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ABSTRACT: We study the optimal tuning of the free parameters in
range-separated double hybrid functionals, based on enforcing the exact
conditions of piecewise linearity and spin constancy. We find that
introducing the range separation in both the exchange and the correlation
terms allows for the minimization of both fractional charge and fractional
spin errors for singlet atoms. The optimal set of parameters is system
specific, underlining the importance of the tuning procedure. We test the
performance of the resulting optimally tuned functionals for the
dissociation curves of diatomic molecules. We find that they recover
the correct dissociation curve for the one-electron system, H2

+, and
improve the dissociation curves of many-electron molecules such as H2
and Li2, but they also yield a nonphysical maximum and only converge to
the correct dissociation limit at very large distances.

■ INTRODUCTION
Density functional theory (DFT)1,2 has long been the
workhorse for first-principles calculations in the fields of
physics, chemistry, and materials science.3−9 DFT is an exact
theory in principle, but as it requires an exchange−correlation
(xc) energy expression that is generally unknown, it is almost
always approximate in practice.
Among the many forms of approximate xc functionals,

orbital-dependent functionals have long been known to offer
additional flexibility in functional construction that can be
translated into improved accuracy at a reasonable computa-
tional cost.10 In particular, global hybrid functionals,11−13

which incorporate a fraction of nonlocal exact or Hartree−
Fock (HF) exchange (and are formally part of the fourth rung
of the “Jacob’s ladder”14 functional classification system), have
found widespread use. A more sophisticated class of hybrid
functionals are the range-separated hybrid (RSH) func-
tionals.15,16 In this approach, the electron−electron interaction
is partitioned into short-range (SR) and long-range (LR)
contributions, allowing for different exchange treatments in the
two ranges. For molecules, often full HF exchange is used for
the LR part, which restores the correct asymptotic potential,
and a mixture of semilocal and HF exchange is used for the SR
part, which retains the advantages of the global hybrid
functional in balancing SR exchange with correlation. This
allows RSH functionals to be asymptotically correct, to
mitigate self-interaction errors, and to mitigate or sometimes
even eliminate localization/delocalization errors,17 resulting
often in excellent performance.
Clearly, not all issues can be resolved by improving the

treatment of exchange. Many remaining shortcomings in the

accuracy of xc functionals18−22 call for an orbital-dependent
expression not just for exchange but also for correlation. One
popular approach for implementing this idea, in practice, is the
use of double hybrid (DH) functionals,23,24 where both a
fraction of exact exchange and a fraction of second order
Møller−Plesset (MP2)25 correlation are admixed. Such DH
functionals are part of rung 5 of “Jacob’s ladder”, as the MP2
correlation expression requires unoccupied or virtual orbitals.
DH functionals have been shown to yield improved results for
many challenging cases, e.g., van der Waals interactions,26,27

spin-state energetics,28,29 and generally an improved treatment
of thermochemistry.30−32

The RSH idea can be combined with the DH concept in two
different ways. The simpler way is to use a range-dependent
admixture of HF exchange together with a global admixture of
MP2 correlation,33−40 an idea that has already resulted in more
accuracy. A more general approach is to use an RSH scheme
where both exchange and MP2 correlation are range-
separated.41 Specific parametrizations of this general scheme
were already shown to improve the treatment of van der Waals
interactions,42−44 fractional-charge scenarios,45 and excited
states.46,47 We note that while the two approaches are generally
not the same, both are often referred to in the literature as a
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“range-separated double hybrid”. To avoid confusion, we refer
to the former as “DH-RSx” and to the latter as “DH-RSxc” in
the rest of this paper.
A crucial step for the accuracy of a single RSH functional

(i.e., where range separation is used only for the exchange
term) is the choice of the range-separation parameter. In the
optimally tuned RSH (OT-RSH) functional,48−57 the range-
separation parameter is chosen from first principles, based on
satisfaction of the ionization potential (IP) theorem for each
system separately. OT-RSH has been shown to be highly
successful in eliminating fractional charge errors58 and
mitigating large self-interaction errors.59,60 It is therefore
interesting to generalize the optimal tuning idea to DH
functionals and to examine whether this is advantageous. This
introduces more free parameters. Here we examine the
importance of tuning these parameters based on two exact
conditions:61−64 the piecewise linearity condition65,66 and the
spin constancy condition.67 Using a generalization of MP2,68

for the illustrative case of singlet atoms, we find that the DH-
RSxc scheme offers an advantage over the DH-RSx scheme as
it allows the minimization of both errors with the same set of
parameters. For dissociation curves of simple diatomic
molecules, we find significant improvement compared with
single hybrid and some DH functionals. The correct
dissociation limit is also obtained at large distances, but a
nonphysical maximum is still found for intermediate distances.

■ THEORY
In RSH functionals, the Coulomb repulsion is split, often using
the error function in the form69

r r
r r

r r
r r

r r

1 erf( )

1 erf( )

α β γ

α β γ
| − ′|

= + | − ′|
| − ′|

+ − [ + | − ′| ]
| − ′| (1)

If HF and semilocal exchange are used to evaluate the first and
second terms in eq 1, respectively, then the exchange (x)
energy is split into long-range (LR) and short-range (SR)
terms,16 in the form69
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where we use the superscripts HF and DFA (density functional
approximation) to denote the type of exchange treatment and
the subscript “x” for the parameters α, β, and γ to emphasize
that the exchange is range-separated. For molecules, the OT-
RSH scheme chooses αx + βx = 1 in order to recover the
correct asymptotic decay of the xc potential.70,71 The range-
separation parameter γx is tuned so as to satisfy the IP
theorem,51,72 which states that the eigenvalue of the highest
occupied molecular orbital (HOMO) of the system with N

electrons is equal to the IP, which is the total energy difference
of the N and N − 1 electron systems:65,73,74

N N( ) IP( )Hϵ = − (3)

In this way, αx is the only free parameter in eq 2 and it is
usually set to αx = 0.2, which is similar to the exchange fraction
typically used in global hybrid functionals.12,13

In single RSH functionals, the exchange expression of eq 2 is
augmented with standard semilocal correlation. In DH-RSx
functionals, one admixes a global fraction, αc, of MP2
correlation to the functional, yielding

E E E E(1 )xc
DH RSx

x
RSH

c c
MP2

c c
DFAα α= + + −‐

(4)

In eq 4, Ec
MP2 is the MP2 correlation energy, given by

E
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4 ij ab i j a b
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where ϵi is the eigenvalue of the ith orbital and ⟨ij||ab⟩ = ⟨ij|ab⟩
− ⟨ij|ba⟩, with

ij ab x x x x
r r

x xd d ( ) ( )
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The spin−orbital is defined as ψi(x) = ϕi(r) ξi(s), where ξi(s) =
α(s) or β(s) for spin up or spin down, respectively, and ϕi(r) is
a real spatial orbital.
Equation 4 contains four free parameters: αx, βx, γx, and αc.

ωB2PLYP,36 ωB2GPPLYP,36 RSX-QIDH,34 and RSX-0DH35

are four examples of DH-RSx functionals that are all special
cases of eq 4, obtained using different choices for the semilocal
DFA and the above parameters.
In general, the MP2 term in eq 5 diverges if the energy gap

between occupied and virtual states vanishes. For such cases,
we follow the work of Cohen et al.,75 who instead used the
degeneracy-corrected perturbation theory (DCPT2) expres-
sion:68,76

E D D ij ab
1
8

( ) 4
ij ab

abij abijc
DCPT2

occ virt
2 2∑ ∑= − + ⟨ ⟩

(6)

where Dabij = ϵa + ϵb − ϵi − ϵj. For nondegenerate cases,
DCPT2 yields almost the same results as MP2 but overcomes
the divergence (see refs 68 and 75 and Figure I.1 in the
Supporting Information).
In a DH-RSxc functional, a more general scheme with range-

separated MP2 (RS-MP2) correlation,41 which again can be
replaced by DCPT2, is used, leading to
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In eqs 8 and 9
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(See ref 41 and section I in the Supporting Information for the
derivation of RS-MP2.) In the most general case, eq 7 contains
six free parameters: αx, βx, γx, αc, βc, and γc.
One way to reduce the number of free parameters in a

nonempirical manner is to apply constraints based on known
exact conditions that an xc functional should obey. In this
work, we choose αx + βx = 1 and αc + βc = 1 throughout, in
order to obtain the correct asymptotic behavior of the
exchange and correlation potentials.73 Beyond asymptotic
behavior, a general rule that the exact xc functional must obey
is the flat-plane condition.63,64,77,78 This condition specifies
that the energy of a general system, if plotted as a function of
both fractional charge and fractional spin, will produce two flat
planes intersecting in a seam defined by a line of constant and
integer electron number.77,79 Two simple special cases of this
general condition are the piecewise-linearity condition, which
specifies that the total energy is piecewise-linear for a system
with fractional charge and constant spin,65,66 and the spin-
constancy condition,67 which specifies that the total energy is
constant for a system with constant charge but varying spin.
We will refer to deviation from these conditions as fractional
charge (FC) and fractional spin (FS) errors, respectively,
defined as

E E N E N E N

E E N E N E N

( ) ( ) ( ) (1 ) ( ) 1, 0
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δ δ δ δ δ
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Δ = − − [ − + ] ∀ ∈ [ ]

+

−

(10)

and

E E N E N( ) ( (1 , )) ( ) 0, 1FS δ δ δ δΔ = − − ∀ ∈ [ ]
(11)

Here, we extend optimal tuning to a DH functional by
seeking a set of parameters that minimizes FC errors as in
conventional optimal tuning,58 but also simultaneously
minimizes FS errors. To that end, we need to evaluate DH
energies for FC and/or FS scenarios, which requires a
generalization of eqs 2, 5, and 6 to fractional occupations,75,80

in the form
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where δi is the occupation number of the ith orbital, with a
similar extension for the range-separated expressions of eqs
7−9. We note that Hirata et al.81,82 proposed a renormalized
expression for MP2 (renorm-MP2) with fractional occupa-
tions, which restores the correct zero-temperature limit for
metallic systems. Margraf and Bartlett showed83 that the
overall shape of the FC curves generated with the conventional
and the renormalized MP2 expressions are qualitatively similar
but somewhat different quantitatively (see section II in the
Supporting Information for more details). Owing to the
qualitative similarity, this has not being pursued further here.

■ COMPUTATIONAL DETAILS
All calculations presented in this work were performed using a
locally modified version of NWchem v.6.8.1.84 A spin-
unrestricted formalism and the cc-pvtz basis set85,86 were
used throughout.
Equations 5, 6, 8, and 9, allowing for fractional occupations,

were implemented in the semidirect algorithm87 to compute
the MP2 or DCPT2 energy. In our current implementation,
MP2 and DCPT2 energies are calculated with the converged
single hybrid RSH orbitals and eigenvalues. Therefore, only the
total energies are affected by the MP2 and the DCPT2 terms.
We note that it is known88,89 that, when the MP2 expression is
constructed with DFT orbitals instead of HF ones, a nonzero
single-excitation term arises. We do not take this term into
account in the current implementation, but it can be important
for weak interactions.90 For the DFA, all calculations were
based on the “parent” semilocal functional of Perdew, Burke,
and Ernzerhof (PBE).91 For all RSH calculations, we used the
range-separated PBE exchange functional.92−95 We used the
PBE correlation functional for the DH-RSx and the range-
separated PBE correlation functional92−95 for the DH-RSxc
functional (see section III in the Supporting Information for
details of the implementation of the range-separated PBE xc
functional).

■ RESULTS AND DISCUSSION
We start our analysis by examining FC and FS errors obtained
from several local and semilocal (LDA,96 PBE91), global hybrid
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(B3LYP,11,12 PBE0,13 and for comparison “pure” HF), single
RSH (LC-ωPBE097 using both the original and the optimally
tuned range-separation parameter), and global double hybrid
(B2PLYP98 (αx = 0.53, αc = 0.27) and PBE0-DH99 (αx = 0.50,
αc = 0.125)), both used with DCPT2 on account of the
fractional spin occupations) functionals, for the illustrative case
of the Li atom. The results are shown in Figure 1. Figure 1a
shows that LDA and PBE functionals exhibit the largest FC
errors (i.e., largest deviation from piecewise linearity). These
errors are reduced by global hybrid functionals, further reduced
by global double hybrids, and greatly reduced by functionals
with an exact asymptotic exchange. In particular, owing to the
close relation between the IP theorem and piecewise
linearity,58,71 optimal tuning reduces and almost eliminates
the FC error of the parent functional. These trends are
consistent with those of previous analyses.17,58,61,62,71

Figure 1b shows the FS error curves obtained from the same
set of functionals. Interestingly, and again in agreement with
past work,61,62,100 the FS error follows a trend essentially
opposite from that of the FC curves; namely, the error is
smallest for semilocal functionals and increases gradually until
it is worse for HF and single RSH functionals. This opposite
trend is attributed to the fact that the fractional spin system
exhibits a large static correlation.61 This correlation101 is partly
emulated by semilocal exchange.102−107 At higher rungs, the
semilocal exchange content in the functionals is even lower

compared to the LDA or PBE functionals, resulting in an
increased FS error.
One conclusion drawn from Figure 1 is that the two global

DH functionals, B2PLYP and PBE0-DH, reduce the FC error
compared to the (worst performing) semilocal functionals and
also reduce the FS errors compared to the (worst performing)
RSH and HF functionals. Importantly, it is not possible to
minimize both errors with the same global DH functional (see
section IV in the Supporting Information for more details).
Obviously, a functional with higher flexibility is needed. This
suggests that perhaps further improvements can be made by
admixing a fraction of MP2/DCPT2 correlation based on an
underlying OT-RSH functional, rather than a global hybrid
functional, while optimally tuning the relevant parameters so as
to minimize both FC and FS errors. Realizing this approach is
more complicated than tuning of a single RSH owing to the
larger number of mixing parameters in the functional. To test
this idea, we first vary the parameters of a DH-RSx functional,
based on range-separated PBE exchange (see eq 4) until both
FC and FS errors are minimized. As clearly observed for Figure
1, the FC and FS curves usually reach their maximum for δ =
±0.5. We therefore probe the error of this middle point in the
curves of Figure 1 as we vary the three parameters (αx, γx, αc)
of eq 4. Figure 2a provides the set of parameters that minimize
the FC (dashed−dotted lines) and the FS error (dashed lines)
(see section V in the Supporting Information for the individual
contour plots). Evidently, it is possible to find a set of

Figure 1. (a) FC and (b) FS errors, as defined by eqs 10 and 11, respectively, for the Li atom, calculated using LDA96 (−●−), PBE91 (green
−★−), HF (−⧫−), B3LYP11,12 (−■−), PBE013 (−▲−), LC-ωPBE097 (gray −★−), OT-RSH based on LC-ωPBE0 (−◀−), B2PLYP98 (−×−),
and PBE0-DH99 (−▼−).

Figure 2. Minimum contour lines for FC (dashed−dotted lines) and FS (dashed lines) “middle point” errors equal to 10−4 eV for the Li atom. (a)
DH-RSx (eq 4). (b) DH-RSxc (eq 7) with (i) γx = γc and (ii) αx = 0.2.
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parameters for a DH-RSx that satisfy the FC or FS errors.
However, Figure 2a shows that it is not possible to satisfy both
conditions, namely minimal FC and FS errors, with the same
set of parameters.
The failure of optimal tuning of the DH-RSx functional

suggests that we need even more flexibility in the functional
itself. An obvious way to achieve this is to extend the analysis
to the DH-RSxc scheme. In fact, Kalai and Toulouse41 showed
that adding a fraction of MP2 only in the LR (equivalent to
setting αc = 0.0 and αc + βc = 1 in eq 7) already reduces the FC
error. Here, we vary the value of αc and, by using DCPT2
instead of MP2, we can probe the FS error as well. We
emphasize that because we use the αc + βc = 1 constraint, here
when αc = 0.0 the correlation is described solely by DFT in the
SR and by MP2/DCPT2 in the LR (see eq 7). This is in
contrast to the previously discussed DH-RSx case, for which αc
= 0.0 turns off the MP2/DCPT2 correlation altogether.
In our DH-RSxc scheme, there are four free parameters: αx,

γx, αc, and γc. Therefore, we conduct the analysis in two ways,
each constraining one parameter. In the first way, we set the

range-separation parameters of the exchange and correlation
parameters to be the same, i.e., γx = γc. The contour lines for
minimum “middle-curve” FC and FS errors obtained for this
scenario are then shown in Figure 2b-i (see section VI.A in the
Supporting Information for the individual contour plots).
Clearly, range separating both the exchange and the correlation
allows for the minimization of both FC and FS errors, which
occurs at the intersection points of the respective curves in
Figure 2b-i. We also conclude that αx needs to be larger than αx
= 0.2, which is a typical value for a single hybrid, for the FC
and FS lines to intersect, i.e., in order to satisfy both FC and FS
conditions. This is in line with the known behavior of DH
functionals, which typically carry a larger percentage of HF
exchange (often ∼50%).26,27,32,98,108,109
As a second way to constrain the number of free parameters

in the above analysis, we set αx to a fixed value, while we vary
the values of γx, γc, and αc independently. Results obtained
using αx = 0.2 are shown in Figure 2b-ii. We conclude that, if
the range-separation parameters of the exchange and the
correlation are allowed to be different, the FC and FS curves

Figure 3. Middle point (left) FC and (right) FS errors for H, Li, B, and F atoms calculated with various PBE-based functionals: PBE-QIDH, a
nontuned global double hybrid (blue ■); RSX-QIDH, a nontuned DH-RSx functional (cyan ■); OT-RSH (red ■) with αx = 0.2; DH-RSxc
(magenta ■) with γx = γc and αc = 0.2; and DH-RSxc (orange ■) with αx = 0.5 and αc = 0.2. The parameters of the latter two functionals were
determined from the intersection points of the middle point FC and FS contour lines, as shown in Figure 2b-i and Figure VI.3 of the Supporting
Information, respectively, for the Li atom. Some of the functionals exhibit errors too small to see. (See section VII in the Supporting Information
for the values of the errors and the parameters of the RSH functionals.)

Figure 4. Dissociation curves of H2
+, H2, and Li2, calculated with the same functionals used in Figure 3, namely, PBE-QIDH (−×−), RSX-QIDH

(−●−), OT-RSH (−◀−), DH-RSxc-I (magenta −■−), and DH-RSxc-II (orange −■−).
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can still intersect. In this manner, use of a lower HF exchange
fraction, which may be advantageous in terms of spin
contamination,32,110−114 can be achieved. A higher fraction
of αx can still be used equally well: see section VI.B in the
Supporting Information for a comparison of the tuning
procedure of the DH-RSxc-ii functional with αx = 0.2 and αx
= 0.5.
To illustrate the relative merit of our approach, we compare

in Figure 3 the “middle point” FC and FS errors for the H, Li,
B, and F atoms, calculated with various PBE-based functionals:
the nontuned PBE-QIDH115 functional (a global DH), the
nontuned RSX-QIDH (a DH-RSx functional), (single) OT-
RSH, and tuned OT-DH-RSxc with γx = γc and γx ≠ γc. For the
latter, we use αx = 0.5, in order to facilitate the comparison
with nontuned DH functionals that include a similar fraction of
exact exchange. (See section VII in the Supporting Information
for the parameters of each functional and exact numbers for
the errors and section VIII for a respective comparison with
BLYP-based DH functionals: B2PLYP, a global DH functional,
and ωB2PLYP, a DH-RSx functional.) We observe that the
PBE-QIDH and RSX-QIDH functionals show significant FC
and FS errors for all atoms, OT-RSH shows very small FC
errors but very high FS errors, but tuned DH-RSxc functionals
maintain the low FC errors while also exhibiting low FS errors.
Low FC and FS errors are important because we expect

them to improve various predictions even for the parent
integer electron case and related systems.61 Here, we test this
by using the DH-RSxc functionals to compute the dissociation
curves of diatomic molecules, which are known to be strongly
affected by FC and FS errors61,75 and are a common and
strong test case for new methods.33,61,62,78,106,114,116−121 Figure
4 shows the obtained dissociation curves for the H2

+, H2, and
Li2 molecules, calculated with the same set of functionals used
in Figure 3 (see section IX in Supporting Information for
dissociation curves of the same systems, obtained with the DH-
RSxc-ii functional but with a reduced fraction of exact
exchange). In all calculations shown in Figure 4, the spin
state was purposefully kept constant throughout the dissoci-
ation curve, to avoid improvements in energy owing to
symmetry breaking.22,122,123 We note that the H2

+ molecule is
obviously a one-electron system; therefore, full HF exchange
and zero correlation provide the exact result. OT-RSH and the
two DH-RSxc functionals are accurate, in agreement with the
fact that they exhibit low FC errors, but PBE-QIDH and RSX-
QIDH both converge to a wrong dissociation limit. For H2 and
Li2 atoms, correlation is nonzero and therefore the FS error
becomes relevant. OT-RSH exhibits a higher middle point FS
error (see Figure 3) for the H and Li atoms, when compared to
the PBE-QIDH and RSX-QIDH functionals. This becomes
apparent in the dissociation curves of the H2 and Li2
molecules, for which OT-RSH performs significantly worse
than either the PBE-QIDH or the RSX-QIDH functional. Both
of the DH-RSxc schemes perform significantly better than OT-
RSH, but even though they tend to reach the correct
asymptotic limit of zero at very large distances, they both
exhibit a nonphysical maximum after equilibrium. This is not
unprecedented: a similar feature appears in an MP2/DCPT2
calculation75,124 and has also been found by using the random
phase approximation (RPA) method62,125,126 and a recent
machine-learned functional.100 Clearly, a more subtle treat-
ment of correlation is needed to eliminate this error. For
example, Becke127,128 showed that variational optimization of
fractional occupations improves the dissociation curve.

■ CONCLUSIONS
In conclusion, we studied the optimal tuning of the free
parameters in range-separated double hybrid functionals, based
on enforcing two exact conditions: piecewise linearity and spin
constancy. We found that introducing the range separation in
both the exchange and correlation terms allowed for the
minimization of both fractional charge and fractional spin
errors for singlet atoms. The optimal set of parameters was
found to be system specific, underscoring the importance of
the tuning procedure. The performance of the resulting
optimally tuned functionals for the dissociation curves of
diatomic molecules has been tested. We found that they
recover the correct dissociation curve for the one-electron
system, H2

+, and improve the dissociation curves of many-
electron molecules such as H2 and Li2, but they also yield a
nonphysical maximum and only tend to the correct
dissociation limit at very large distances.
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