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Severe viral lower respiratory infections are a major cause of infant morbidity. In develop-
ing countries, respiratory syncytial virus (RSV)-bronchiolitis induces significant mortality, 
whereas in developed nations the disease represents a major risk factor for subsequent 
asthma. Susceptibility to severe RSV-bronchiolitis is governed by gene–environmental 
interactions that affect the host response to RSV infection. Emerging evidence suggests 
that the excessive inflammatory response and ensuing immunopathology, typically as a 
consequence of insufficient immunoregulation, leads to long-term changes in immune cells 
and structural cells that render the host susceptible to subsequent environmental incur-
sions. Thus, the initial host response to RSV may represent a tipping point in the balance 
between long-term respiratory health or chronic disease (e.g., asthma). The composition 
and diversity of the microbiota, which in humans stabilizes in the first year of life, critically 
affects the development and function of the immune system. Hence, perturbations to 
the maternal and/or infant microbiota are likely to have a profound impact on the host 
response to RSV and susceptibility to childhood asthma. Here, we review recent insights 
describing the effects of the microbiota on immune system homeostasis and respiratory 
disease and discuss the environmental factors that promote microbial dysbiosis in infancy. 
Ultimately, this knowledge will be harnessed for the prevention and treatment of severe viral 
bronchiolitis as a strategy to prevent the onset and development of asthma.

Keywords: viral lower respiratory tract infection, RSv, asthma, microbiome, microbiota, microbiota and 
immunity, PvM

iNTRODUCTiON

Viral lower respiratory infections (vLRI) caused by respiratory syncytial virus (RSV) are a major 
cause of morbidity and mortality in young infants. In developed countries, epidemiological studies 
have reproducibly implicated RSV-bronchiolitis as a major risk factor for the onset and progression of 
asthma [reviewed extensively in Ref. (1)]. The immunopathology associated with RSV-bronchiolitis 
in early-life may lead to long-lived alterations to airway structural and/or resident immune cells 
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that render the host susceptible toward allergic sensitization 
and asthma (2–4). Susceptibility to both RSV-bronchiolitis and 
asthma has been attributed to defects in immunoregulatory and 
antiviral pathways, the cause of which may be genetic and/or 
environmental (1, 2, 5, 6). Interestingly, rates of RSV-bronchiolitis 
peak at 2–6 months of age (7, 8), whereas asthma typically begins 
to develop later in childhood (2), highlighting a window of sus-
ceptibility to RSV in early-life, which, if engaged, may leave the 
host vulnerable to asthma development. Hence, factors that influ-
ence the development and/or function of the immune system may 
critically impact the host response to RSV. It is now recognized 
that the composition and diversity of the microbiota, which sta-
bilizes around 12 months of age in humans (9–13), fundamentally 
affects host physiology and immunity (12, 14–19). Several recent 
studies have demonstrated changes in the respiratory microbi-
ome in subjects with RSV-bronchiolitis (20–23). Similar observa-
tions have been reported in asthma (24–28). Whether microbial 
dysbiosis—changes in the composition of the gut and/or lung 
microbiota—predisposes to RSV-bronchiolitis and asthma or is 
simply a consequence of disease remains unclear. In this review, 
we discuss recent clinical and experimental findings implicating 
a role for the microbiota in infant respiratory health and disease. 
We also consider how this knowledge might be harnessed for the 
prevention and treatment of severe bronchiolitis as a strategy to 
curtail the short- and long-term burden of disease, with a specific 
emphasis on the onset and development of asthma.

THe LiNK BeTweeN SeveRe OR 
FReQUeNT vLRi AND SUBSeQUeNT 
ASTHMA DeveLOPMeNT

Numerous birth cohort studies have assessed the association 
between vLRIs in early-life and asthma risk (29–46). Although 
this association is moderate for certain viruses [e.g., influenza 
(47) and human metapneumovirus (44, 48–50)], the association 
is much stronger for RSV and rhinovirus (RV) (29–42). This 
relationship also appears to extend to allergic sensitization, but 
whereas severe RSV vLRIs appear to precede allergic sensitiza-
tion this is less common for RV; rather allergic sensitization is a 
precursor to severe RV vLRIs (51, 52). A recent study evaluating 
two large cohorts of infants (>80,000 and >180,000) found that 
the population-attributable risk for asthma contributed by infant 
bronchiolitis during the RSV season was 10 and 13%. However, 
in the subset of children with infant RSV-bronchiolitis, the 
attributable risk was 49 and 47% (41). The relationship between 
RSV disease severity and subsequent asthma inception is dose-
dependent lending support to a causal relationship (42, 52, 53). 
In further support of this notion, RSV-immunoprophylaxis 
is effective in reducing rates of recurrent wheeze and asthma 
(54–56). However, because all humans have been infected with 
RSV by the age of 3 and the population at large is not asthmatic, 
other co-factors (e.g., genetic and/or environmental) likely col-
lude with RSV, to increase the risk of bronchiolitis in infancy. 
Thus the asthma-prone phenotype is likely established early in 
life and progresses to persistent disease following subsequent 
rounds of allergen and/or viral exposure (2). Using a high-fidelity 

mouse model, we have demonstrated that defects in plasmacytoid 
dendritic cells (pDCs) or toll-like receptor (TLR) 7/interferon 
regulatory factor (IRF) 7 signaling predisposes to severe viral 
bronchiolitis and subsequent asthma (57–61). In this scenario, 
the impaired immune response may lead to enhanced epithelial 
injury and secondary tissue repair leading to long-lived changes 
to the epithelium (genetic or epigenetic). In turn, this may 
promote the development of Th2 immunity by modulating the 
underlying network of DCs and innate lymphoid cells (ILCs). 
We and others have shown that house dust mite (HDM)-induced 
epithelial-derived IL-1α and high-mobility group box (HMGB) 1 
act in a cytokine cascade and in feed-forward loops to induce the 
production of Th2-instructive cytokines, such as IL-33, thymic 
stromal lymphopoietin, IL-25, and granulocyte-macrophage 
colony-stimulating factor (GM-CSF), which license local DCs 
and type 2 ILC to promote Th2 immunity (62–64). Hence, epi-
thelial stress as a consequence of allergen exposure or respiratory 
viral infection-associated cytopathology in predisposed indi-
viduals leads to the release of tissue alarmins—IL-1α, HMGB1, 
and IL-33—to promote a cytokine microenvironment that is 
conducive to the generation of Th2 immunity. In addition to 
providing pro-type 2 inflammatory signals, these cytokines also 
act by inhibiting pro-type I inflammatory signals. For example, 
allergen-induced IL-33 amplifies the allergic response in part by 
inhibiting CD11b+ DCs (DC2) IL-12p35 production (65). IL-33 
can also suppress the production of interferon alpha, suppressing 
its negative regulatory effects on type 2 immunity (59, 66).

The teleological role of Th2 immunity is to initiate tissue 
repair; however, following repeated environmental insult(s) 
throughout life, type 2 inflammation may lead to pathologic 
tissue remodeling (67–69). Once established, this inflammatory 
response is maintained by both structural cells [e.g., airway epi-
thelial cells (AECs), endothelial cells, and airway smooth muscle 
cells] and immune cells (e.g., type 2 ILCs, DCs, macrophages, and 
T helper cell subsets), which act in concert to produce an array 
of pro-inflammatory lipids, cytokines, and chemokines [recently 
reviewed in Ref. (4)]. The relative importance of type 2 ILCs and 
CD4+ Th2 in this process has been the subject of much interest 
and debate in the field with recent studies implicating type 2 ILCs 
in antigen presentation (70) and potentiating memory CD4+ Th2 
cells (via IL-13-dependent licensing of DCs) (64). Intriguingly, 
“innate” CD4+ Th2 cells have been proposed. This novel cell sub-
set can be primed locally in the lung by Th2-instructive cytokines, 
together with an activator of the signal transducer and activator 
of transcription 1 family of transcription factors, in the absence 
of antigen presentation (71).

Now, that a number of type 2 instructive cytokines have 
been identified, this has opened up opportunities to halt the 
progression and/or decrease the severity of asthma through 
the use of humanized monoclonal antibodies. Additionally, a 
better understanding of the factors that confer susceptibility to 
bronchiolitis and its nexus with asthma onset, may yield new 
opportunities for targeted intervention. Critically, this raises the 
possibility of primary prevention. Emerging evidence discussed 
in this review highlights the supportive influence of the micro-
biome on the maturing immune system. Thus perturbations 
to the microbiome, occurring prenatally or postnatally, could 
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adversely affect host defense against RSV, and this might lead to 
long-term alterations as a consequence of aberrant programming 
(genetic or epigenetic) of structural and/or immune cells. In this 
paradigm, further exposure of these susceptible individuals to 
environmental triggers of asthma (e.g., allergen and/or viral 
infection) in later-life may progress the asthma-prone phenotype 
to established and persistent disease.

THe AiRwAY BACTeRiAL MiCROBiOTA iS 
DYSBiOTiC iN ASTHMA, BUT wHY?

For centuries, the lower airways have been considered a sterile 
environment, a dogma based primarily on culture-based studies 
in which any culturable microbes from bronchoalveolar lavage 
(BAL) samples were considered to be contamination or of little 
clinical significance (72). In fact, the lung harbors an abundant 
and diverse microbial community (a microbiota) that is highly 
dynamic and underpinned by the immigration and emigration 
of microbes with every breath of air (approximately 7,000 L/day) 
and the occasional subclinical aspiration of the oropharyngeal 
contents (73–75). Culture-independent techniques involving 
high-throughput sequencing of the 16S rRNA gene, a highly 
conserved locus of the bacterial genome, has led to a revolution 
in our understanding of the airway microbiome. Using this 
approach, investigators have begun to probe the human airways 
in health and disease, and pioneering studies have revealed 
that the microbial community inhabiting the lower airways of 
asthmatics is indeed quite different from that of healthy subjects 
(25, 26, 28). Whether the asthmatic airways are more highly 
populated (i.e., grater bacterial load) remains unclear with some 
studies finding increases in abundance (25) and others report-
ing no difference compared to control (26). Several studies 
report that the airway microbiota, sampled by BAL (26, 76) or 
nasal swab (28), of mild-to-moderate asthmatics is enriched in 
members of the Gram-negative bacterial phylum Proteobacteria 
including the potential pathogens Haemophilis, Moraxella, and 
Neisseria (26, 28, 76) and reduced in the commensal phylum 
Bacteroidetes (28, 76). However, this profile appears to differ 
somewhat according to the inflammatory phenotype and/or 
severity status, as well as corticosteroid treatment (27). For 
example, in a study directly comparing the sputum microbiota 
in severe and non-severe asthma, Zhang and colleagues found 
that mild-to-moderate and, to a lesser extent, severe disease 
was associated with increased Proteobacteria, while both severe 
and non-severe asthmatic individuals had a lower abundance 
of Bacteroidetes (particularly Prevotella spp.) and Fusobacteria 
(76). Moreover, a greater abundance of Streptococcus spp., 
which are affiliated with the phylum Firmicutes, was uniquely 
associated with severe asthma. In this study, severe asthma was 
associated with blood and sputum eosinophilia, but not neu-
trophilia. Green et al. found that sputum neutrophilia and IL-8 
levels directly correlated with the abundance of Streptococcus 
spp, as well as Haemophilus and Moraxella in severe asthmatics 
(77), while Goleva and colleagues reported that Haemophilus 
parainfluenzae was uniquely present in the airways of 
corticosteroid-resistant asthmatics (26). Additionally, a study 

comparing the sputum microbiome in chronic and persistent/
severe asthmatics found reduced bacterial diversity combined 
with a high prevalence of Haemophilus influenzae in asthmat-
ics with neutrophilic inflammation, whereas asthmatics with 
eosinophilic inflammation had abundant Tropheryma whipplei 
(78). One interpretation of these data is that disease severity and 
possibly the inflammatory profile or asthma phenotype relate to 
the composition or dysbiosis of the airway microbiota. Further 
work is needed to determine whether the presence or absence 
of certain microbial communities underpins different asthma 
phenotypes or whether these changes are secondary to the 
pathological environment characteristic of the asthma subtype. 
Whereas several studies have examined the lung microbiota in 
stable asthma, very few have examined the microbiota during 
acute exacerbation(s) of asthma. This is surprising, since 80% of 
asthma exacerbations are attributed to a viral infection (34, 79), 
predominantly a species of RV, which likely affects or is affected 
by the bacterial community of the airways. An interesting study 
in which healthy adult subjects were experimentally infected 
with RV revealed increases in the relative abundances of upper 
airway H. parainfluenzae and Neisseria subflava following 
infection (80), two potentially pathogenic bacterial species 
reported to be present in the lower airways in asthma. Whether 
the upper airway microbiota reflects the lower airways remains 
an unresolved question, but these findings do highlight a shift 
toward an asthma-like microbiota caused by RV infection, 
which may impact the mechanism by which RV causes asthma 
exacerbations. In an attempt to address this issue, Kloepfer 
et al. studied a population of 308 school-age children, half with 
asthma and half healthy controls using PCR-based analysis of 
nasal secretions for a period of 5  weeks during autumn over 
2 consecutive years (81). The authors found that the presence 
and abundance of either Moraxella catarrhalis or Streptococcus 
pneumoniae at the time of RV infection was positively associ-
ated with the severity of RV-associated exacerbations. The 
authors speculated that the viral infection/exacerbation could 
lead to a lung environment that is conducive to colonization 
with potential pathogens.

In summary, it is evident that lung microbial dysbiosis 
represents a component of the asthmatic syndrome; however, 
the nature of this dysbiosis and its relationship to asthma 
phenotype(s) remain ill-defined and needs further investigation. 
More importantly, it remains an open question as to whether 
microbial dysbiosis precedes and is causal for asthma onset or 
simply develops as a consequence of the dysregulated lung envi-
ronment. In this regard, we must consider the early-life origins 
of asthma.

AiRwAY MiCROBiAL DYSBiOSiS AND THe 
RSv-BRONCHiOLiTiS TO ASTHMA NeXUS

The notion that asthma risk may be influenced by inappropri-
ate colonization by microbes stems from the seminal findings 
of the Copenhagen Birth Cohort Study (82). Using culture-
dependent profiling, this study was the first to uncover the 
presence of potentially pathogenic species in the oropharynx 
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of 1-month-old infants significantly at risk of developing 
asthma in later childhood. Pathogenic species detected in 
these subjects included M. catarrhalis, H. influenzae, or S. 
pneumoniae. Additional studies by this group that showed 
these same bacterial species were present during periods of epi-
sodic wheeze caused by infection with a respiratory virus (83). 
These paradigm-shifting studies implicated colonization of the 
airways by opportunistic pathogens in the inception of asthma. 
Whether these bacterial species are causative for later asthma is 
not yet clear and remains a hotly debated subject (84–86). Some 
investigators argue that if pathogenic bacteria were causative 
then antibiotic therapies should reduce wheezy episodes and 
decrease asthma risk, but meta-analyses of population cohort 
studies suggest they do not (85–87). However, this interpreta-
tion is oversimplified since antibiotic treatment also ablates 
bacteria that are beneficial, for example those species which 
generate metabolites that promote the differentiation of regula-
tory T (Treg) cells (discussed later in more detail). Modern 16S 
RNA gene sequencing has revolutionized this area of research 
and continues to provide new insights. Recent studies armed 
with this technology have begun analyzing airway and gastro-
intestinal samples from birth cohort studies (22, 23, 88). Such 
analyses have also attempted to address important questions 
surrounding which bacterial species first colonize the airways 
and whether this differs in settings of acute respiratory illness 
and asthma risk. For example, an elegant study by Teo et  al. 
sought to address this gap in knowledge in a recent study of 
children enrolled in the Childhood Asthma Study (22). In this 
study, nasopharangeal aspirates were collected from subjects 
during planned visits at 2, 6, and 12 months of age and within 
48 h from the onset of an acute respiratory infection. This high 
intensity sampling regimen allowed the authors to temporally 
assess changes in the nasopharangeal microbiota and the 
relationship between upper airway colonization and chronic 
wheeze outcome at age 5. They found that Staphylococcus and 
Corynebacterium, common components of the human skin 
microbiome, were the dominant bacterial species present in 
the first 2 months of life before switching to either Alloiococcus 
or Moraxella at 6–12 months, concomitant with a stabilization 
of the microbiome. Because of the presence of species typically 
found on the skin, the authors speculated that infants are likely 
to be colonized initially with skin-dwelling bacteria from their 
parents and others, and that these founder populations are 
replaced over time by Moraxella or Alloiococcus. This upper 
respiratory microbiota then remains stable over time in healthy 
individuals. However, in infants suffering from virus-associated 
acute respiratory infection(s), a greater abundance of potential 
pathogens Streptococcus, Moraxella, and Haemophilus was 
observed, verifying earlier findings (82). Interestingly, when 
examining upper and lower respiratory infections separately, 
the authors found that early Moraxella colonization was 
associated with younger age of first upper respiratory infec-
tion, whereas early Streptococcus colonization was associated 
with earlier initial lower respiratory infection. Additionally, 
the level of subsequent asthma risk in these infants appeared 
to relate inversely with the age at initial Streptococcus colo-
nization, leading the authors to speculate that tissue damage 

mediated by Streptococcus and/or infection with RSV/RV 
during this early-life period might have long-term effects that 
predispose to later asthma. A recent study in mice found that 
infection of 1-week-old neonates with a non-lethal dose of S. 
pneumoniae (D39) followed by aluminum hydroxide (alum)/
ovalbumin (OVA) administration and OVA challenge in adult-
hood led to Th17 type inflammation, neutrophilia, and airway 
hyperreactivity (AHR) (89). Type 2 inflammation was also 
observed but did not correlate with increased AHR or gross 
lung pathology in co-exposed mice. Rather, the exaggerated 
Th17 phenotype was associated with impaired accrual of lung 
FoxP3+ Treg cells which typically suppress pathogenic effector 
T cell driven inflammation, including that mediated by Th17 
cells. The function of these Treg cells was not assessed in this 
study and the nature of this altered immune response and tissue 
damage remains unclear. Nevertheless, these data suggest that 
S. pneumoniae exposure in early-life may act to dampen Treg 
cell responses, rendering the host susceptible to allergic airway 
inflammation. Because reduced numbers of Tregs have been 
observed in infants with RSV-bronchiolitis (90), and animal 
models have revealed a crucial role for these cells in regulating 
the inflammatory response to RSV (91), one possibility is that 
early colonization of the respiratory tract with S. pneumoniae 
dampens Treg cell responses thereby enhancing the severity of 
RSV disease, and in turn predisposing to allergic sensitization 
and asthma.

Notably, the study by Teo et al. also found that the presence of 
Moraxella was associated with increased severity of RSV infec-
tion. The relationship between RSV and Moraxella co-infection 
is an interesting one. Both virus and bacterium are more abun-
dant during cooler months, and co-infection has been associated 
with a greater incidence of otitis media (92), suggesting that 
RSV infection may alter the upper respiratory microbiome of 
the infant host in a way that is conducive to bacterial infection 
(e.g., Moraxella). A recent study by Mansbach and colleagues 
explored this idea in a prospective cohort of >1,000 infants at 
3 months of age (23). Of these infants, the major viral pathogen 
detected was RSV with a smaller proportion of subjects exhibit-
ing a co-infection with RV, and a smaller proportion still infected 
with RV alone. However, healthy controls were not included in 
this study. Comparing the nasopharyngeal microbiota of these 
three groups, the authors found a high level of Firmicutes and 
the genus Streptococcus and a low level of Proteobacteria and 
the genera Haemophilus and Moraxella in the RSV-only group, 
while the opposite was true for the RV-only group and the RSV/
RV co-infection group exhibited intermediate abundances 
of these phyla and genera. This pattern of specific virus and 
bacteria detected in the upper airways is akin to that observed 
by Teo and colleagues. However, it is not yet sufficiently clear 
whether these pathogenic bacteria contribute to disease or are 
simply reflective of opportunistic colonization/expansion in 
individuals with more severe illness. This question requires fur-
ther work using both clinical cohorts and translational animal 
models of disease. The latter will be fundamental to unraveling 
the complex interplay between host, virus and bacteria (airway 
microbiota and pathogens) and the long-term consequences for 
asthma risk.
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MiCROBiAL COLONiZATiON AND THe 
DeveLOPMeNT OF eARLY-LiFe 
ReSPiRATORY DiSeASe

Admission rates for bronchiolitis (93) and the prevalence of 
asthma and allergies have increased substantially over the past 
30 years (94–96). This has implicated a key role for environmental 
factors, most notably those associated with a “Western lifestyle.” 
Initial evidence for this was garnered from epidemiological 
studies in Europe linking decreases in family size and increased 
personal hygiene with allergic disease development and led to the 
generation of the “hygiene hypothesis” (97, 98). The central tenet 
of the hygiene hypothesis is that components of the mammalian 
immune system fail to develop appropriately or become dys-
regulated as a consequence of insufficient exposure to microbes. 
Subsequent studies of European children growing up in rural 
environments have strongly supported and extended this con-
cept. For example, Reidler et al. demonstrated in a cross-sectional 
study that children who grew up in rural farming environments 
were less likely to develop allergy and asthma and that disease 
risk was even lower if the mother had also experienced this 
microbe-rich environment during pregnancy (99). Other studies 
in farming communities have shown that high levels of lipopoly-
saccharide (LPS) in barn-dust and gastrointestinal exposure to 
unpasteurized milk are associated with tolerance to ubiquitous 
allergens and the prevention of atopy (100, 101). The protec-
tive “farm effect” on childhood asthma has been reproduced 
in several studies around the world, and a recent meta-analysis 
concluded that an overall 25% reduction in asthma risk can occur 
despite heterogeneity in the study populations (102). However, 
the strongest protection from childhood asthma was recently 
reported in Amish populations in the US, which retain traditional 
farming methods (e.g., use of horses for transportation, single-
family dairy farms) (103). By contrast Hutterites living in the US, 
with otherwise similar genetic background and lifestyle factors, 
embrace modern farming technologies (e.g., highly industrial-
ized, communal farms). Among these children, the prevalence of 
asthma in Amish compared to Hutterite school children was 5.2 
versus 21.3% and the prevalence of allergic sensitization was 7.2 
versus 33.3%. Interestingly, LPS levels were 6.8 times higher in 
Amish homes than in Hutterite homes, a finding that was associ-
ated with greater numbers of peripheral blood neutrophil which 
expressed lower levels of the activation markers (CD11b, CXCR4, 
and CD11c), lower numbers of peripheral blood eosinophils and 
lower production of the Th2-associated cytokines IL-33, IL-25, 
IL-5, and IL-4 by peripheral blood lymphocytes in the Amish 
children compared to the Hutterite children. By exposing mice to 
Amish or Hutterite house dust extracts prior to performing an i.p. 
OVA model of allergic airway inflammation, the authors showed 
that the high LPS levels of the Amish house dust conferred pro-
tection from AHR and airway eosinophilia, whereas the Hutterite 
house dust did not. As had been shown in a previous report of 
European farm children (104), the beneficial effect of house dust 
from the Amish children was associated with higher expression 
of the A20 gene (TNFAIP3) in peripheral blood lymphocytes; 
however, an increase in IRF7, a hub gene and master regulator of 

type-I IFN production, was also found in Amish children. Hence, 
it will be important to determine whether the beneficial effects of 
farm house dust exposure extend to protecting against vLRI and 
viral exacerbations of asthma.

Further evidence for the role of local microbial exposures pro-
tecting against allergic disease development in early-life comes 
from studies of microbial exposures associated with pet owner-
ship. For example, one study showed that exposure to dogs and to 
a lesser extent cats in infancy is associated with protection against 
the development of allergies in childhood, although asthma rates 
were not examined (105). Notably, environments with no house-
hold pet exhibit low levels of bacteria in the local environment 
(105–107), and thus in contrast to farm environments, these 
“microbe low” residences confer a higher risk of allergic disease 
development. Intriguingly, these homes are reported to possess a 
wider range of fungal species (108), which have long been associ-
ated with the development of asthma (109), although whether 
they shape the microbiome in early-life in a way that renders the 
host susceptible toward the development of allergies and asthma 
in later childhood remains to be determined.

These findings have fueled experimental animal studies to 
establish the mechanisms underlying the link between microbial 
exposure and protection from asthma. For example, a recent 
study by Schuijs et  al. examined the beneficial effects of barn-
dust in an acute HDM model of allergic airway inflammation in 
mice (104). In this murine model, a key initial step in the process 
of sensitization to the HDM is allergen-induced activation of 
AECs through TLR4. TLR4-signaling leads to the secretion of 
the chemokine CCL20 and GM-CSF, both of which are required 
for the recruitment and functional maturation of airway DCs. 
Consistent with the results of the European epidemiologic barn-
dust studies, Schuijs and colleagues found that airway exposure 
to LPS before or during HDM exposure markedly attenuated the 
asthma-like pattern of pro-inflammatory responses to HDM and 
reduced the activation of local DC functions mediated by CCL20 
and GM-CSF. They further demonstrated that exposure to LPS 
suppresses AEC responsiveness to TLR4-induced activation by 
HDM and that this suppression is dependent on the attenuation of 
signaling by nuclear factor κB (NF-κB). This effect was mediated 
by an increase in the synthesis of the enzyme A20, encoded by 
the Tnfaip3 gene, in AECs. Ex vivo cultures of human bronchial 
epithelial cells revealed a similar inverse association between 
LPS-mediated stimulation of GM-CSF production and activation 
of the TNFAIP3 gene. This association was further examined in a 
case–control study in which the investigators observed a relative 
deficiency in the LPS-mediated TNFAIP3 gene expression in 
AECs from asthmatic subjects as compared with healthy controls. 
Moreover, the authors observed a positive association between a 
polymorphism in the TNFAIP3 gene and susceptibility to asthma 
in the cohort of GABRIELA [Multidisciplinary Study to Identify 
the Genetic and Environmental Causes of Asthma in the European 
Community (GABRIEL) Advanced Study]. Thus, exposure to 
aerosolised bacterial components appears to regulate the thresh-
old for AEC activation, highlighting A20 expression by AECs as 
a potential therapeutic target for asthma. Although, the effects 
of A20 knockdown in AECs abrogated LPS-mediated protection 
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against the airway pathology induced by HDM, CCL20, and 
GM-CSF were not fully suppressed. This suggests the existence 
of other pathways by which LPS suppresses asthma. This apparent 
heterogeneity is not unexpected and perhaps reflects the complex 
nature of the causal pathways underlying asthma development, 
particularly in relation to other environmental stimuli.

MiCROBiOTA HYPOTHeSiS

Following birth, the infant is exposed to a diverse host and 
environmentally associated microbiota. During natural birth, 
the infant is principally colonized by a founder community of 
microbes derived from the mother’s vagina and feces (13, 110). 
Postnatally, breast milk further diversifies the neonatal micro-
biota by providing secretory immunoglobulin (Ig)A, prebiotic 
glycans (e.g., milk oligosaccharides), and other microbial 
metabolites [e.g., short-chain fatty acids (SCFAs)] (12, 111, 
112). Cesarean birth and formula feeding disturb the natural 
process of colonization. In offspring born by Cesarean section, 
the predominant bacterial populations in gut closely align with 
that of the mother’s skin (111, 113), an effect that it is further 
compounded in formula-fed infants (114). The observation that 
formula-fed infants are at greater risk of chronic inflammatory 
and metabolic diseases indicates that prebiotic- or probiotic-
supplemented infant formulas do not fully replicate the effect of 
breast milk on the development of the neonatal microbiota (115). 
This highlights that our knowledge of the factors that influence 
the emergence of the neonatal microbiota remains incomplete. 
Nevertheless, it is now appreciated that the composition of the 
intestinal microbiota is highly plastic during the early-postnatal 
period and into early childhood, changing rapidly in response 
to environmental interventions, including invasion by patho-
genic microorganisms, antibiotic treatment, and diet (116), all 
of which likely affect immune homeostasis. Thus, the hygiene 
hypothesis has now been extended to incorporate a wider array 
of environmental conditions that can perturb the microbiome, 
especially in the gastrointestinal tract. This conceptual evolution 
has led to a new theory coined the “microbiota hypothesis.” 
Studies of gnotobiotic mice [also called germ-free (GF)] mice 
have established a key role for the host microbiota in influencing 
the development and function of the immune system GF mice 
exhibit several gross physiological and functional abnormalities 
in the gastrointestinal tract including enlarged cecum, reduced 
gastrointestinal motility, and reduced production of antimicro-
bial peptides (117, 118). The absence of commensals also has 
profound effects on the development of the immune system, 
including defects in lymphoid tissue development within the 
spleen, thymus, and peripheral lymph nodes (119). Of relevance, 
an elegant study by Olszak and colleagues found that invariant 
natural killer T cells accumulate in the colonic lamina propria 
and lung in GF mice, resulting in increased morbidity in models 
of inflammatory bowel disease and allergic asthma as compared 
with that of specific pathogen-free mice (120). Notably, the 
elevated expression of the chemokine ligand CXCL16 in the 
lungs of GF mice could be normalized by conventionalization 
(introduction of GF mice to SPF conditions) but only dur-
ing the first 2  weeks of life, an effect that was dependent on 

microbiota-induced epigenetic modifications at the Cxcl16 
locus. Conventionalization after this 2-week period failed to 
rescue the asthma phenotype, highlighting a critical window of 
susceptibility during the postnatal period. Beyond the Cxcl16 
gene, it will be important to elucidate the genetic or epigenetic 
mechanisms by which the microbiota programs airway immune 
and structural cells as this appears to fine-tune the host response 
and affect not just the initial encounter with an environmental 
stimuli, such as an allergen or pathogen, but also the develop-
ment of long-term immunity.

It is emerging that microbial metabolites play a key role in 
regulating host physiology and immunity. Herein, we focus on 
the SCFAs acetic acid, butyric acid, and propanoic acid; however, 
it is noteworthy that other lipid derivatives are known to have 
immunomodulatory effects [reviewed in Ref. (121)]. SCFAs 
range in concentration from 50 to 100 mM in the gut and are 
the main metabolic end products from bacterial fermentation, 
particularly fermentation of dietary fiber. Hence, changes in 
dietary habits and factors that perturb the microbiota such as 
antibiotic use have a profound effect on SCFA production (122, 
123). In the gastrointestinal tract, SCFAs represent an impor-
tant energy source for both the local microbiota and intestinal 
epithelial cells. But, as well as being local substrates for energy 
production, it is now appreciated that SCFAs have diverse 
regulatory functions in host physiology and immunity affect-
ing both hematopoietic and non-hematopoietic cells. SCFAs 
function as histone deacetylase (HDAC) inhibitors and ligands, 
predominantly agonists, of G protein-coupled receptors (GPRs). 
The ability of SCFAs to inhibit HDACs generally promotes a 
tolerogenic, anti-inflammatory cell phenotype necessary for the 
maintenance of immune homeostasis, and this functional prop-
erty supports the concept that the gut microbiota can act as an 
epigenetic regulator of host physiology. Exposure of peripheral 
blood mononuclear cells or neutrophils to acetate, propionate, 
or butyrate suppresses NF-κB and downregulates the production 
of the pro-inflammatory cytokine TNF-α (124, 125). Subsequent 
studies revealed that these anti-inflammatory effects, mediated 
by HDAC inhibition, extend to both macrophages (126, 127) and 
DCs (128, 129). SCFAs can also modulate T cells, particularly 
Treg cells, through HDAC inhibition. For example, inhibition of 
HDAC9 increases FoxP3 expression, enhancing the suppressive 
function of Treg cells during homeostasis and in mouse models 
of colitis (130). Studies characterizing the ability of specific 
SCFAs to regulate the quality of the colonic Treg cell pool have 
shown that propionate and butyrate induce FoxP3 in an HDAC-
dependent manner, while acetate is less effective (15, 16). Of 
direct relevance to the function of SCFAs in asthma, Thorburn 
and colleagues explored the effect of modifying dietary fiber 
intake on the susceptibility of mice toward HDM-induced 
allergic airway inflammation (131). They began by comparing 
the gut microbiota of mice fed a high-fiber diet to mice fed 
an equicaloric control diet or a no-fiber diet for 3  weeks. As 
expected, the high-fiber diet significantly increased circulating 
levels of acetate and propionate, a phenotype that was associ-
ated with greater representation of Bacteroides, Clostridium, and 
Pandoraea spp. compared to mice fed the control diet. Mice fed 
on a no-fiber diet exhibited reduced (although not statistically 
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TABLe 1 | Principal receptors for short-chain fatty acids.

Receptor Selective agonist (peC50) Reference

OLFR78 Propionic acid (3.0) Pluznick et al. (136)

GPR43 
(FFAR2)

Propanoic acid (3.0–4.9) Brown et al. (137), Le 
Poul et al. (138), Nilsson 
et al. (139), and Schmidt 
et al. (140)

Acetic acid (3.1–4.6)
Butyric acid (2.9–4.6)
1-Methylcyclopropanecarboxylic 
acid (2.6)
Trans-2-methylcrotonic acid (3.8)

GPR41 
(FFAR3)

Propanoic acid (3.9–5.7) Brown et al. (137), Le 
Poul et al. (138), Nilsson 
et al. (139), Schmidt et al. 
(140), and Xiong et al. 
(141)

Butyric acid (3.8–4.9)
1-Methylcyclopropanecarboxylic 
acid (3.9)
Acetic acid (2.8–3.9)

GPR109A β-d-Hydroxybutyric acid (3.1) Taggart et al. (142)
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significant) circulating SCFA levels and a greater abundance of 
Proteobacteria compared to the control diet group. When the 
effect of diet on HDM-induced allergic airways inflammation 
was assessed, mice fed a high-fiber diet or treated with acetate in 
the drinking were protected exhibiting reduced levels of airway 
eosinophils, type 2 cytokine production (IL-4, IL-5, and IL-13), 
serum IgE, and AHR. The no-fiber diet did not alter susceptibil-
ity to asthma in this model, consistent with the lack of effect 
on SCFA levels, which was unexpected given previous findings 
from another group (129). Because asthma typically develops in 
childhood, the authors next explored the effect of their dietary 
perturbations or acetate exposure during late-stage pregnancy 
(from E13) until weaning (3  weeks of age). The offspring of 
mice fed a high-fiber diet were protected from HDM-induced 
allergic airway inflammation whereas the offspring from mice 
fed a no-fiber diet developed disease to the same degree as mice 
fed the control diet. This latter finding is quite surprising given 
the importance of the gut microbiota and circulating SCFAs 
for immune development in early-life. A possible explana-
tion stems from the use of a high-dose of HDM which likely 
induced a maximal response in the control fiber diet fed mice, 
and hence this response could not be further elevated in the 
group fed on a no-fiber diet. Nevertheless, the effectiveness of 
the high-fiber maternal diet suggests that protective effects can 
occur in utero. In support of this, the investigators found that 
either acetate administration or high-fiber diet feeding until 
birth was sufficient to protect the offspring. This finding was 
further confirmed by litter swapping experiments, although 
the effect was less profound, for example, IL-5/13 production 
from lymph node T cell cultures was unchanged in the high-
fiber group, suggesting that some of the protective effects of the 
high-fiber diet occur postnatally. To translate their findings, the 
authors next explored whether human SCFA levels correlated 
with fiber intake in pregnant mothers and wheeze in their off-
spring. A significant but weak inverse correlation was observed 
between circulating maternal acetate levels and the percentage 
of infants requiring two or more general practitioner visits 
for wheeze and cough. Although viruses are a major cause of 
wheeze in infancy, the authors did not report which respiratory 
viruses were detected in these subjects. Importantly, it remains 
unknown whether lower SCFA levels, because of changes in 
maternal diet or other postnatal perturbations, increase the 
risk of respiratory viral illness, a major risk factor for asthma. 
Since the high-fiber diet conferred protection in utero and this 
persisted into adulthood the investigators hypothesized that 
this effect might be due to epigenetic regulation of Treg cells. 
They found that, through HDAC9 inhibition, acetate treatment 
endowed greater numbers of Treg cells and increased the sup-
pressive capacity of these cells. However, it remains to be tested 
whether a high-fiber diet  also mediates this effect specifically 
via acetate. The authors speculated that propionate played a less 
important role in their model, primarily because it was found at 
lower concentrations in the circulation; however, propionate is 
also a potent HDAC inhibitor in Treg cells, and other investiga-
tors have demonstrated a key role for propionate in protecting 
against HDM-induced asthma (129). Thus, the in utero effects 
of propionate remain ill-defined.

SHORT-CHAiN FATTY ACiDS AND 
ASTHMA

As well as their ability to inhibit HDAC activity, several studies 
have determined that SCFAs affect host immunity via engage-
ment of GPRs, including OLFR78, GPR43 (FFAR2), GPR41 
(FFAR3), and GPR109A (HCAR2). These receptors are expressed 
by numerous cell types, including immune cells and intestinal 
epithelial cells and are activated by various endogenous agonists 
including those summarized in Table 1. GPR43 signaling plays 
an important role in SCFA-induced neutrophil chemotaxis (124) 
and the expansion and suppressive function of Treg cells induced 
by SCFAs. GPR41 has aslo been implicated in supporting host 
immune function (132). In wild-type mice, but not in GPR41-
deficient mice, SCFAs arrest the maturation of pro-inflammatory 
DCs in a GPR41-dependent mechanism, thereby preventing the 
development of allergic airway inflammation in mice (129). It 
is noteworthy that a recent study reported mRNA and protein 
expression of GPR41 and GPR43 in bronchial epithelial cells 
(133), raising the possibility that SCFAs may regulate the airway 
epithelium, although functional studies remain to be performed. 
Studies in man have begun to test the hypothesis that decreases 
in gut microbial SCFAs antedate asthma development. In a recent 
high-profile study of Canadian infants, acetate levels in feces 
and serum were found to be lower in atopic/wheezy infants (at 
high risk of childhood asthma) compared to healthy controls at 
3 months (but not 12 months) of age (134). This was associated 
with reductions in specific bacterial genera: Faecalibacterium, 
Lachnospira, Veillonella, and Rothia in the feces. Similarly, in a 
cohort of Swedish infants, the composition and diversity of the 
gut microbiota during the first month of life was significantly 
lower and associated with asthma diagnosis at 7  years of age 
(135). Collectively, these data suggest that a lack of gut micro-
bial diversity in early-life has long-term consequences on host 
immunity. However, the direct cause of low infant SCFA levels 
in these studies remains unclear and may stem from a combina-
tion of factors affecting the maternal and neonatal microbiota. 
It will be important to address whether low SCFA levels are 
causally linked to vLRIs and asthma development and therein 
the underlying mechanisms. Additionally, whether poor diet and 
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FigURe 1 | Schematic showing the timing of microbiota assembly 
with respect to bronchiolitis risk within the first year of life and how 
perturbations to the maternal or neonatal microbiota might prolong 
the window of susceptibility to bronchiolitis and increase overall risk.
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perturbations to the gut microbiota increase bronchiolitis risk as 
a consequence of a reduction in circulating SCFA levels remains 
to be determined; however, one might speculate this would have 
important long-term consequences for predisposition toward 
asthma and possibly other chronic respiratory diseases such as 
chronic obstructive pulmonary disease. In this regard, establish-
ing whether SCFAs enhance lung epithelial barrier integrity is 
likely to be of great importance. Given the accumulating data 
discussed in this review linking vLRIs and microbiota-associated 
perturbations in early-life it will be important to elucidate the 
biological mechanisms underlying these clinical observations. We 
propose that maternal and/or infant microbial dysbiosis increases 
and prolongs the window of bronchiolitis risk in infancy (see 
Figure 1); this may occur through functional aberrancy of the 
host response to initial RSV infection, leading to severe illness, 
and this alone may be sufficient to cause long-lasting changes 
to host immunity that predisposes to asthma in later life. In this 
proposed scenario, environmental factors that affect microbial 
colonization in the infant, such as maternal diet, cesarean delivery, 
transmission of microbial dysbiosis from the mother, maternal/
infant antibiotic use, breast-feeding, as well as others will impact 
on the production of microbial metabolites and as a consequence 
affect the development and function of immune cells (e.g., DCs 
and Tregs) and structural cells (e.g., AECs) that in turn, control 
RSV immunopathogenicity.

BReAST-FeeDiNg AND ASTHMA

As well as being the primary source of nutrition for the infant, 
breast milk contains immunomodulatory factors that affect the 
host immune response. The intestinal contents of breast-fed 
infants are acidic (pH 5.0), whereas those of non-breast fed infants 
is neutral (pH 7.1) (143). Milk oligosaccharides are the principal 
factor that support the growth of bifidobacteria (112) and hence 
may influence gastrointestinal and circulating SCFA levels in the 
infant. Thus, milk oligosaccharides likely serve as prebiotics to 

support the selective growth of “beneficial” bacteria, providing 
these commensals with a competitive advantage over potential 
pathogens. Milk oligosaccharides have also been postulated to 
exert direct anti-pathogenic and pro-tolerogenic roles in the 
intestine by acting as glycan receptor decoys for microbial adhe-
sion factors and preventing pathogen attachment. Additionally, 
they can modulate the balance between Th1/Th2 immunity and 
provide essential nutrients for brain development and cognition 
[for a detailed review, see Ref. (112)]. Breast milk also contains a 
variety of food borne and aeroallergens that are transferred to the 
infant and influence sensitization to these antigens. In an elegant 
study by Verhasselt and colleagues, transforming growth factor-β 
transferred in breast milk was shown to facilitate T cell tolerance, 
protecting the offspring from OVA/alum-induced allergic airways 
disease (144). Birth cohort studies demonstrate that non-breast-
fed infants are at greater risk of developing asthma (145–148), 
strongly implicating maternal factors in protecting against 
disease. Moreover, several epidemiological studies have linked a 
lack of breast-feeding to the severity of RSV infection (149–152), 
although this finding is not universal (153). Taken together, these 
studies demonstrate that breast milk represents a critical environ-
mental determinant of colonization and profoundly influences 
immune homeostasis and postnatal development. However, the 
specific breast-milk derivatives and the causal pathways relating 
these to protection against respiratory pathogens and allergic 
sensitization in early-life require further investigation.

THe MATeRNAL MiCROBiOTA AND 
iNFANT ReSPiRATORY HeALTH

The composition of the maternal intestinal microbiota and the 
infant intestinal microbiota has been shown to affect the risk of 
infant wheeze (88), although the underling mechanisms have 
remained elusive. In an elegant study designed to address whether 
transient colonization during gestation alone can affect immune 
cell development and immune responses in the offspring, de 
Agüero and colleagues inoculated pregnant GF mice during late 
gestation with a bioengineered strain of Escherichia coli (HA107) 
that is cleared from the intestine within 72 h (154). Interestingly, 
colonization with E. coli during late-gestation led to a more 
competent intestinal immune system in the offspring, including 
increases in type-3 ILCs and F4/80+ CD11c+ mononuclear cells. 
This more physiologically normal cellular phenotype attenuated 
the overt inflammatory response observed in GF mice in response 
to microbial molecules and penetration of intestinal pathogens. 
Importantly, the protective effect of gestational colonization was 
not restricted to the gastrointestinal tract as the investigators 
demonstrated improved orchestration of the immune response 
within the spleen following intraperitoneal LPS administration. 
These intriguing data, albeit from an experimental system, sug-
gest for the first time that the systemic immune responses of the 
offspring can be shaped by maternal gestational colonization 
alone. Whether similar processes operate to control the seeding 
of ILC subsets at other mucosal surfaces remain to be determined. 
The bidirectional signaling between type 2 ILCs and epithelial 
cells in the respiratory tract is important for tissue homeostasis 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


9

Lynch et al. The Microbiome and Respiratory Disease

Frontiers in Immunology | www.frontiersin.org February 2017 | Volume 8 | Article 156

and repair (155), and so it will be important to learn whether 
the maternal microbiota can influence lung barrier immunity 
to respiratory pathogens and other stimuli. Mechanistically, de 
Agüero et  al. found that gestation-only colonization conferred 
protection in part through the generation of maternal antibod-
ies. However, maternal antibody transfer alone was not entirely 
sufficient to mediate the positive effects of gestational E. coli on 
immunity, rather it assisted in the transfer of bacterial metabolites 
including aryl hydrocarbon receptor ligands, known to drive ILC3 
expansion (156) and limit adult bacterial translocation across the 
intestinal epithelium. Consistent with the literature, the authors 
found that aryl hydrocarbon receptor ligand administration 
restored the levels of ILC3 in the gut, although other peripheral 
tissues were not assessed. The authors found no role for SCFAs, 
as exogenous administration of a butyrate, propionate and acetate 
mixture during pregnancy had no effect on the numbers of type-3 
ILCs and mononuclear cells in the offspring’s intestine, although 
the in utero effects of SCFAs on other aspects of immune respon-
siveness in the offspring was not assessed.

The influence of the maternal microbiota and provision of 
various constituents in the breast milk must now implicate an 
important role for the maternal diet in the early development 
and training of the offspring’s immune system. Of relevance, a 
recent prospective birth cohort study of >56,000 Argentinian 
children under 2 years of age examined maternal dietary pref-
erences and the impact on the children’s respiratory health (7). 
Of the 1,293 children who had a respiratory infection, >60% 
were infected with RSV, 22% with human RV, and 4% with 
influenza, highlighting RSV as the most significant pathogen 
affecting infant respiratory health. Intriguingly, when the 
maternal diet was high in carbohydrates and low in fruit and 
vegetables, this had profound effects on RSV-associated disease 
in the offspring, increasing the odds ratio of developing severe 
hypoxemia and life-threatening disease. The mechanisms 
underpinning this association remain unclear but might relate 
to alterations in the maternal microbiome and possibly fetal 
development. Most notably, it will be important to ascertain 
the relative contribution of elevated carbohydrate intake 
versus low fiber intake on disease outcome, i.e., was severe 
RSV-bronchiolitis caused by a lack of fiber and the resulting 
decrease immune cell-supportive microbial metabolites (e.g., 
SCFAs) or refined sugars promoting the outgrowth of bacterial 
pathogens or a combination of both.

Understanding the processes by which maternal diet influences 
asthma susceptibility is of crucial importance. As discussed above, 
feeding pregnant mice a high-fiber diet or SCFA-supplementation 
via the drinking water suppresses the development of allergic air-
way inflammation by increasing the suppressive activity of Treg 
cells via a HDAC9-dependent mechanism (131). Importantly, the 
suppressive effects of the maternal high-fiber diet were passed on 
to the offspring, indicating the epigenetic potential of SCFAs in 
the development of the immune system and in protection from 
asthma. In addition, feeding adult mice with a high-fiber diet or 
treating with exogenous propionate is protective against HDM-
induced airway inflammation (129). Collectively, these data high-
light the potential for modulating SCFA levels as a preventative 
strategy to protect against RSV-bronchiolitis and asthma.

HARNeSSiNg THe MiCROBiOTA TO 
PReveNT AND/OR TReAT 
BRONCHiOLiTiS

Immunological tolerance is an important goal for the prevention 
of asthma and allergic diseases and thus mechanisms to promote 
a healthy intestinal microbiota are under investigation (157–159). 
A new wave of Th2-targeted biologics has recently been approved 
for asthma (160); however, we speculate that this approach is 
unlikely to reverse the aberrantly programmed epithelium and/or 
immune response (61, 161). Microbial metabolites and beneficial 
commensals shape the immune response in early-life, suggesting 
that supplementing or mimicking these factors may represent 
a new approach for disease prevention. Of greater interest will 
be to determine whether such strategies can alter the course of 
disease or even reverse established asthma, a far greater challenge 
should the epigenetic programming of immune and structural 
cells already be set to an aberrant phenotype.

Prebiotics, Probiotics, and Synbiotics
In the 2013 update to the Cochrane Review, a meta-analysis 
was performed on two studies examining the effect of prebiotic 
treatment on asthma outcomes (162, 163). In the first study, 
Moro et al. reported a significant reduction in asthma outcome 
following treatment of 102 infants “at risk” of allergies with 
galacto-oligosaccharides and fructo-oligosaccharides (0.8  g/
dL) compared to 104 treated with placebo. In the second report, 
Westerbeek et al. treated similarly high-risk infants with acidic 
and neutral oligosaccharides (20/80%; 1.2  g/L) and found no 
significant difference in asthma outcomes. The meta-analysis 
reported no significant effect of the prebiotic treatment overall, 
although significant heterogeneity was found between these 
reports. One possible explanation for the discrepant findings is 
the prebiotic employed and their respective effects on the infant 
microbiota. Although both of these oligosaccharides have been 
shown to increase bifidobacterial growth, their impact on other 
potential beneficial gut microbes remains to be fully deter-
mined. Moreover, in both studies prebiotic treatment began at 
approximately 6 months of age though microbial dysbiosis has 
been reported at 3 months of age in infants that go on to develop 
asthma in later childhood (134) and may commence even earlier, 
as described above. Thus, an earlier intervention that positively 
affects the assembly of the host microbiota is likely to be more 
successful. The use of prebiotics as therapeutics and preventatives 
is in its infancy; however, the nature and timing of these prebiotic 
strategies will improve as our knowledge of the composition of 
the human microbiota and its functional effects on host physiol-
ogy and immune development increases.

A meta-analysis of four studies investigating effect of pro-
biotics on established asthma found little or no benefit (164). 
However, the authors highlighted that marked heterogeneity 
among the studies made direct statistical comparisons difficult. 
This meta-analysis did not include a subsequently published 
study by Chen et  al. (165). In this double-blinded, placebo-
controlled trial, oral administration of Lactobacillus gasseri over 
a 5-week period was found to be effective in reducing bronchial 
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hyperreactivity, improving lung function, and reducing day-time 
asthma symptoms in school-age (6–12  years) children with 
allergic asthma (165). L. gasseri treatment decreased the produc-
tion of pro-inflammatory cytokines (e.g., TNF-α, IL-13) from 
phytohemagglutinin- or Derp1-stimulated peripheral blood 
mononuclear cells, although unfortunately Treg cells were not 
measured as part of the study. Similarly, oral inoculation with 
Lactobacillus rhamnosus or Lactobacillus reuteri protected against 
allergic airway inflammation in mice by increasing the number 
and function of Treg cells in the systemic circulation (158, 166, 
167). In another study, oral administration of the bacterial 
preparation OM-85BV ameliorated the hallmark features of 
allergic asthma in mice (IgE, airway eosinophilia, and AHR) via 
the induction of gastrointestinal Treg cells. These suppressive 
Treg cells trafficked to the lung and inhibited airway mucosal 
CD86+ DCs, blunting the type 2 inflammatory response (168). 
In the context of allergic disease, few studies have evaluated the 
clinical efficacy of a probiotic in combination with prebiotic 
oligosaccharides (known as a synbiotic). One randomized trial 
examined 29 adults with asthma and HDM allergy treated with 
synbiotics (Bifidobacterium breve M-16V and a mixture of 90% 
short-chain galacto- oligosaccharides and 10% long-chain fructo-
oligosaccharides) or placebo for 4 weeks followed by a bronchial 
challenge with HDM allergen (169). Although peak expiratory 
flow and systemic Th2 cytokines were reduced in the synbiotic-
treated group, there was no effect on sputum eosinophilia or 
neutrophilia. These preliminary findings require replication by 
other investigators.

Interestingly, pre-treatment of mice with L. rhamnosus has 
also been shown to protect against pathogenic type 2 inflamma-
tion during RSV infection. This was associated with an increase 
in the production of IFN-β, IFN-γ, and IL-10 as well as both 
CD103+ and CD11b high DCs, although Treg cells were not 
assessed (170). A number of clinical studies have demonstrated 
the efficacy of prebiotic (171, 172) or probiotic interventions 
(172–175) for the treatment of respiratory viral infections. For 
example, in a randomized, placebo-controlled, double-blind trial, 
Luoto et  al. investigated the efficacy of galacto-oligosaccharide 
and polydextrose mixture (1:1), known to promote bifidobacteria 
and lactobacilli, and the probiotic L. rhamnosus in a cohort of 
preterm infants in Finland. Strikingly, both the prebiotic mixture 
of galacto-oligosaccharide and polydextrose and L. rhamnosus 
significantly reduced the incidence of RV-induced episodes, 
which was the cause of the infection in 80% of the infants in the 
cohort. Although RSV-associated vLRIs were not affected by 
either treatment, the RSV group represented only a small propor-
tion of the cohort, and therefore, larger studies will be required 
to determine the effect of synbiotics on RSV-bronchiolitis risk. 
Moreover, it will be important for longer term studies to assess 
whether decreasing the severity of vLRI in these children can 
protect from the development of asthma in later-life.

SCFAs and SCFA Mimetics
Human epidemiology and experimental studies in preclinical 
models of asthma suggest that dietary fiber protects against 
asthma risk by increasing fecal and systemic levels of SCFA. 
Accordingly, mimicking the anti-inflammatory effects of SCFAs 

pharmacologically is an attractive approach therapeutically. The 
anti-inflammatory effects of acetate and propionate have been 
ascribed to HDAC inhibition and the activation of GPR41 and/or 
GPR43 signaling, and as described above, these pathways amelio-
rate allergic airway inflammation in mice by increasing the func-
tion of Treg cells or by dampening pro-inflammatory DCs (15, 129, 
131, 176). Although GPR109a, the primary receptor for butyrate, 
is reported to be expressed in lung tissue, its cellular distribution 
and function in the lung remains unclear (177). An additional 
target of SCFAs may be the bronchial epithelium, which expresses 
both GPR41 and GPR43, although increases in SCFA levels and 
GRP41 expression are proposed to be deleterious in the context of 
cystic fibrosis (133). Notably, recent pharmacological studies have 
reported development of small molecules with greater selectiv-
ity than endogenous SCFAs (140, 178), although increasing the 
potency of these compounds has yet to be achieved. Moreover, the 
efficacy of this current generation of molecules in animal models 
of asthma remains unexplored. Therefore, in addition to further 
elucidating the biology of these receptors, it will be important for 
drug discovery programs to continue to improve the selectivity and 
potency of synthetic agonists and to test their efficacy in clinically 
relevant models of viral bronchiolitis and asthma. pDCs present 
an attractive target for the prevention of severe RSV-bronchiolitis 
and asthma due to their capacity to produce vast amounts of type 
I IFN via engagement of TLRs (e.g., TLR7) and promote Treg cell 
expansion (179). We have shown that infection with pneumonia 
virus of mice (58), a mouse-specific Pneumovirus of the same 
genus as RSV, predisposes to severe bronchiolitis in Tlr7-deficient 
mice, while the adoptive transfer of Tlr7-sufficient pDC to Tlr7-
deficient mice confers protection, implicating a critical role for 
TLR7 on pDCs. Moreover, secondary infection of TLR7-deficient 
mice induced the cardinal features of asthma, including AHR, 
airway remodeling (e.g., smooth muscle hyperplasia), and airway 
inflammation (180). Collectively, these findings suggest that the 
nexus between severe bronchiolitis and subsequent asthma is 
underpinned by perturbations to the pDC compartment (61). 
Hence, it will be important to determine whether SCFAs or SCFA 
mimetics are able to modulate pDC function.

CONCLUSiON

Illuminating epidemiological, clinical, and preclinical studies 
suggest that the microbiome plays a critical role in protecting 
against asthma and allergies, particularly in early-life. Despite 
the fact that RSV-bronchiolitis predominantly affects infants 
under 6 months of age, the influence of gut microbial coloniza-
tion and microbial metabolites on susceptibility to severe RSV-
bronchiolitis has yet to be investigated. Programming of airway 
immune and structural cells likely occurs during this window of 
susceptibility and will have long-term consequences for suscepti-
bility toward asthma-inducing stimuli. Identifying the molecular 
pathways that link the gut microbiota and the development of 
lung mucosal immunity has the potential to identify new thera-
peutic targets for the treatment of RSV-bronchiolitis. In view of 
the strong link between severe RSV-bronchiolitis and subsequent 
asthma, such a strategy has the potential to ameliorate the current 
high rates of allergic asthma in developed nations.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


11

Lynch et al. The Microbiome and Respiratory Disease

Frontiers in Immunology | www.frontiersin.org February 2017 | Volume 8 | Article 156

AUTHOR CONTRiBUTiONS

JL performed background research and wrote the review. MS, 
BC, RW, and JS helped research the ancillary literature. PC, PD, 
and ME provided insightful discussion and edited the review. SP 
conceived the idea for the review and edited drafts.

FUNDiNg

SP has been funded by the National Health and Medical Research 
Council of Australia, the Australian Research Council Future 
Fellowship scheme, Pfizer, and GSK. All other authors declare that 
they have no competing financial interests.

ReFeReNCeS

1. Feldman AS, He Y, Moore ML, Hershenson MB, Hartert TV. Toward primary 
prevention of asthma. Reviewing the evidence for early-life respiratory viral 
infections as modifiable risk factors to prevent childhood asthma. Am 
J Respir Crit Care Med (2015) 191:34–44. doi:10.1164/rccm.201405-0901PP 

2. Holt PG, Sly PD. Viral infections and atopy in asthma pathogenesis: new 
rationales for asthma prevention and treatment. Nat Med (2012) 18:726–35. 
doi:10.1038/nm.2768 

3. Holt PG, Sly PD. Interactions between RSV infection, asthma, and atopy: 
unraveling the complexities. J Exp Med (2002) 196:1271–5. doi:10.1084/
jem.20021572 

4. Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol 
(2015) 16:45–56. doi:10.1038/ni.3049 

5. Holt PG, Strickland DH, Hales BJ, Sly PD. Defective respiratory tract immune 
surveillance in asthma: a primary causal factor in disease onset and progres-
sion. Chest (2014) 145:370–8. doi:10.1378/chest.13-1341 

6. Caballero MT, Serra ME, Acosta PL, Marzec J, Gibbons L, Salim M, et al. 
TLR4 genotype and environmental LPS mediate RSV bronchiolitis through 
Th2 polarization. J Clin Invest (2015) 125:571–82. doi:10.1172/JCI75183 

7. Ferolla FM, Hijano DR, Acosta PL, Rodriguez A, Duenas K, Sancilio A, et al. 
Macronutrients during pregnancy and life-threatening respiratory syncytial 
virus infections in children. Am J Respir Crit Care Med (2013) 187:983–90. 
doi:10.1164/rccm.201301-0016OC 

8. Meissner HC. Viral bronchiolitis in children. N Engl J Med (2016) 374:62–72. 
doi:10.1056/NEJMra1413456 

9. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, 
Contreras M, et al. Human gut microbiome viewed across age and geography. 
Nature (2012) 486:222–7. doi:10.1038/nature11053 

10. Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, et  al. 
Antibiotics, birth mode, and diet shape microbiome maturation during early 
life. Sci Transl Med (2016) 8:343ra82. doi:10.1126/scitranslmed.aad7121 

11. Yassour M, Vatanen T, Siljander H, Hamalainen AM, Harkonen T, Ryhanen 
SJ, et al. Natural history of the infant gut microbiome and impact of antibiotic 
treatment on bacterial strain diversity and stability. Sci Transl Med (2016) 
8:343ra81. doi:10.1126/scitranslmed.aad0917 

12. Planer JD, Peng Y, Kau AL, Blanton LV, Ndao IM, Tarr PI, et al. Development 
of the gut microbiota and mucosal IgA responses in twins and gnotobiotic 
mice. Nature (2016) 534:263–6. doi:10.1038/nature17940 

13. Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, et al. 
Succession of microbial consortia in the developing infant gut microbi-
ome. Proc Natl Acad Sci U S A (2011) 108(Suppl 1):4578–85. doi:10.1073/
pnas.1000081107 

14. Hooper LV, Littman DR, Macpherson AJ. Interactions between the micro-
biota and the immune system. Science (2012) 336:1268–73. doi:10.1126/
science.1223490 

15. Arpaia N, Campbell C, Fan X, Dikiy S, Van Der Veeken J, Deroos P, et al. 
Metabolites produced by commensal bacteria promote peripheral regulatory 
T-cell generation. Nature (2013) 504:451–5. doi:10.1038/nature12726 

16. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et  al. 
Commensal microbe-derived butyrate induces the differentiation of colonic 
regulatory T cells. Nature (2013) 504:446–50. doi:10.1038/nature12721 

17. Mathewson ND, Jenq R, Mathew AV, Koenigsknecht M, Hanash A, Toubai 
T, et al. Gut microbiome-derived metabolites modulate intestinal epithelial 
cell damage and mitigate graft-versus-host disease. Nat Immunol (2016) 
17:505–13. doi:10.1038/ni.3400 

18. Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, 
et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus 
barrier and enhances pathogen susceptibility. Cell (2016) 167:1339.e–53.e. 
doi:10.1016/j.cell.2016.10.043 

19. Beura LK, Hamilton SE, Bi K, Schenkel JM, Odumade OA, Casey KA, 
et al. Normalizing the environment recapitulates adult human immune 
traits in laboratory mice. Nature (2016) 532:512–6. doi:10.1038/
nature17655 

20. Hasegawa K, Mansbach JM, Ajami NJ, Petrosino JF, Freishtat RJ, Teach SJ, 
et  al. Serum cathelicidin, nasopharyngeal microbiota, and disease severity 
among infants hospitalized with bronchiolitis. J Allergy Clin Immunol (2016). 
doi:10.1016/j.jaci.2016.09.037 

21. Depner M, Ege MJ, Cox MJ, Dwyer S, Walker AW, Birzele LT, et al. Bacterial 
microbiota of the upper respiratory tract and childhood asthma. J Allergy 
Clin Immunol (2016). doi:10.1016/j.jaci.2016.05.050 

22. Teo SM, Mok D, Pham K, Kusel M, Serralha M, Troy N, et  al. The infant 
nasopharyngeal microbiome impacts severity of lower respiratory infection 
and risk of asthma development. Cell Host Microbe (2015) 17:704–15. 
doi:10.1016/j.chom.2015.03.008 

23. Mansbach JM, Hasegawa K, Henke DM, Ajami NJ, Petrosino JF, Shaw CA, 
et  al. Respiratory syncytial virus and rhinovirus severe bronchiolitis are 
associated with distinct nasopharyngeal microbiota. J Allergy Clin Immunol 
(2016) 137:1909–1913.e4. doi:10.1016/j.jaci.2016.01.036 

24. Rosas-Salazar C, Shilts MH, Tovchigrechko A, Chappell JD, Larkin EK, 
Nelson KE, et al. Nasopharyngeal microbiome in respiratory syncytial virus 
resembles profile associated with increased childhood asthma risk. Am 
J Respir Crit Care Med (2016) 193:1180–3. doi:10.1164/rccm.201512-2350LE 

25. Huang YJ, Nelson CE, Brodie EL, Desantis TZ, Baek MS, Liu J, et al. Airway 
microbiota and bronchial hyperresponsiveness in patients with suboptimally 
controlled asthma. J Allergy Clin Immunol (2011) 127:.e1–3. doi:10.1016/j.
jaci.2010.10.048 

26. Goleva E, Jackson LP, Harris JK, Robertson CE, Sutherland ER, Hall CF, 
et  al. The effects of airway microbiome on corticosteroid responsiveness 
in asthma. Am J Respir Crit Care Med (2013) 188:1193–201. doi:10.1164/
rccm.201304-0775OC 

27. Durack J, Lynch SV, Nariya S, Bhakta NR, Beigelman A, Castro M, et  al. 
Features of the bronchial bacterial microbiome associated with atopy, 
asthma and responsiveness to inhaled corticosteroid treatment. J Allergy Clin 
Immunol (2016). doi:10.1016/j.jaci.2016.08.055 

28. Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, et al. Disordered 
microbial communities in asthmatic airways. PLoS One (2010) 5:e8578. 
doi:10.1371/journal.pone.0008578 

29. Khetsuriani N, Kazerouni NN, Erdman DD, Lu X, Redd SC, Anderson LJ, 
et al. Prevalence of viral respiratory tract infections in children with asthma. 
J Allergy Clin Immunol (2007) 119:314–21. doi:10.1016/j.jaci.2006.08.041 

30. Jackson DJ, Gangnon RE, Evans MD, Roberg KA, Anderson EL, Pappas TE, 
et  al. Wheezing rhinovirus illnesses in early life predict asthma develop-
ment in high-risk children. Am J Respir Crit Care Med (2008) 178:667–72. 
doi:10.1164/rccm.200802-309OC 

31. Kusel MM, De Klerk NH, Kebadze T, Vohma V, Holt PG, Johnston SL, 
et al. Early-life respiratory viral infections, atopic sensitization, and risk of 
subsequent development of persistent asthma. J Allergy Clin Immunol (2007) 
119:1105–10. doi:10.1016/j.jaci.2006.12.669 

32. Kusel MM, Kebadze T, Johnston SL, Holt PG, Sly PD. Febrile respiratory ill-
nesses in infancy and atopy are risk factors for persistent asthma and wheeze. 
Eur Respir J (2012) 39:876–82. doi:10.1183/09031936.00193310 

33. Kusel MM, De Klerk NH, Holt PG, Kebadze T, Johnston SL, Sly PD. Role of 
respiratory viruses in acute upper and lower respiratory tract illness in the 
first year of life: a birth cohort study. Pediatr Infect Dis J (2006) 25:680–6. 
doi:10.1097/01.inf.0000226912.88900.a3 

34. Johnston SL, Pattemore PK, Sanderson G, Smith S, Lampe F, Josephs 
L, et  al. Community study of role of viral infections in exacerbations of 
asthma in 9-11 year old children. BMJ (1995) 310:1225–9. doi:10.1136/
bmj.310.6989.1225 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1164/rccm.201405-0901PP
https://doi.org/10.1038/nm.2768
https://doi.org/10.1084/jem.20021572
https://doi.org/10.1084/jem.20021572
https://doi.org/10.1038/ni.3049
https://doi.org/10.1378/chest.13-1341
https://doi.org/10.1172/JCI75183
https://doi.org/10.1164/rccm.201301-0016OC
https://doi.org/10.1056/NEJMra1413456
https://doi.org/10.1038/nature11053
https://doi.org/10.1126/scitranslmed.aad7121
https://doi.org/10.1126/scitranslmed.aad0917
https://doi.org/10.1038/nature17940
https://doi.org/10.1073/pnas.1000081107
https://doi.org/10.1073/pnas.1000081107
https://doi.org/10.1126/science.1223490
https://doi.org/10.1126/science.1223490
https://doi.org/10.1038/nature12726
https://doi.org/10.1038/nature12721
https://doi.org/10.1038/ni.3400
https://doi.org/10.1016/j.cell.2016.10.043
https://doi.org/10.1038/nature17655
https://doi.org/10.1038/nature17655
https://doi.org/10.1016/j.jaci.2016.09.037
https://doi.org/10.1016/j.jaci.2016.05.050
https://doi.org/10.1016/j.chom.2015.03.008
https://doi.org/10.1016/j.jaci.2016.01.036
https://doi.org/10.1164/rccm.201512-2350LE
https://doi.org/10.1016/j.jaci.2010.10.048
https://doi.org/10.1016/j.jaci.2010.10.048
https://doi.org/10.1164/rccm.201304-0775OC
https://doi.org/10.1164/rccm.201304-0775OC
https://doi.org/10.1016/j.jaci.2016.08.055
https://doi.org/10.1371/journal.pone.0008578
https://doi.org/10.1016/j.jaci.2006.08.041
https://doi.org/10.1164/rccm.200802-309OC
https://doi.org/10.1016/j.jaci.2006.12.669
https://doi.org/10.1183/09031936.00193310
https://doi.org/10.1097/01.inf.0000226912.88900.a3
https://doi.org/10.1136/bmj.310.6989.1225
https://doi.org/10.1136/bmj.310.6989.1225


12

Lynch et al. The Microbiome and Respiratory Disease

Frontiers in Immunology | www.frontiersin.org February 2017 | Volume 8 | Article 156

35. Sigurs N, Gustafsson PM, Bjarnason R, Lundberg F, Schmidt S, Sigurbergsson 
F, et  al. Severe respiratory syncytial virus bronchiolitis in infancy and 
asthma and allergy at age 13. Am J Respir Crit Care Med (2005) 171:137–41. 
doi:10.1164/rccm.200406-730OC 

36. Sigurs N, Bjarnason R, Sigurbergsson F, Kjellman B, Bjorksten B. Asthma and 
immunoglobulin E antibodies after respiratory syncytial virus bronchiolitis: 
a prospective cohort study with matched controls. J Pediatr (1995) 95:500–5. 

37. Sigurs N, Bjarnason R, Sigurbergsson F, Kjellman B. Respiratory syncytial 
virus bronchiolitis in infancy is an important risk factor for asthma and 
allergy at age 7. Am J Respir Crit Care Med (2000) 161:1501–7. doi:10.1164/
ajrccm.161.5.9906076 

38. Sigurs N, Aljassim F, Kjellman B, Robinson PD, Sigurbergsson F, Bjarnason 
R, et al. Asthma and allergy patterns over 18 years after severe RSV bron-
chiolitis in the first year of life. Thorax (2010) 65:1045–52. doi:10.1136/
thx.2009.121582 

39. Stein RT, Sherrill D, Morgan WJ, Holberg CJ, Halonen M, Taussig LM, et al. 
Respiratory syncytial virus in early life and risk of wheeze and allergy by 
age 13 years. Lancet (1999) 354:541–5. doi:10.1016/S0140-6736(98)10321-5 

40. Mok JY, Simpson H. Symptoms, atopy, and bronchial reactivity after 
lower respiratory infection in infancy. Arch Dis Child (1984) 59:299–305. 
doi:10.1136/adc.59.4.299 

41. James KM, Gebretsadik T, Escobar GJ, Wu P, Carroll KN, Li SX, et al. Risk of 
childhood asthma following infant bronchiolitis during the respiratory syn-
cytial virus season. J Allergy Clin Immunol (2013) 132:227–9. doi:10.1016/j.
jaci.2013.01.009 

42. Wu P, Dupont WD, Griffin MR, Carroll KN, Mitchel EF, Gebretsadik T, 
et al. Evidence of a causal role of winter virus infection during infancy in 
early childhood asthma. Am J Respir Crit Care Med (2008) 178:1123–9. 
doi:10.1164/rccm.200804-579OC 

43. Zhu Z, Homer RJ, Wang Z, Chen Q, Geba GP, Wang J, et  al. Pulmonary 
expression of interleukin-13 causes inflammation, mucus hypersecretion, 
subepithelial fibrosis, physiologic abnormalities, and eotaxin production. 
J Clin Invest (1999) 103:779–88. doi:10.1172/JCI5909 

44. Johnston SL, Pattemore PK, Sanderson G, Smith S, Campbell MJ, Josephs 
LK, et al. The relationship between upper respiratory infections and hospital 
admissions for asthma: a time-trend analysis. Am J Respir Crit Care Med 
(1996) 154:654–60. doi:10.1164/ajrccm.154.3.8810601 

45. Rawlinson WD, Waliuzzaman Z, Carter IW, Belessis YC, Gilbert KM, 
Morton JR. Asthma exacerbations in children associated with rhinovirus 
but not human metapneumovirus infection. J Infect Dis (2003) 187:1314–8. 
doi:10.1086/368411 

46. Lodge CJ, Lowe AJ, Gurrin LC, Hill DJ, Hosking CS, Khalafzai RU, et al. House 
dust mite sensitization in toddlers predicts current wheeze at age 12 years. 
J Allergy Clin Immunol (2011) 128:782.e–8.e. doi:10.1016/j.jaci.2011.06.038 

47. Hasegawa S, Hirano R, Hashimoto K, Haneda Y, Shirabe K, Ichiyama T. 
Characteristics of atopic children with pandemic H1N1 influenza viral infec-
tion: pandemic H1N1 influenza reveals ‘occult’ asthma of childhood. Pediatr 
Allergy Immunol (2011) 22:e119–23. doi:10.1111/j.1399-3038.2010.01090.x 

48. Williams JV, Harris PA, Tollefson SJ, Halburnt-Rush LL, Pingsterhaus JM, 
Edwards KM, et  al. Human metapneumovirus and lower respiratory tract 
disease in otherwise healthy infants and children. N Engl J Med (2004) 
350:443–50. doi:10.1056/NEJMoa025472 

49. Williams JV, Crowe JE, Enriquez R, Minton P, Peebles RS, Hamilton RG, 
et  al. Human metapneumovirus infection plays an etiologic role in acute 
asthma exacerbations requiring hospitalization in adults. J Infect Dis (2005) 
192:1149–53. doi:10.1086/444392 

50. Jartti T, Van Den Hoogen B, Garofalo RP, Osterhaus AD, Ruuskanen O. 
Metapneumovirus and acute wheezing in children. Lancet (2002) 360:1393–4. 
doi:10.1016/S0140-6736(02)11391-2 

51. Kotaniemi-Syrjanen A, Vainionpaa R, Reijonen TM, Waris M, Korhonen 
K, Korppi M. Rhinovirus-induced wheezing in infancy – the first sign of 
childhood asthma? J Allergy Clin Immunol (2003) 111:66–71. doi:10.1067/
mai.2003.33 

52. Escobar GJ, Ragins A, Li SX, Prager L, Masaquel AS, Kipnis P. Recurrent 
wheezing in the third year of life among children born at 32 weeks’ 
gestation or later: relationship to laboratory-confirmed, medically 
attended infection with respiratory syncytial virus during the first 
year of life. Arch Pediatr Adolesc Med (2010) 164:915–22. doi:10.1001/
archpediatrics.2010.177 

53. Lemanske RF Jr, Jackson DJ, Gangnon RE, Evans MD, Li Z, Shult PA, 
et  al. Rhinovirus illnesses during infancy predict subsequent childhood 
wheezing. J Allergy Clin Immunol (2005) 116:571–7. doi:10.1016/j.jaci.2005. 
06.024 

54. Blanken MO, Rovers MM, Molenaar JM, Winkler-Seinstra PL, Meijer 
A, Kimpen JLL, et  al. Respiratory syncytial virus and recurrent wheeze 
in healthy preterm infants. N Engl J Med (2013) 368:1791–9. doi:10.1056/
NEJMoa1211917 

55. Simoes EA, Carbonell-Estrany X, Rieger CH, Mitchell I, Fredrick L, 
Groothuis JR, et al. The effect of respiratory syncytial virus on subsequent 
recurrent wheezing in atopic and nonatopic children. J Allergy Clin Immunol 
(2010) 126:256–62. doi:10.1016/j.jaci.2010.05.026 

56. Chen CH, Lin YT, Yang YH, Wang LC, Lee JH, Kao CL, et  al. Ribavirin 
for respiratory syncytial virus bronchiolitis reduced the risk of asthma 
and allergen sensitization. Pediatr Allergy Immunol (2008) 19:166–72. 
doi:10.1111/j.1399-3038.2007.00610.x 

57. Kaiko GE, Loh Z, Spann K, Lynch JP, Lalwani A, Zheng Z, et al. Toll-like 
receptor 7 gene deficiency and early-life Pneumovirus infection interact 
to predispose toward the development of asthma-like pathology in mice. 
J Allergy Clin Immunol (2013) 131:1331.e–9.e. doi:10.1016/j.jaci.2013.02.041 

58. Davidson S, Kaiko G, Loh Z, Lalwani A, Zhang V, Spann K, et al. Plasmacytoid 
dendritic cells promote host defense against acute pneumovirus infection 
via the TLR7-MyD88-dependent signaling pathway. J Immunol (2011) 
186:5938–48. doi:10.4049/jimmunol.1002635 

59. Lynch JP, Werder RB, Simpson J, Loh Z, Zhang V, Haque A, et  al. 
Aeroallergen-induced IL-33 predisposes to respiratory virus-induced 
asthma by dampening antiviral immunity. J Allergy Clin Immunol (2016) 
138:1326–37. doi:10.1016/j.jaci.2016.02.039 

60. Spann KM, Loh Z, Lynch JP, Ullah A, Zhang V, Baturcam E, et al. IRF-3, IRF-
7, and IPS-1 promote host defense against acute human metapneumovirus 
infection in neonatal mice. Am J Pathol (2014) 184:1795–806. doi:10.1016/j.
ajpath.2014.02.026 

61. Lynch JP, Mazzone SB, Rogers MJ, Arikkatt JJ, Loh Z, Pritchard AL, et al. The 
plasmacytoid dendritic cell: at the cross-roads in asthma. Eur Respir J (2014) 
43:264–75. doi:10.1183/09031936.00203412 

62. Willart MA, Deswarte K, Pouliot P, Braun H, Beyaert R, Lambrecht BN, 
et  al. Interleukin-1alpha controls allergic sensitization to inhaled house 
dust mite via the epithelial release of GM-CSF and IL-33. J Exp Med (2012) 
209:1505–17. doi:10.1084/jem.20112691 

63. Ullah MA, Loh Z, Gan WJ, Zhang V, Yang H, Li JH, et  al. Receptor for 
advanced glycation end products and its ligand high-mobility group box-1 
mediate allergic airway sensitization and airway inflammation. J Allergy Clin 
Immunol (2014) 134(2):440–50. doi:10.1016/j.jaci.2013.12.1035 

64. Halim TYF, Hwang YY, Scanlon ST, Zaghouani H, Garbi N, Fallon PG, et al. 
Group 2 innate lymphoid cells license dendritic cells to potentiate memory 
TH2 cell responses. Nat Immunol (2016) 17:57–64. doi:10.1038/ni.3294 

65. De Kleer IM, Kool M, De Bruijn MJ, Willart M, van Moorleghem J, Schuijs 
MJ, et al. Perinatal activation of the interleukin-33 pathway promotes type 2 
immunity in the developing lung. Immunity (2016) 45:1285–98. doi:10.1016/j.
immuni.2016.10.031 

66. Pritchard AL, Carroll ML, Burel JG, White OJ, Phipps S, Upham JW. Innate 
IFNs and plasmacytoid dendritic cells constrain Th2 cytokine responses to 
rhinovirus: a regulatory mechanism with relevance to asthma. J Immunol 
(2012) 188:5898–905. doi:10.4049/jimmunol.1103507 

67. Kay AB, Phipps S, Robinson DS. A role for eosinophils in airway remod-
elling in asthma. Trends Immunol (2004) 25:477–82. doi:10.1016/j.it.2004. 
07.006 

68. Allen JE, Wynn TA. Evolution of Th2 immunity: a rapid repair response to 
tissue destructive pathogens. PLoS Pathog (2011) 7:e1002003. doi:10.1371/
journal.ppat.1002003 

69. Palm NW, Rosenstein RK, Medzhitov R. Allergic host defences. Nature 
(2012) 484:465–72. doi:10.1038/nature11047 

70. Oliphant CJ, Hwang YY, Walker JA, Salimi M, Wong SH, Brewer JM, et al. 
MHCII-mediated dialog between group 2 innate lymphoid cells and CD4 T 
cells potentiates type 2 immunity and promotes parasitic helminth expulsion. 
Immunity (2014) 41(2):283–95. doi:10.1016/j.immuni.2014.06.016 

71. Guo L, Huang Y, Chen X, Hu-Li J, Urban JF Jr, Paul WE. Innate immu-
nological function of TH2 cells in  vivo. Nat Immunol (2015) 16:1051–9. 
doi:10.1038/ni.3244 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1164/rccm.200406-730OC
https://doi.org/10.1164/ajrccm.161.5.9906076
https://doi.org/10.1164/ajrccm.161.5.9906076
https://doi.org/10.1136/thx.2009.121582
https://doi.org/10.1136/thx.2009.121582
https://doi.org/10.1016/S0140-6736(98)10321-5
https://doi.org/10.1136/adc.59.4.299
https://doi.org/10.1016/j.jaci.2013.01.009
https://doi.org/10.1016/j.jaci.2013.01.009
https://doi.org/10.1164/rccm.200804-579OC
https://doi.org/10.1172/JCI5909
https://doi.org/10.1164/ajrccm.154.3.8810601
https://doi.org/10.1086/368411
https://doi.org/10.1016/j.jaci.2011.06.038
https://doi.org/10.1111/j.1399-3038.2010.01090.x
https://doi.org/10.1056/NEJMoa025472
https://doi.org/10.1086/444392
https://doi.org/10.1016/S0140-6736(02)11391-2
https://doi.org/10.1067/mai.2003.33
https://doi.org/10.1067/mai.2003.33
https://doi.org/10.1001/archpediatrics.2010.177
https://doi.org/10.1001/archpediatrics.2010.177
https://doi.org/10.1016/j.jaci.2005.06.024
https://doi.org/10.1016/j.jaci.2005.06.024
https://doi.org/10.1056/NEJMoa1211917
https://doi.org/10.1056/NEJMoa1211917
https://doi.org/10.1016/j.jaci.2010.05.026
https://doi.org/10.1111/j.1399-3038.2007.00610.x
https://doi.org/10.1016/j.jaci.2013.02.041
https://doi.org/10.4049/jimmunol.1002635
https://doi.org/10.1016/j.jaci.2016.02.039
https://doi.org/10.1016/j.ajpath.2014.02.026
https://doi.org/10.1016/j.ajpath.2014.02.026
https://doi.org/10.1183/09031936.00203412
https://doi.org/10.1084/jem.20112691
https://doi.org/10.1016/j.jaci.2013.12.1035
https://doi.org/10.1038/ni.3294
https://doi.org/10.1016/j.immuni.2016.10.031
https://doi.org/10.1016/j.immuni.2016.10.031
https://doi.org/10.4049/jimmunol.1103507
https://doi.org/10.1016/j.it.2004.07.006
https://doi.org/10.1016/j.it.2004.07.006
https://doi.org/10.1371/journal.ppat.1002003
https://doi.org/10.1371/journal.ppat.1002003
https://doi.org/10.1038/nature11047
https://doi.org/10.1016/j.immuni.2014.06.016
https://doi.org/10.1038/ni.3244


13

Lynch et al. The Microbiome and Respiratory Disease

Frontiers in Immunology | www.frontiersin.org February 2017 | Volume 8 | Article 156

72. Dickson RP, Erb-Downward JR, Martinez FJ, Huffnagle GB. The microbiome 
and the respiratory tract. Annu Rev Physiol (2016) 78:481–504. doi:10.1146/
annurev-physiol-021115-105238 

73. Gleeson K, Eggli DF, Maxwell SL. Quantitative aspiration during sleep in 
normal subjects. Chest (1997) 111:1266–72. doi:10.1378/chest.111.5.1266 

74. Wilson MT, Hamilos DL. The nasal and sinus microbiome in health 
and  disease. Curr Allergy Asthma Rep (2014) 14:485. doi:10.1007/
s11882-014-0485-x 

75. Huxley EJ, Viroslav J, Gray WR, Pierce AK. Pharyngeal aspiration in normal 
adults and patients with depressed consciousness. Am J Med (1978) 64:564–8. 
doi:10.1016/0002-9343(78)90574-0 

76. Zhang Q, Cox M, Liang Z, Brinkmann F, Cardenas PA, Duff R, et al. Airway 
microbiota in severe asthma and relationship to asthma severity and phe-
notypes. PLoS One (2016) 11:e0152724. doi:10.1371/journal.pone.0152724 

77. Green BJ, Wiriyachaiporn S, Grainge C, Rogers GB, Kehagia V, Lau L, et al. 
Potentially pathogenic airway bacteria and neutrophilic inflammation in 
treatment resistant severe asthma. PLoS One (2014) 9:e100645. doi:10.1371/
journal.pone.0100645 

78. Simpson JL, Daly J, Baines KJ, Yang IA, Upham JW, Reynolds PN, 
et  al. Airway dysbiosis: Haemophilus influenzae and Tropheryma in 
poorly controlled asthma. Eur Respir J (2016) 47:792–800. doi:10.1183/ 
13993003.00405-2015 

79. Nicholson KG, Kent J, Ireland DC. Respiratory viruses and exacerbations 
of asthma in adults. BMJ (1993) 307:982–6. doi:10.1136/bmj.307.6910.982 

80. Hofstra JJ, Matamoros S, Van De Pol MA, De Wever B, Tanck MW, Wendt-
Knol H, et al. Changes in microbiota during experimental human Rhinovirus 
infection. BMC Infect Dis (2015) 15:336. doi:10.1186/s12879-015-1081-y 

81. Kloepfer KM, Lee WM, Pappas TE, Kang TJ, Vrtis RF, Evans MD, et  al. 
Detection of pathogenic bacteria during rhinovirus infection is associated 
with increased respiratory symptoms and asthma exacerbations. J Allergy 
Clin Immunol (2014) 133:.e1–3. doi:10.1016/j.jaci.2014.02.030 

82. Bisgaard H, Hermansen MN, Buchvald F, Loland L, Halkjaer LB, Bønnelykke 
K, et al. Childhood asthma after bacterial colonization of the airway in neo-
nates. N Engl J Med (2007) 357:1487–95. doi:10.1056/NEJMoa052632 

83. Bisgaard H, Hermansen MN, Bønnelykke K, Stokholm J, Baty F, Skytt NL, 
et  al. Association of bacteria and viruses with wheezy episodes in young 
children: prospective birth cohort study. BMJ (2010) 341:c4978. doi:10.1136/
bmj.c4978 

84. Von Mutius E. Of attraction and rejection – asthma and the microbial world. 
N Engl J Med (2007) 357:1545–7. doi:10.1056/NEJMe078119 

85. Penders J, Kummeling I, Thijs C. Infant antibiotic use and wheeze and asthma 
risk: a systematic review and meta-analysis. Eur Respir J (2011) 38:295–302. 
doi:10.1183/09031936.00105010 

86. Rollins DR, Beuther DA, Martin RJ. Update on infection and antibiotics 
in asthma. Curr Allergy Asthma Rep (2010) 10:67–73. doi:10.1007/
s11882-009-0086-2 

87. Marra F, Lynd L, Coombes M, Richardson K, Legal M, Fitzgerald JM, et al. 
Does antibiotic exposure during infancy lead to development of asthma? A 
systematic review and metaanalysis. Chest (2006) 129:610–8. doi:10.1378/
chest.129.3.610 

88. Lange NE, Celedón JC, Forno E, Ly NP, Onderdonk A, Bry L, et al. Maternal 
intestinal flora and wheeze in early childhood. Clin Exp Allergy (2012) 
42:901–8. doi:10.1111/j.1365-2222.2011.03950.x 

89. Yang B, Liu R, Yang T, Jiang X, Zhang L, Wang L, et al. Neonatal Streptococcus 
pneumoniae infection may aggravate adulthood allergic airways disease in 
association with IL-17A. PLoS One (2015) 10:e0123010. doi:10.1371/journal.
pone.0123010 

90. Raiden S, Pandolfi J, Payasliàn F, Anderson M, Rivarola N, Ferrero F, et al. 
Depletion of circulating regulatory T cells during severe respiratory syn-
cytial virus infection in young children. Am J Respir Crit Care Med (2014) 
189:865–8. doi:10.1164/rccm.201311-1977LE 

91. Durant LR, Makris S, Voorburg CM, Loebbermann J, Johansson C, Openshaw 
PJ. Regulatory T cells prevent Th2 immune responses and pulmonary eosin-
ophilia during respiratory syncytial virus infection in mice. J Virol (2013) 
87:10946–54. doi:10.1128/JVI.01295-13 

92. Brockson ME, Novotny LA, Jurcisek JA, Mcgillivary G, Bowers MR, Bakaletz 
LO. Respiratory syncytial virus promotes Moraxella catarrhalis-induced 
ascending experimental otitis media. PLoS One (2012) 7:e40088. doi:10.1371/
journal.pone.0040088 

93. Green CA, Yeates D, Goldacre A, Sande C, Parslow RC, Mcshane P, et  al. 
Admission to hospital for bronchiolitis in England: trends over five decades, 
geographical variation and association with perinatal characteristics and 
subsequent asthma. Arch Dis Child (2015) 101(2):140–6. doi:10.1136/
archdischild-2015-308723 

94. Adcock IM, Caramori G, Chung KF. New targets for drug development in 
asthma. Lancet (2008) 372:1073–87. doi:10.1016/S0140-6736(08)61449-X 

95. Eder W, Ege MJ, Erika Von M. Current concepts: the asthma epidemic. N Engl 
J Med (2006) 355:2226–35. doi:10.1056/NEJMra054308 

96. Pearce N, Aït-Khaled N, Beasley R, Mallol J, Keil U, Mitchell E, et  al. 
Worldwide trends in the prevalence of asthma symptoms: phase III of the 
International Study of Asthma and Allergies in Childhood (ISAAC). Thorax 
(2007) 62:758–66. doi:10.1136/thx.2006.070169 

97. Strachan DP. Hay fever, hygiene, and household size. BMJ (1989) 299:1259–60. 
doi:10.1136/bmj.299.6710.1259 

98. Strachan DP. Family size, infection and atopy: the first decade of the “hygiene 
hypothesis”. Thorax (2000) 55(Suppl 1):S2–10. doi:10.1136/thorax.55.suppl_1.S2 

99. Riedler J, Braun-Fahrlander C, Eder W, Schreuer M, Waser M, Maisch S, 
et  al. Exposure to farming in early life and development of asthma and 
allergy: a cross-sectional survey. Lancet (2001) 358:1129–33. doi:10.1016/
S0140-6736(01)06252-3 

100. Braun-Fahrlander C, Riedler J, Herz U, Eder W, Waser M, Grize L, et  al. 
Environmental exposure to endotoxin and its relation to asthma in school-
age children. N Engl J Med (2002) 347:869–77. doi:10.1056/NEJMoa020057 

101. Gereda JE, Leung DY, Liu AH. Levels of environmental endotoxin and 
prevalence of atopic disease. JAMA (2000) 284:1652–3. doi:10.1001/
jama.284.13.1647 

102. Genuneit J, Strachan DP, Buchele G, Weber J, Loss G, Sozanska B, et al. The 
combined effects of family size and farm exposure on childhood hay fever 
and atopy. Pediatr Allergy Immunol (2013) 24:293–8. doi:10.1111/pai.12053 

103. Stein MM, Hrusch CL, Gozdz J, Igartua C, Pivniouk V, Murray SE, et  al. 
Innate immunity and asthma risk in Amish and Hutterite farm children. N 
Engl J Med (2016) 375:411–21. doi:10.1056/NEJMoa1508749 

104. Schuijs MJ, Willart MA, Vergote K, Gras D, Deswarte K, Ege MJ, et al. Farm 
dust and endotoxin protect against allergy through A20 induction in lung 
epithelial cells. Science (2015) 349:1106–10. doi:10.1126/science.aac6623 

105. Ownby DR, Johnson CC, Peterson EL. Exposure to dogs and cats in the first 
year of life and risk of allergic sensitization at 6 to 7 years of age. JAMA (2002) 
288:963–72. doi:10.1001/jama.288.8.963 

106. Hesselmar B, Aberg N, Aberg B, Eriksson B, Bjorksten B. Does early exposure 
to cat or dog protect against later allergy development? Clin Exp Allergy 
(1999) 29:611–7. doi:10.1046/j.1365-2222.1999.00534.x 

107. Gereda JE, Leung DY, Thatayatikom A, Streib JE, Price MR, Klinnert MD, 
et al. Relation between house-dust endotoxin exposure, type 1 T-cell devel-
opment, and allergen sensitisation in infants at high risk of asthma. Lancet 
(2000) 355:1680–3. doi:10.1016/S0140-6736(00)02239-X 

108. Fujimura KE, Johnson CC, Ownby DR, Cox MJ, Brodie EL, Havstad SL, 
et al. Man’s best friend? The effect of pet ownership on house dust microbial 
communities. J Allergy Clin Immunol (2010) 126:410–2. doi:10.1016/j.
jaci.2010.05.042 

109. Gravesen S. Fungi as a cause of allergic disease. Allergy (1979) 34:135–54.  
doi:10.1111/j.1398-9995.1979.tb01562.x 

110. Pantoja-Feliciano IG, Clemente JC, Costello EK, Perez ME, Blaser MJ,  
Knight R, et al. Biphasic assembly of the murine intestinal microbiota during 
early development. ISME J (2013) 7:1112–5. doi:10.1038/ismej.2013.15 

111. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, 
Fierer N, et  al. Delivery mode shapes the acquisition and structure of the 
initial microbiota across multiple body habitats in newborns. Proc Natl Acad 
Sci U S A (2010) 107:11971–5. doi:10.1073/pnas.1002601107 

112. Bode L. Human milk oligosaccharides: every baby needs a sugar mama. 
Glycobiology (2012) 22:1147–62. doi:10.1093/glycob/cws074 

113. Mueller N, Pizoni A, Goldani H, Werlang I, Matte U, Goldani M, et  al. 
Delivery mode and neonate gut microbiota. FASEB J (2015) 29. doi:10.1096/
fj.1530-6860 

114. Guaraldi F, Salvatori G. Effect of breast and formula feeding on gut microbi-
ota shaping in newborns. Front Cell Infect Microbiol (2012) 2:94. doi:10.3389/
fcimb.2012.00094 

115. Jackson KM, Nazar AM. Breastfeeding, the immune response, and long-term 
health. J Am Osteopath Assoc (2006) 106:203–7. 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1146/annurev-physiol-021115-105238
https://doi.org/10.1146/annurev-physiol-021115-105238
https://doi.org/10.1378/chest.111.5.1266
https://doi.org/10.1007/s11882-014-0485-x
https://doi.org/10.1007/s11882-014-0485-x
https://doi.org/10.1016/0002-9343(78)90574-0
https://doi.org/10.1371/journal.pone.0152724
https://doi.org/10.1371/journal.pone.0100645
https://doi.org/10.1371/journal.pone.0100645
https://doi.org/10.1183/13993003.00405-2015
https://doi.org/10.1183/13993003.00405-2015
https://doi.org/10.1136/bmj.307.6910.982
https://doi.org/10.1186/s12879-015-1081-y
https://doi.org/10.1016/j.jaci.2014.02.030
https://doi.org/10.1056/NEJMoa052632
https://doi.org/10.1136/bmj.c4978
https://doi.org/10.1136/bmj.c4978
https://doi.org/10.1056/NEJMe078119
https://doi.org/10.1183/09031936.00105010
https://doi.org/10.1007/s11882-009-0086-2
https://doi.org/10.1007/s11882-009-0086-2
https://doi.org/10.1378/chest.129.3.610
https://doi.org/10.1378/chest.129.3.610
https://doi.org/10.1111/j.1365-2222.2011.03950.x
https://doi.org/10.1371/journal.pone.0123010
https://doi.org/10.1371/journal.pone.0123010
https://doi.org/10.1164/rccm.201311-1977LE
https://doi.org/10.1128/JVI.01295-13
https://doi.org/10.1371/journal.pone.0040088
https://doi.org/10.1371/journal.pone.0040088
https://doi.org/10.1136/archdischild-2015-308723
https://doi.org/10.1136/archdischild-2015-308723
https://doi.org/10.1016/S0140-6736(08)61449-X
https://doi.org/10.1056/NEJMra054308
https://doi.org/10.1136/thx.2006.070169
https://doi.org/10.1136/bmj.299.6710.1259
https://doi.org/10.1136/thorax.55.suppl_1.S2
https://doi.org/10.1016/S0140-6736(01)06252-3
https://doi.org/10.1016/S0140-6736(01)06252-3
https://doi.org/10.1056/NEJMoa020057
https://doi.org/10.1001/jama.284.13.1647
https://doi.org/10.1001/jama.284.13.1647
https://doi.org/10.1111/pai.12053
https://doi.org/10.1056/NEJMoa1508749
https://doi.org/10.1126/science.aac6623
https://doi.org/10.1001/jama.288.8.963
https://doi.org/10.1046/j.1365-2222.1999.00534.x
https://doi.org/10.1016/S0140-6736(00)02239-X
https://doi.org/10.1016/j.jaci.2010.05.042
https://doi.org/10.1016/j.jaci.2010.05.042
https://doi.org/10.1111/j.1398-9995.1979.tb01562.x
https://doi.org/10.1038/ismej.2013.15
https://doi.org/10.1073/pnas.1002601107
https://doi.org/10.1093/glycob/cws074
https://doi.org/10.1096/fj.1530-6860
https://doi.org/10.1096/fj.1530-6860
https://doi.org/10.3389/fcimb.2012.00094
https://doi.org/10.3389/fcimb.2012.00094


14

Lynch et al. The Microbiome and Respiratory Disease

Frontiers in Immunology | www.frontiersin.org February 2017 | Volume 8 | Article 156

116. Blaser MJ, Dominguez-Bello MG. The human microbiome before birth. Cell 
Host Microbe (2016) 20:558–60. doi:10.1016/j.chom.2016.10.014 

117. Salzman NH, Ghosh D, Huttner KM, Paterson Y, Bevins CL. Protection 
against enteric salmonellosis in transgenic mice expressing a human intesti-
nal defensin. Nature (2003) 422:522–6. doi:10.1038/nature01520 

118. Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV. Paneth cells 
directly sense gut commensals and maintain homeostasis at the intestinal 
host-microbial interface. Proc Natl Acad Sci U S A (2008) 105:20858–63. 
doi:10.1073/pnas.0808723105 

119. Bauer H, Horowitz RE, Levenson SM, Popper H. The response of the lym-
phatic tissue to the microbial flora. Studies on germfree mice. Am J Pathol 
(1963) 42:471–83. 

120. Olszak T, An D, Zeissig S, Vera MP, Richter J, Franke A, et al. Microbial expo-
sure during early life has persistent effects on natural killer T cell function. 
Science (2012) 336:489–93. doi:10.1126/science.1219328 

121. Julia V, Macia L, Dombrowicz D. The impact of diet on asthma and allergic 
diseases. Nat Rev Immunol (2015) 15:308–22. doi:10.1038/nri3830 

122. Tannock GW. Analysis of the intestinal microflora using molecular methods. 
Eur J Clin Nutr (2002) 56(Suppl 4):S44–9. doi:10.1038/sj.ejcn.1601661 

123. Hoverstad T, Carlstedt-Duke B, Lingaas E, Midtvedt T, Norin KE, Saxerholt 
H, et al. Influence of ampicillin, clindamycin, and metronidazole on faecal 
excretion of short-chain fatty acids in healthy subjects. Scand J Gastroenterol 
(1986) 21:621–6. doi:10.3109/00365528608996411 

124. Vinolo MA, Rodrigues HG, Hatanaka E, Sato FT, Sampaio SC, Curi R. 
Suppressive effect of short-chain fatty acids on production of proinflam-
matory mediators by neutrophils. J Nutr Biochem (2011) 22:849–55. 
doi:10.1016/j.jnutbio.2010.07.009 

125. Usami M, Kishimoto K, Ohata A, Miyoshi M, Aoyama M, Fueda Y, et  al. 
Butyrate and trichostatin A attenuate nuclear factor kappaB activation and 
tumor necrosis factor alpha secretion and increase prostaglandin E2 secre-
tion in human peripheral blood mononuclear cells. Nutr Res (2008) 28:321–8. 
doi:10.1016/j.nutres.2008.02.012 

126. Kendrick SF, O’BOYLE G, Mann J, Zeybel M, Palmer J, Jones DE, et  al. 
Acetate, the key modulator of inflammatory responses in acute alcoholic 
hepatitis. Hepatology (2010) 51:1988–97. doi:10.1002/hep.23572 

127. Chang PV, Hao L, Offermanns S, Medzhitov R. The microbial metabolite butyr-
ate regulates intestinal macrophage function via histone deacetylase inhibition. 
Proc Natl Acad Sci U S A (2014) 111:2247–52. doi:10.1073/pnas.1322269111 

128. Singh N, Thangaraju M, Prasad PD, Martin PM, Lambert NA, Boettger T, 
et al. Blockade of dendritic cell development by bacterial fermentation prod-
ucts butyrate and propionate through a transporter (Slc5a8)-dependent inhi-
bition of histone deacetylases. J Biol Chem (2010) 285:27601–8. doi:10.1074/
jbc.M110.102947 

129. Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru 
C, et al. Gut microbiota metabolism of dietary fiber influences allergic airway 
disease and hematopoiesis. Nat Med (2014) 20(2):159–66. doi:10.1038/
nm.3444 

130. Tao R, De Zoeten EF, Ozkaynak E, Chen C, Wang L, Porrett PM, et  al. 
Deacetylase inhibition promotes the generation and function of regulatory T 
cells. Nat Med (2007) 13:1299–307. doi:10.1038/nm1652 

131. Thorburn AN, Mckenzie CI, Shen S, Stanley D, Macia L, Mason LJ, et  al. 
Evidence that asthma is a developmental origin disease influenced by mater-
nal diet and bacterial metabolites. Nat Commun (2015) 6:7320. doi:10.1038/
ncomms8320 

132. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM, 
et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg 
cell homeostasis. Science (2013) 341:569–73. doi:10.1126/science.1241165 

133. Mirkovic B, Murray MA, Lavelle GM, Molloy K, Azim AA, Gunaratnam C, 
et al. The role of short-chain fatty acids, produced by anaerobic bacteria, in 
the cystic fibrosis airway. Am J Respir Crit Care Med (2015) 192:1314–24. 
doi:10.1164/rccm.201505-0943OC 

134. Arrieta MC, Stiemsma LT, Dimitriu PA, Thorson L, Russell S, Yurist-Doutsch 
S, et al. Early infancy microbial and metabolic alterations affect risk of child-
hood asthma. Sci Transl Med (2015) 7:307ra152. doi:10.1126/scitranslmed.
aab2271 

135. Abrahamsson TR, Jakobsson HE, Andersson AF, Bjorksten B, Engstrand L, 
Jenmalm MC. Low gut microbiota diversity in early infancy precedes asthma 
at school age. Clin Exp Allergy (2014) 44:842–50. doi:10.1111/cea.12253 

136. Pluznick JL, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A, Han J, et  al. 
Olfactory receptor responding to gut microbiota-derived signals plays a role 
in renin secretion and blood pressure regulation. Proc Natl Acad Sci U S A 
(2013) 110:4410–5. doi:10.1073/pnas.1215927110 

137. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels 
D, et  al. The orphan G protein-coupled receptors GPR41 and GPR43 are 
activated by propionate and other short chain carboxylic acids. J Biol Chem 
(2003) 278:11312–9. doi:10.1074/jbc.M211609200 

138. Le Poul E, Loison C, Struyf S, Springael JY, Lannoy V, Decobecq ME, et al. 
Functional characterization of human receptors for short chain fatty acids 
and their role in polymorphonuclear cell activation. J Biol Chem (2003) 
278:25481–9. doi:10.1074/jbc.M301403200 

139. Nilsson NE, Kotarsky K, Owman C, Olde B. Identification of a free fatty 
acid receptor, FFA2R, expressed on leukocytes and activated by short-chain 
fatty acids. Biochem Biophys Res Commun (2003) 303:1047–52. doi:10.1016/
S0006-291X(03)00488-1 

140. Schmidt J, Smith NJ, Christiansen E, Tikhonova IG, Grundmann M,  
Hudson BD, et  al. Selective orthosteric free fatty acid receptor 2 (FFA2) 
agonists: identification of the structural and chemical requirements for 
selective activation of FFA2 versus FFA3. J Biol Chem (2011) 286:10628–40. 
doi:10.1074/jbc.M110.210872 

141. Xiong Y, Miyamoto N, Shibata K, Valasek MA, Motoike T, Kedzierski RM, 
et  al. Short-chain fatty acids stimulate leptin production in adipocytes 
through the G protein-coupled receptor GPR41. Proc Natl Acad Sci U S A 
(2004) 101:1045–50. doi:10.1073/pnas.2637002100 

142. Taggart AK, Kero J, Gan X, Cai TQ, Cheng K, Ippolito M, et al. (d)-beta- 
Hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor 
PUMA-G. J Biol Chem (2005) 280:26649–52. doi:10.1074/jbc.C500213200 

143. Yoshioka H, Iseki K, Fujita K. Development and differences of intestinal flora 
in the neonatal period in breast-fed and bottle-fed infants. Pediatrics (1983) 
72:317–21. 

144. Verhasselt V, Milcent V, Cazareth J, Kanda A, Fleury S, Dombrowicz D, et al. 
Breast milk-mediated transfer of an antigen induces tolerance and protection 
from allergic asthma. Nat Med (2008) 14:170–5. doi:10.1038/nm1718 

145. Scholtens S, Wijga AH, Brunekreef B, Kerkhof M, Hoekstra MO, Gerritsen 
J, et al. Breast feeding, parental allergy and asthma in children followed for 8 
years. The PIAMA Birth Cohort Study. Thorax (2009) 64:604–9. doi:10.1136/
thx.2007.094938 

146. Oddy WH, De Klerk NH, Sly PD, Holt PG. The effects of respiratory infec-
tions, atopy, and breastfeeding on childhood asthma. Eur Respir J (2002) 
19:899–905. doi:10.1183/09031936.02.00103602 

147. Oddy WH, Holt PG, Sly PD, Read AW, Landau LI, Stanley FJ, et  al. 
Association between breast feeding and asthma in 6 year old children: find-
ings of a prospective birth cohort study. BMJ (1999) 319:815–9. doi:10.1136/
bmj.319.7213.815 

148. Bachrach VRG, Schwarz E, Bachrach LR. Breastfeeding and the risk of hos-
pitalization for respiratory disease in infancy – a meta-analysis. Arch Pediatr 
Adolesc Med (2003) 157:237–43. doi:10.1001/archpedi.157.3.237 

149. Cushing AH, Samet JM, Lambert WE, Skipper BJ, Hunt WC, Young SA, et al. 
Breastfeeding reduces risk of respiratory illness in infants. Am J Epidemiol 
(1998) 147:863–70. doi:10.1093/oxfordjournals.aje.a009540 

150. Wright AL, Holberg CJ, Martinez FD, Morgan WJ, Taussig LM. Breast 
feeding and lower respiratory tract illness in the first year of life. 
Group Health Medical Associates. BMJ (1989) 299:946–9. doi:10.1136/
bmj.299.6705.946 

151. Nishimura T, Suzue J, Kaji H. Breastfeeding reduces the severity of respiratory 
syncytial virus infection among young infants: a multi-center prospective 
study. Pediatr Int (2009) 51:812–6. doi:10.1111/j.1442-200X.2009.02877.x 

152. Downham MA, Scott R, Sims DG, Webb JK, Gardner PS. Breast-feeding pro-
tects against respiratory syncytial virus infections. Br Med J (1976) 2:274–6. 
doi:10.1136/bmj.2.6030.274 

153. Simoes EAF. Environmental and demographic risk factors for respiratory 
syncytial virus lower respiratory tract disease. J Pediatr (2003) 143:118–26. 
doi:10.1067/S0022-3476(03)00511-0 

154. Hapfelmeier S, Lawson MA, Slack E, Kirundi JK, Stoel M, Heikenwalder 
M, et  al. Reversible microbial colonization of germ-free mice reveals the 
dynamics of IgA immune responses. Science (2010) 328:1705–9. doi:10.1126/
science.1188454 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1016/j.chom.2016.10.014
https://doi.org/10.1038/nature01520
https://doi.org/10.1073/pnas.0808723105
https://doi.org/10.1126/science.1219328
https://doi.org/10.1038/nri3830
https://doi.org/10.1038/sj.ejcn.1601661
https://doi.org/10.3109/00365528608996411
https://doi.org/10.1016/j.jnutbio.2010.07.009
https://doi.org/10.1016/j.nutres.2008.02.012
https://doi.org/10.1002/hep.23572
https://doi.org/10.1073/pnas.1322269111
https://doi.org/10.1074/jbc.M110.102947
https://doi.org/10.1074/jbc.M110.102947
https://doi.org/10.1038/nm.3444
https://doi.org/10.1038/nm.3444
https://doi.org/10.1038/nm1652
https://doi.org/10.1038/ncomms8320
https://doi.org/10.1038/ncomms8320
https://doi.org/10.1126/science.1241165
https://doi.org/10.1164/rccm.201505-0943OC
https://doi.org/10.1126/scitranslmed.aab2271
https://doi.org/10.1126/scitranslmed.aab2271
https://doi.org/10.1111/cea.12253
https://doi.org/10.1073/pnas.1215927110
https://doi.org/10.1074/jbc.M211609200
https://doi.org/10.1074/jbc.M301403200
https://doi.org/10.1016/S0006-291X(03)00488-1
https://doi.org/10.1016/S0006-291X(03)00488-1
https://doi.org/10.1074/jbc.M110.210872
https://doi.org/10.1073/pnas.2637002100
https://doi.org/10.1074/jbc.C500213200
https://doi.org/10.1038/nm1718
https://doi.org/10.1136/thx.2007.094938
https://doi.org/10.1136/thx.2007.094938
https://doi.org/10.1183/09031936.02.00103602
https://doi.org/10.1136/bmj.319.7213.815
https://doi.org/10.1136/bmj.319.7213.815
https://doi.org/10.1001/archpedi.157.3.237
https://doi.org/10.1093/oxfordjournals.aje.a009540
https://doi.org/10.1136/bmj.299.6705.946
https://doi.org/10.1136/bmj.299.6705.946
https://doi.org/10.1111/j.1442-200X.2009.02877.x
https://doi.org/10.1136/bmj.2.6030.274
https://doi.org/10.1067/S0022-3476(03)00511-0
https://doi.org/10.1126/science.1188454
https://doi.org/10.1126/science.1188454


15

Lynch et al. The Microbiome and Respiratory Disease

Frontiers in Immunology | www.frontiersin.org February 2017 | Volume 8 | Article 156

155. Sonnenberg GF, Artis D. Innate lymphoid cells in the initiation, regulation and 
resolution of inflammation. Nat Med (2015) 21:698–708. doi:10.1038/nm.3892 

156. Kiss EA, Vonarbourg C, Kopfmann S, Hobeika E, Finke D, Esser C, et al. 
Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal 
lymphoid follicles. Science (2011) 334:1561–5. doi:10.1126/science.1214914 

157. Hunt JR, Martinelli R, Adams VC, Rook GA, Brunet LR. Intragastric 
administration of Mycobacterium vaccae inhibits severe pulmonary allergic 
inflammation in a mouse model. Clin Exp Allergy (2005) 35:685–90. 
doi:10.1111/j.1365-2222.2005.02239.x 

158. Forsythe P, Inman MD, Bienenstock J. Oral treatment with live Lactobacillus 
reuteri inhibits the allergic airway response in mice. Am J Respir Crit Care 
Med (2007) 175:561–9. doi:10.1164/rccm.200606-821OC 

159. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et  al. 
Induction of colonic regulatory T cells by indigenous Clostridium species. 
Science (2011) 331:337–41. doi:10.1126/science.1198469 

160. Fajt ML, Wenzel SE. Asthma phenotypes and the use of biologic medications 
in asthma and allergic disease: the next steps toward personalized care. 
J Allergy Clin Immunol (2015) 135:299–310. doi:10.1016/j.jaci.2014.12.1871 

161. Lynch JP, Ferreira MA, Phipps S. Th2/Th17 reciprocal regulation: twists 
and turns in the complexity of asthma phenotypes. Ann Transl Med (2016)  
4(1):S59. doi:10.21037/atm.2016.10.69 

162. Moro G, Arslanoglu S, Stahl B, Jelinek J, Wahn U, Boehm G. A mixture of 
prebiotic oligosaccharides reduces the incidence of atopic dermatitis during 
the first six months of age. Arch Dis Child (2006) 91:814–9. doi:10.1136/
adc.2006.098251 

163. Westerbeek EA, Van Den Berg A, Lafeber HN, Fetter WP, Van Elburg 
RM. The effect of enteral supplementation of a prebiotic mixture of 
non-human milk galacto-, fructo- and acidic oligosaccharides on intestinal 
permeability in preterm infants. Br J Nutr (2011) 105:268–74. doi:10.1017/
S0007114510003405 

164. Vliagoftis H, Kouranos VD, Betsi GI, Falagas ME. Probiotics for the treat-
ment of allergic rhinitis and asthma: systematic review of randomized con-
trolled trials. Ann Allergy Asthma Immunol (2008) 101:570–9. doi:10.1016/
S1081-1206(10)60219-0 

165. Chen YS, Jan RL, Lin YL, Chen HH, Wang JY. Randomized placebo- 
controlled trial of Lactobacillus on asthmatic children with allergic rhinitis. 
Pediatr Pulmonol (2010) 45:1111–20. doi:10.1002/ppul.21296 

166. Karimi K, Inman MD, Bienenstock J, Forsythe P. Lactobacillus reuteri-
 induced regulatory T cells protect against an allergic airway response 
in mice. Am J Respir Crit Care Med (2009) 179:186–93. doi:10.1164/
rccm.200806-951OC 

167. Jang S-O, Kim H-J, Kim Y-J, Kang M-J, Kwon J-W, Seo J-H, et al. Asthma 
prevention by Lactobacillus rhamnosus in a mouse model is associated with 
CD4(+)CD25(+)Foxp3(+) T cells. Allergy Asthma Immunol Res (2012) 
4:150–6. doi:10.4168/aair.2012.4.3.150 

168. Strickland DH, Judd S, Thomas JA, Larcombe AN, Sly PD, Holt PG. Boosting 
airway T-regulatory cells by gastrointestinal stimulation as a strategy for 
asthma control. Mucosal Immunol (2011) 4:43–52. doi:10.1038/mi.2010.43 

169. Van De Pol MA, Lutter R, Smids BS, Weersink EJ, Van Der Zee JS. 
Synbiotics reduce allergen-induced T-helper 2 response and improve 
peak expiratory flow in allergic asthmatics. Allergy (2011) 66:39–47. 
doi:10.1111/j.1398-9995.2010.02454.x 

170. Chiba E, Tomosada Y, Vizoso-Pinto MG, Salva S, Takahashi T, Tsukida K, 
et al. Immunobiotic Lactobacillus rhamnosus improves resistance of infant 
mice against respiratory syncytial virus infection. Int Immunopharmacol 
(2013) 17:373–82. doi:10.1016/j.intimp.2013.06.024 

171. Arslanoglu S, Moro GE, Boehm G. Early supplementation of prebiotic 
oligosaccharides protects formula-fed infants against infections during the 
first 6 months of life. J Nutr (2007) 137:2420–4. 

172. Luoto R, Ruuskanen O, Waris M, Kalliomäki M, Salminen S, Isolauri E. 
Prebiotic and probiotic supplementation prevents rhinovirus infections 
in preterm infants: a randomized, placebo-controlled trial. J Allergy 
ClinImmunol (2014) 133:405–13. doi:10.1016/j.jaci.2013.08.020 

173. Rautava S, Salminen S, Isolauri E. Specific probiotics in reducing the risk of 
acute infections in infancy – a randomised, double-blind, placebo-controlled 
study. Br J Nutr (2009) 101:1722–6. doi:10.1017/S0007114508116282 

174. Taipale T, Pienihakkinen K, Isolauri E, Larsen C, Brockmann E, Alanen P, et al. 
Bifidobacterium animalis subsp. lactis BB-12 in reducing the risk of infections 
in infancy. Br J Nutr (2011) 105:409–16. doi:10.1017/S0007114510003685 

175. Maldonado J, Canabate F, Sempere L, Vela F, Sanchez AR, Narbona E, 
et  al. Human milk probiotic Lactobacillus fermentum CECT5716 reduces 
the incidence of gastrointestinal and upper respiratory tract infections 
in infants. J Pediatr Gastroenterol Nutr (2012) 54:55–61. doi:10.1097/
MPG.0b013e3182333f18 

176. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, et al. Regulation 
of inflammatory responses by gut microbiota and chemoattractant receptor 
GPR43. Nature (2009) 461:1282–6. doi:10.1038/nature08530 

177. Wise A, Foord SM, Fraser NJ, Barnes AA, Elshourbagy N, Eilert M, et al. 
Molecular identification of high and low affinity receptors for nicotinic acid. 
J Biol Chem (2003) 278:9869–74. doi:10.1074/jbc.M210695200 

178. Ulven T. Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/
GPR41 as new potential therapeutic targets. Front Endocrinol (2012) 3:111. 
doi:10.3389/fendo.2012.00111 

179. Palomares O, Ruckert B, Jartti T, Kucuksezer UC, Puhakka T, Gomez E, et al. 
Induction and maintenance of allergen-specific FOXP3+ Treg cells in human 
tonsils as potential first-line organs of oral tolerance. J Allergy Clin Immunol 
(2012) 129:510–20. doi:10.1016/j.jaci.2011.09.031 

180. Kaiko G, Loh Z, Spann K, Lynch J, Lalwani A, Davidson S, et al. TLR7 gene 
deficiency and early-life pneumovirus infection interact to predispose toward 
the development of asthma-like pathology in mice. J Allergy Clin Immunol 
(2013) 42:1331–9. doi:10.1016/j.jaci.2013.02.041 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2017 Lynch, Sikder, Curren, Werder, Simpson, Cuív, Dennis, Everard 
and Phipps. This is an open-access article distributed under the terms of the Creative 
Commons Attribution License (CC BY). The use, distribution or reproduction in 
other forums is permitted, provided the original author(s) or licensor are credited 
and that the original publication in this journal is cited, in accordance with accepted 
academic practice. No use, distribution or reproduction is permitted which does not 
comply with these terms.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1038/nm.3892
https://doi.org/10.1126/science.1214914
https://doi.org/10.1111/j.1365-2222.2005.02239.x
https://doi.org/10.1164/rccm.200606-821OC
https://doi.org/10.1126/science.1198469
https://doi.org/10.1016/j.jaci.2014.12.1871
https://doi.org/10.21037/atm.2016.10.69
https://doi.org/10.1136/adc.2006.098251
https://doi.org/10.1136/adc.2006.098251
https://doi.org/10.1017/S0007114510003405
https://doi.org/10.1017/S0007114510003405
https://doi.org/10.1016/S1081-1206(10)60219-0
https://doi.org/10.1016/S1081-1206(10)60219-0
https://doi.org/10.1002/ppul.21296
https://doi.org/10.1164/rccm.200806-951OC
https://doi.org/10.1164/rccm.200806-951OC
https://doi.org/10.4168/aair.2012.4.3.150
https://doi.org/10.1038/mi.2010.43
https://doi.org/10.1111/j.1398-9995.2010.02454.x
https://doi.org/10.1016/j.intimp.2013.06.024
https://doi.org/10.1016/j.jaci.2013.08.020
https://doi.org/10.1017/S0007114508116282
https://doi.org/10.1017/S0007114510003685
https://doi.org/10.1097/MPG.0b013e3182333f18
https://doi.org/10.1097/MPG.0b013e3182333f18
https://doi.org/10.1038/nature08530
https://doi.org/10.1074/jbc.M210695200
https://doi.org/10.3389/fendo.2012.00111
https://doi.org/10.1016/j.jaci.2011.09.031
https://doi.org/10.1016/j.jaci.2013.02.041
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	The Influence of the Microbiome on Early-Life Severe Viral Lower Respiratory Infections and Asthma—Food for Thought?
	Introduction
	The Link Between Severe or Frequent vLRI and Subsequent Asthma Development
	The Airway Bacterial Microbiota is Dysbiotic in Asthma, but Why?
	Airway Microbial Dysbiosis and the RSV-Bronchiolitis to Asthma Nexus
	Microbial Colonization and the Development of Early-Life Respiratory Disease
	Microbiota Hypothesis
	Short-Chain Fatty Acids and Asthma
	Breast-Feeding and Asthma
	The Maternal Microbiota and Infant Respiratory Health
	Harnessing the Microbiota to Prevent and/or Treat Bronchiolitis
	Prebiotics, Probiotics, and Synbiotics
	SCFAs and SCFA Mimetics

	Conclusion
	Author Contributions
	Funding
	References


