr- 
Faces-HQ (FFHQ) [26], Large-Scale CelebFaces Attributes (CelebA) [27], and Large-scale Scene Understanding Challenge (LSUN) DOG 
[28] are leveraged. FFHQ is a face dataset with 70 K images at the resolution of 1024 × 1024. There is considerable variation in age, 
ethnicity, and image background among all images. CelebA is a large-scale face attributes dataset with 200 K celebrity face images 
collected from 10,177 identities. Large pose variations and background clutter are covered. LSUN DOG contains 5 M images of the 
category dog. For classification, ImageNet [29] is utilized. ImageNet, with its 14 M images, is organized according to the nouns of the 
WordNet hierarchy, with each node represented by numerous images. 

3.2. SGA 

We leverage SGA to synthesize medical US images. The SGA features a G − D architecture and includes an ADA block. Both G and D 
in the SGA follow a hierarchical structure, in which the resolution for G progresses from low to high and vice versa for D. The detailed 
structure of G and D of SGA can be found in Fig. 2b. The ADA is composed of eighteen transformations grouped into six groups, 
including pixel blitting, more general geometric transformations, color transforms, image-space filtering, additive noise [30], and 
cutout [31]. The set of transformations is employed in a fixed order with a strength p ∈ [0, 1]. The p is adaptively controlled based on 
the degree of overfitting. The evaluation of overfitting is to utilize a separate validation set and observe its behavior with respect to the 
training set. Let us denote the outputs of D by Dtrain, Dvalidation, and Dsynthesized, for the training set, validation set, and synthesized 
images, respectively, and their mean over N consecutive batches by E[ ·], the overfitting can be computed using the below equation: 

rv =
E[Dtrain] − E[Dvalidation]

E[Dtrain] − E
[
Dsynthesized

]rt = E[sign(Dtrain)] (1)  

where r = 0 represents no overfitting and r = 1 shows completely overfitting. rv shows the output for the validation set relative to the 
training set and synthesized images, and rt estimates the portion of the training set with positive D outputs. For the adaptively 
controlled p, it is initialized to zero and adjusted once every four mini batches based on the Equation (1). In case the results indicate too 
much/little overfitting occurs, the p is adjusted by incrementing/decrementing a fixed amount. 

The three subsets of the BUSI dataset are each used to train the SGA. Real images are preprocessed to a resolution of 256 × 256. The 
resolution of synthesized images is also set as 256 × 256 to balance the image quality and time consumption. The loss function 
implemented is the non-saturating logistic loss f(x) = log(sigmoid(x)) [8]. The D loss is computed as − f(x), where the G loss is 
computed using − f(x) and − f( − x). The optimizer is Adam and the learning rate is 0.0025. The number of iterations is 4000 with a 
batch size of 32. SGA is trained using four different settings, including training from scratch and using the TL technique with three 
different source datasets to demonstrate the impact of the TL technique. 

Fig. 1. Example figures accessed from the BUSI dataset. (a) Benign, (b) malignant, and (c) normal.  
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3.3. GSDA 

As shown in Fig. 2a, our GSDA is composed of two stages. In the first stage, we train SGA using the BUSI dataset to capture the real 
image data distribution for image synthesis. In the second stage, we train different CNN models using the merged datasets. We 
construct seven CNN models with the unique classification head using VGGNet [32], ShuffleNet [33], ResNeXt [34], ResNet [35], 
MobileNet [36], InceptionNet [37], and DenseNet [38] as the backbone. The classification head consists of two linear layers with a 
ReLU activation function, two dropout layers, and a linear layer with three output nodes, which equals the number of subsets. It is 
worth noting that we denote the combination of the SGA and different CNN models used in different groups of experiments as different 
SGA-CNN pairs. This results in seven SGA-CNN pairs, which are SGA-VGG, SGA-Shuffle, SGA-ResNeXt, SGA-Res, SGA-Mobile, 
SGA-Inception, and SGA-Dense. 

We utilize SGA to synthesize medical US images. We endow the synthesized images with pseudo-labels that are the same as the real 
images. Specifically, the images synthesized by the SGA trained with the benign subset are pseudo-labeled benign, and the same 
process is performed for the malignant subset and the normal subset. We use the synthesized images to compose the extended datasets. 
The size of each extended dataset equals the integer γ multiple of the BUSI dataset. To keep class balance, the proportion of the three 
subsets in the extended datasets is the same as that of the BUSI. For each SGA-CNN pair, the maximum value of γ is determined 
experimentally based on our proposed evaluation standard TEI. For the detailed algorithm on how the maximum value of γ is 
determined, see Section 3.4. We add the extended datasets to the BUSI dataset to compose the merged datasets. 

We train pre-trained CNN models using the merged datasets. The merged datasets are divided randomly into a training set and a 
validation set with a ratio of 8:2. The resolution of images is preprocessed to 224 × 224 or 299 × 299 (InceptionNet) due to different 
model architecture designs. The loss function is cross-entropy. The optimizer used is Adam and the learning rate equals 0.003. The 
weight decay (WD) is set to 0.001 if applicable. The number of epochs is 60 and the batch size is 32. For a given γ, each CNN is trained 
under two groups of settings, depending on whether the WD is chosen or not. Traditional DA methods, including RandomResizedCrop 
and RandomHorizontalFlip, are implemented. 

3.4. Evaluation standards 

To evaluate the quality of images synthesized by the SGA, we use two ways of evaluation. The first is through qualitative obser
vation where the overall quality and basic details are directly distinguishable. The second is quantitative assessment using IS and FID. 
The IS and FID are two prevalent evaluation standards for image synthesis and can be calculated via: 

IS = exp
(

Ex∼pg DKL(p(y|x) ‖ p(y))
)

(2)  

FID = ‖ m − mw ‖
2
2 + Tr

(
C + Cw − 2(CCw)

1
2

)
(3)  

where x ∼ pg represents sample x from pg, DKL represents the KL divergence. w represents the real-world data, m denotes the mean 
value, C shows the covariance matrix, and Tr represents the trace. A lower IS indicates worse model performance, whereas a lower FID 
indicates better performance. From Equation (2) and Equation (3), it is observed that the real images are not taken into consideration 
when calculating IS. In such scenarios, the model might achieve a high IS by simply replicating the real images. To make the evaluation 

Fig. 2. The proposed GSDA is composed of two stages. In the first stage, SGA is trained using the BUSI dataset to capture the real image data 
distribution and synthesize artificial images. The synthesized extended datasets are then merged with the BUSI dataset to compose merged datasets. 
In the second stage, different CNN models are trained using the merged datasets. ADA stands for adaptive discriminator augmentation. Solid and 
dotted orange arrows show the training stream and data stream, respectively. Grey arrows point toward the omitted similar structures at different 
resolutions. (a) Stage illustration, and (b) detailed structure of G and D of SGA. 
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more convincing, we regard FID as the main standard and take IS as a reference. Both FID and IS are calculated every 200 iterations. 
For the SGA-CNN pair, the training time tγ increases significantly with γ. We thus evaluate the model performance in two-fold. First, 

we employ classification accuracy accγ for evaluation. This is the most distinct and effective evaluation standard. Second, we propose a 
new standard TEI to balance the classification accuracy and the time consumption. Given γ, TEI can be calculated using: 

TEI =

{
ln

(
tγ − tγ=0

)− 1
·
(
accγ − accγ=0

)
γ > 1,

0 γ = 0.
(4)  

where tγ=0, accγ=0 denotes the training time and accuracy when training using the BUSI dataset. From Equation (4), we can find that the 
TEI indicates the ability of the model to attain improved accuracy within a limited training time. The higher the TEI, the better the 
ability. It is worth noting that for each SGA-CNN pair, we determine the maximum value of γ experimentally based on the proposed 
TEI. The specific procedure is (1) Initialize γ as 1, (2) calculate TEI, (3) increase γ by 1, (4) calculate new TEI, (5) compare new TEI with 
the previous one, (6) if TEI increases, repeat (3), (4), and (5) until TEI stops increasing. The pseudo-code of the proposed algorithm is 
illustrated in Algorithm 1. 

Algorithm 1 
Determination of the maximum value of γ for SGA-CNN pairs  

Require: Extended multiple γ ∈ [0,n], GAN model SGA, ith CNN model CNNi, i ∈ [1,7], dataset D = (Ximage,Y), time t; 
Ensure: TEImax |γ; 
1: TEIγ=0 = 0; 
2: for all i do 
3: Initialize γ = 1; 
4: while TEIγ,i > TEIγ− 1,i do 
5: tstart = start time; 
6: XSGA

image = SGA(Ximage); 
7: y = CNNi(XSGA

image
⋃

Ximage); 
8: accγ,i = accuracy(y,Y); 
9: tend = end time; 
10: tγ,i = tend − tstart ; 
11: Compute TEIγ,i = ln (tγ,i − tγ− 1,i)

− 1
·(accγ,i − accγ− 1,i); 

12: γ = γ+ 1; 
13: end while 
14: Out γ when TEImax |γ; 
15: end for  

4. Results and analysis 

4.1. Unsupervised synthesis 

Several medical US images synthesized by SGA are shown in Figs. 3 and 4a, for using the TL technique and training from scratch, 
respectively. We also show images synthesized by DCGAN, WGAN, and WGAN-GP in Fig. 4b–d for comparison. The synthesized images 
from SGA exhibit noticeably higher quality compared to those from other GAN models. The SGA effectively mimics the medical an
notations (white in figures) in the BUSI dataset, while the commonly used DCGAN, WGAN, and WGAN-GP cannot even handle the task 

Fig. 3. Images synthesized by SGA with the TL technique. (a) Benign, (b) malignant, and (c) normal.  
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well at this resolution. Besides, the quality of the synthesized images significantly improves with the introduction of the TL technique. 
On a qualitative note, Fig. 3a–c do not exhibit the evident yellow flaws that are present in Fig. 4a. Quantitatively, better FID and IS are 
observed, as shown in Fig. 5a and b, respectively. From the observation, we can find that the TL technique not only enhances per
formance but also improves stability. As the TL technique can improve the performance of SGA essentially, we set the TL technique as 
the default when developing SGA-CNN pairs. It is worth noting that the TL source dataset used here is FFHQ. For the comparison of FID 
and IS across different TL experimental groups, see the corresponding ablation study in Section 4.3. 

To prove the effectiveness of the proposed image synthesis method, we employ t-SNE to visualize the data distribution across real 
and synthesized images in Fig. 6. The visualization is performed using SGA-VGG without decay as it outperforms other combinations. 
Features are extracted prior to the classification head, and each category comprises a hundred randomly sampled images. The results 
demonstrate that the distributions of both real and synthesized images are closely aligned, and a nearly overlapping distribution attests 
to the effectiveness of the proposed synthesis method. Notably, several outliers are observed in both synthesized benign and malignant 
categories. This can be caused by either CNN prediction or SGA synthesize deviation. Nevertheless, the number of such outliers is 
limited and thus does not influence the overall results. In Fig. 7, we illustrate how the TL technique aids the model training and the 
images synthesized during the process. When the TL technique is employed, as evident in Fig. 7a, the G of SGA inherits the weights 
learned from the FFHQ dataset. With pre-learned weights, the G can learn the distribution of the BUSI dataset quickly. By the 32nd 
iteration, the G can already synthesize the BUSI-like images. The lowest FID is reached at the 1000th iteration. However, in the case of 
lacking the TL technique, the weights are initialized randomly at the beginning of the training, as illustrated in Fig. 7b. The G starts to 
learn some representations at around 64 to 128 iterations, and the lowest FID is reached at the 3200th iteration. This indicates a 
substantially longer training time consumption compared to scenarios utilizing the TL technique. Worse still, even with 3200 itera
tions, the G trained from scratch exhibits severe mode collapse. In other words, its diversity is significantly lower compared to that 
achieved with TL from FFHQ. 

4.2. Semi-supervised classification 

The classification accuracy of different SGA-CNN pairs is shown in Table 1. We find that the SGA-VGG pair without WD achieves the 
highest accuracy at 97.9%. For the SGA-VGG pair with WD, we obtain an accuracy of 97.3%. While the SGA-VGG pairs achieve the 

Fig. 4. Normal images synthesized by different GAN models. Models are trained from scratch. (a) SGA, (b) DCGAN, (c) WGAN, and (d) WGAN-GP.  

Fig. 5. FID and IS recording during training. The solid lines stand TL from FFHQ, while dotted lines illustrate training from scratch. (a) FID, and 
(b) IS. 
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highest accuracy, several pairs demonstrate a greater improvement in accuracy with limited time consumption, reaching higher TEI. 
For instance, the SGA-Dense pair with WD reaches a TEI of 3.06, and the SGA-Mobile pair without WD obtains a TEI of 3.04. The 
intensive experiment results indicate that our method is universally suitable for all CNN models without any selection bias. We use the 
SGA-VGG pair without WD when comparing the performance with existing methods. In Table 2, we compare our GSDA with the state- 
of-the-art methods using the same dataset. We divide the existing methods into two categories, depending on whether the method is 
semi-supervised or not. From the table, we can find that the proposed GSDA reaches the highest accuracy and overperforms existing 
methods, even for comparison with binary classification and training with extra data. This demonstrates the effectiveness of GSDA, 
establishing it as a new state-of-the-art milestone. 

To provide guidance for practical applications, we plot the comparison of the accuracy-time curve across different SGA-CNN pairs 
in Fig. 8a and b, with and without the TL technique, respectively. It is worth noting that though the maximum value of γ varies among 
different SGA-CNN pairs, we conduct additional experiments and illustrate the results based on the maximum γ across all SGA-CNN 
pairs, which is eight as illustrated in Table 1. In other words, each SGA-CNN pair has eight groups of experiments for both WD set
tings, respectively. This standardizes the results, making them more amenable to comparison. The results reveal that the SGA-VGG pair 
achieves the highest accuracy with the least time consumption, irrespective of the presence of WD. This illustrates that the SGA-VGG 
pair should be priority considered when deploying the classification task in practice. It is worth noting that the training of several pairs 
can become unstable without the WD, indicated in points A, B, and C in Fig. 8b. This suggests that WD contributes to stabilizing the 
training to a certain degree. 

4.3. Ablation studies 

The structure ablation study is implemented by comparing the classification performance in the case of whether the SGA is 
implemented or not. The performance of the CNN models without SGA is detailed in Table 3. A comparison between Tables 1 and 3 

Fig. 6. Data contribution visualization using t-SNE across real and synthesized images.  

Fig. 7. Images synthesized by SGA at different stages during training. Only for illustration. Numbers represent the number of iterations trained. (a): 
with TL, transfer from FFHQ, and (b): without TL, training from scratch. 
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reveals a significant drop in performance without SGA. For instance, the SGA-VGG pair shows a 15.6% decrease in accuracy regardless 
of whether the WD is implemented. Given the limited size of the dataset, these results align with our expectations and underscore the 
effectiveness of SGA. Regarding the SGA-Inception pairs, a tremendous accuracy drop of 16.9% and 16.6% are observed in scenarios 
with and without WD, respectively. 

The dataset ablation study is conducted by comparing FID and IS across various TL experimental groups. From Table 4, it is found 
that TL from FFHQ performs best compared with TL from CelebA and TL from LSUN DOG, getting an FID of 62.92, 68.78, and 73.92 for 

Table 1 
Classification accuracy across SGA-CNN pairs. macc shows the maximum accuracy across all γ. ↑ means the higher, the better, and ↓ inverse. Bold 
numbers show the best results.  

WD Standard SGA-VGG SGA-Shuffle SGA-ResNeXt SGA-Res SGA-Mobile SGA-Inception SGA-Dense 

✓ accγ ↑ 97.2% 91.6% 84.5% 85.4% 94.9% 81.7% 90.0% 
✓ macc ↑ 97.3% 91.6% 84.5% 85.4% 94.9% 82.7% 90.4% 
✓ tγ ↓ 1480.8s 1458.2s 1467.5s 1457.6s 1460.3s 1385.6s 1263.7s 
✓ γ 7 7 7 7 7 4 5 
✓ TEIγ ↑ 2.18 2.75 2.55 2.14 2.86 2.28 3.06 
× accγ ↑ 97.8% 95.0% 81.2% 86.6% 94.9% 82.4% 88.8% 
× macc ↑ 97.9% 95.0% 81.2% 86.6% 95.0% 82.4% 89.1% 
× tγ ↓ 1478.4s 1456.5s 1251.9s 1455.5s 1460.3s 1175.0s 1260.1s 
× γ 7 7 5 7 7 3 5 
× TEIγ ↑ 2.18 2.96 1.69 2.14 3.04 2.46 2.06  

Table 2 
Performance comparison on the BUSI dataset between GSDA and state-of-the-art methods. * shows binary classification. ** stands including addi
tional training data. SSL presents whether the methods belong to semi-supervised or not.  

Ref. Year SSL Methods macc ↑ 

[39] 2021 × Multi-CNN Hybrid Structure 95.6% 
[40] 2021 × ResNet 88.9% 
[41] 2021 × ResNet + Binary Grey Wolf Optimization + Support Vector Machine 84.9% 
[42] 2022 × YOLO 95.3% 
[43] 2022 × CNN + Genetic Algorithm ** 92.8% 
[44] 2023 × ShuffleNet-ResNet * 95.1% 
[45] 2023 × Interpretable Multitask Information Bottleneck Network * 93.0% 
[46] 2023 × Consistent Ordinal Representations 82.2% 
[47] 2023 × Multi-Task Learning + Attention * 91.0% 
[48] 2021 × Vision Transformer 74.0% 
[49] 2020 × CNN Ensemble Learning * 90.8% 
[50] 2020 × Hybrid Feature Set + Ensemble Classifier * 96.6% 
[51] 2021 × Machine Learning-Radiomics * 97.4% 
[52] 2021 × Deep Representations Scaling * 92.3% 
[4] 2019 ✓ CNN + DAGAN 94.0% 
[53] 2021 ✓ ResNet + DK-Guided Data Augmentation 81.1% 
[54] 2022 ✓ ResNet + Convolutional Autoencoder * 88.2% 
[55] 2022 ✓ Consistency Training + Vision Transformer + Adaptive Token Sampler 95.3% 
Ours – ✓ GSDA 97.9%  

Fig. 8. Accuracy-time curve across different SGA-CNN pairs. The closer to the lower right corner, the better the overall performance. For each pair, 
the order of scatters corresponds to the increase of γ. Two subplots share the legend. (a) With WD, and (b) without WD. 
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three subsets respectively. However, for the malignant subset, TL from FFHQ obtains a lower IS compared with TL from CelebA. This 
conflicting outcome highlights some limitations of IS. It is worth noting that despite its higher diversity, LSUN DOG performs the worst 
in our experiments. This observation contrasts with the conclusion that the success of the TL technique likely hinges more on dataset 
diversity than on the similarity between subjects [11]. We speculate that this conclusion might be influenced by the close relationship 
between dogs and cats. 

5. Conclusions 

We introduced the GSDA, a novel method aimed at enhancing the classification accuracy of medical US images under small data 
limits. Experimental results on the BUSI dataset underscore the effectiveness and robustness of GSDA in image classification. Given its 
commendable performance, GSDA has the promising potential to serve as a supplementary diagnostic instrument. However, it is 
imperative to acknowledge certain limitations. The SGA is trained independently on distinct subsets to mitigate mutual interference for 
performance consideration. However, when there are numerous subsets, this approach may become impractical due to computational 
resource constraints. In such scenarios, the SGA can be conditionally trained by feeding class labels alongside the images. Using the 
trained SGA, images from various subsets can then be synthesized. Furthermore, a potential challenge of GSDA is the complexity 
introduced by separately training the SGA and CNN. To mitigate this, the two stages can be trained synchronously, leveraging the D of 
SGA for classification. While this training method allows for synchronous training of SGA and CNN, it poses challenges when 
comparing performances across diverse CNN models. Integrating CNN into SGA demands significant computational resources, given 
that the computational cost of SGA surpasses that of CNN by multiple orders of magnitude. The avenues for future research can be 
categorized into three primary domains. Firstly, while the GSDA is designed for 2D medical image classification, there is potential to 
extend the method to image segmentation and 3D imaging. Secondly, the GSDA presently sets the size of the extended dataset through 
comprehensive experimentation. Exploring more efficient methods to determine this size could curtail computational costs. Lastly, in 
light of the rapid advancements in the vision transformer [56], integrating CNN and the vision transformer appears promising. Such 
integrations can potentially enhance model performance by effectively capturing both local and global features, as discussed in [57]. 
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Table 3 
Classification accuracy across different CNN models.  

WD Standard VGGNet ShuffleNet ResNeXt ResNet MobileNet InceptionNet DenseNet 

✓ accγ=0 ↑ 81.7% 72.2% 66.5% 70.3% 74.7% 65.8% 69.0% 
✓ tγ=0 

↓ 262.7s 290.8s 300.6s 291.0s 291.8s 327.4s 305.8s 
× accγ=0 ↑ 82.3% 74.1% 69.6% 71.5% 73.4% 65.8% 74.7% 
× tγ=0 

↓ 260.5s 290.0s 300.3s 291.8s 293.2s 327.3s 306.4s  

Table 4 
Comparison of FID and IS across different TL experimental groups. In each group, the listed FID and IS are the optimal results calculated in the 
corresponding number of iterations.  

Group Subset TL FID ↓ Iterations IS ↑ Iterations 

1 Benign CelebA 69.24 200 3.58 2200 
2 Benign LSUN DOG 102.95 600 2.92 4000 
3 Benign FFHQ 62.92 1000 3.58 2200 
4 Malignant CelebA 72.55 400 2.84 2000 
5 Malignant LSUN DOG 89.68 600 2.25 600 
6 Malignant FFHQ 68.78 3200 2.82 400 
7 Normal CelebA 79.69 600 2.19 1200 
8 Normal LSUN DOG 91.63 200 2.01 1400 
9 Normal FFHQ 73.92 2200 2.24 2400  
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