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Abstract

Revealing DNA sequence variation within the Lolium perenne genepool is important for genetic

analysis and development of breeding applications. We reviewed current literature on plant

development to select candidate genes in pathways that control agronomic traits, and identified

503 orthologues in L. perenne. Using targeted resequencing, we constructed a comprehensive

catalogue of genomic variation for a L. perenne germplasm collection of 736 genotypes derived

from current cultivars, breeding material and wild accessions. To overcome challenges of

variant calling in heterogeneous outbreeding species, we used two complementary strategies to

explore sequence diversity. First, four variant calling pipelines were integrated with the

VariantMetaCaller to reach maximal sensitivity. Additional multiplex amplicon sequencing was

used to empirically estimate an appropriate precision threshold. Second, a de novo assembly

strategy was used to reconstruct divergent alleles for each gene. The advantage of this approach

was illustrated by discovery of 28 novel alleles of LpSDUF247, a polymorphic gene co-

segregating with the S-locus of the grass self-incompatibility system. Our approach is applicable

to other genetically diverse outbreeding species. The resulting collection of functionally anno-

tated variants can be mined for variants causing phenotypic variation, either through genetic as-

sociation studies, or by selecting carriers of rare defective alleles for physiological analyses.
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1. Introduction

Perennial ryegrass (Lolium perenne L.) is one of the most widely cul-
tivated grass species in Europe. It is of interest for grazing, hay and
silage production as it has a long growing season, and relatively high
yield and nutritive value. Because of its outbreeding nature, individ-
ual plants are highly heterozygous and the diploid perennial ryegrass
genome is highly heterogeneous both within and across breeding
populations and wild accessions. As genomic variation forms the
foundation of phenotypic variation, revealing DNA sequence varia-
tion within the genepool is important for genetic analysis and devel-
opment of breeding applications.1

Several studies used a candidate gene-based approach to associate
sequence polymorphisms with phenotypic variation. Examples in-
clude the association of Late embryogenesis abundant 3 (LEA3)
with drought tolerance,2 Brassinosteroid insensitive 1 (BRI1) with
shoot morphology,3 Gibberellic acid insensitive (GAI) with organ
growth,4 Heading date 1 (HD1) with carbohydrate content5 and
Flowering locus T (FT) with flowering time.5–7 While these studies
show the power of testing gene–trait associations, the limited number
of genes per study was mostly due to the high cost of genotyping at
the time. However, this approach is not amenable to study complex
traits related to plant development and phenology, which are typi-
cally regulated by the interaction of many genes. Therefore, we need
versatile and cost-efficient methods to characterize the genetic varia-
tion in parallel for hundreds of candidate genes and hundreds of gen-
otypes. This enables breeders to perform higher resolution screening
of genetic diversity in their material and link genotypic and pheno-
typic variation.

Single-nucleotide polymorphisms (SNPs) are the most prevalent
type of genomic variation and are convenient molecular markers.
Two complementary SNP genotyping arrays are available for high-
throughput screening in perennial ryegrass.8,9 These arrays target
SNPs in genic regions, but do not allow discovery of new sequence
variants. In contrast, genotyping-by-sequencing (GBS) allows for si-
multaneous discovery of genome-wide SNPs and genotyping of a
large number of individuals or pools, thereby avoiding ascertainment
bias. Therefore, GBS has broad applications in plant breeding and
genetics studies, including linkage maps, genome-wide association
studies, genomic selection and genomic diversity studies.10 Only
short fragments (range about 100–300 bp) are sequenced and there
is no a priori control over which genes are tagged. In combination
with a local short linkage disequilibrium that is typical for an out-
breeding species as L. perenne,3,11 it can be very difficult to identify
SNPs that are causal for the phenotype of interest.

The large size of the L. perenne genome (2 Gbp) and high repeti-
tive sequence content (76%)12 currently precludes whole genome se-
quencing at sufficient depth in hundreds of accessions as has been
done in e.g. Arabidopsis, rice and soybean. To study trait genetics in
forage and turf grasses, we identified hundreds of candidate genes in
genetic pathways that control plant development and quality traits,
and analysed their genome sequence using probe capture enrichment
for targeted resequencing in a large germplasm collection of 736 gen-
otypes. We specifically focussed on genes involved in pathways re-
lated to interesting agronomic traits, such as plant growth and
architecture (important for biomass yield), development and

transition to flowering (important for seasonal control of growth),
cell wall biogenesis (important for digestibility) and phytohormone
biosynthesis, signalling and response [including abscisic acid (ABA),
auxin, brassinosteroids, cytokinins, ethylene, gibberellic acid and
strigolactones]. Identifying sequence variants in these genes provides
insights in the range of naturally occurring genomic diversity that
can be expected in gene-rich regions of the genome. The variants can
be used as markers for association genetics studies (as previously de-
scribed for LEA3, BRI1, GAI, HD1 and FT3), and/or to identify
alleles with altered amino acid sequence, mRNA splicing or mRNA
stability, hence altered gene function or regulation possibly resulting
in an altered physiology and thereby affecting the phenotype.

Multiple bioinformatics methods are available to identify se-
quence variants using next-generation sequencing (NGS) data,
but defining a complete and reliable variant set remains difficult.
De novo discovery of genomic polymorphisms commonly relies on
mapping reads to a single reference genome sequence. Although the
GATK best practices are the most commonly used variant calling
(VC) pipeline, there is no single best VC pipeline available with both
good sensitivity and precision. Moreover, there is low concordance
between VC pipelines, even with the same input data.13–16 In addi-
tion, each VC pipeline returns different variant annotations that can
be used for quality filtering. Choosing the appropriate filtering crite-
ria and thresholds [for instance, minimum read depth (RD)] is not
straightforward as NGS data typically has a non-uniform distribu-
tion of coverage17 and estimated quality values may be dataset
dependent so that optimal settings need to be calibrated for each
dataset. The high density of sequence polymorphisms in the germ-
plasm collection with respect to the L. perenne genome sequence
could also hamper variant identification. More divergent alleles
could contain the most interesting genomic variation, but are also
the most difficult to detect as reads that are highly divergent from the
reference genome may fail to map if the parameters for short read
alignment are too stringent.18 Hence, if capture and/or mapping effi-
ciency of highly divergent sequences precludes their detection, it is to
be expected that routine workflows of mapping and VC lead to an
underestimation of the genetic diversity at highly divergent regions, a
known problem in genome resequencing studies.19

Here, we present the identification and annotation of 503
L. perenne orthologues of known genes that regulate plant growth
and development. These genes were resequenced in a germplasm
collection of 736 genotypes to describe the genomic variation in
L. perenne. Two complementary strategies were used to obtain a reli-
able and complete catalogue of genomic variation. First, four VC
pipelines were compared and automatically integrated to reach maxi-
mal sensitivity. The influence of mapping algorithms was assessed
and hard filtering was compared with precision-based filtering to
reach sufficient specificity. Additionally, an alternative strategy con-
sisting of de novo assembly followed by overlap-layout-consensus
(OLC) clustering was used to circumvent read mapping bias and to
construct alternative alleles for each gene. This reference independent
allele reconstruction is particularly important for gene families
with highly divergent alleles. We demonstrated the benefit of this
approach for LpSDUF247 and identified 28 novel alleles that were
not detected using traditional VC pipelines. This approach is broadly
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applicable to other highly heterozygous outbreeding species. Finally,
we used all this information to create a comprehensive catalogue of
functionally annotated genetic variation across many pathways that
control growth, development and agricultural traits.

2. Materials and methods

2.1 Candidate gene identification and manual curation

Gene families of A. thaliana candidate genes were identified using
the comparative genomics platform PLAZA 3.0 Monocots.20

Brachypodium distachyon family members were used to identify ho-
mologous loci in the draft genome sequence of L. perenne12 using
BLASTx analysis (E-value 10e-5). At each L. perenne locus, predicted
protein sequences were added to the corresponding PLAZA 3.0
Monocots gene family. Using protein sequences of all gene family mem-
bers of A. thaliana, B. distachyon and L. perenne, a phylogenetic tree
was built with MUSCLE (v3.8.31)21 and PhyML22 using default set-
tings, and for each A. thaliana candidate gene the closest orthologous
L. perenne gene was selected for further manual curation. The L. per-
enne gene models were evaluated using multiple protein sequence align-
ments with MUSCLE using orthologous proteins from B. distachyon,
O. sativa, Z. mays and S. bicolor according to PLAZA 3.0 Monocots.
Additional RNA-seq data23–25 mapped with TopHat (v2.0.13)26 using
default settings, was used to refine gene models and delineate untrans-
lated regions, or to design a new gene model if required (Supplementary
Data S1).

2.2 Probe design, library construction and sequencing

The coding strand of each of the 503 target regions (gene model and
1,000 bp upstream promoter region) was tiled with 120 bp probes,
starting every 40 bp using OligoTiler.27 Probes showing high
sequence similarity to non-targets, other probes, repetitive sequences,
mitochondrial or chloroplast sequences, or with extreme GC content
(<25% or >65%) were removed. Finally, 57,693 SureSelect probes
of 120 bp (Agilent) were retained, covering 2.3 Mb of the intended
2.8 Mb target region, at around 3� tiling.

Genomic DNA was extracted from freeze-dried leaf material from
736 L. perenne genotypes representing current cultivars, breeding ma-
terial and wild accessions using the cetyltrimethylammonium bromide
(CTAB) method.28 DNA concentration was measured using the
Quantus double-stranded DNA assay (Promega, Madison, WI, USA).
For each genotype, an indexed shotgun sequencing library was pre-
pared from 100 ng DNA by (i) Adaptive Focused Acoustic fragmenta-
tion on a Covaris S2 instrument (Covaris, Inc.), (ii) adapter ligation
and (iii) magnetic bead purification using an adapted protocol of
Uitdewilligen et al.29 The libraries were pooled without normalization
into eight pools, each containing 96 libraries of individual genotypes.
Each pool was used for a probe capture hybridization reaction accord-
ing to the SureSelect protocol (Agilent SureSelectXT2 Target
Enrichment for Illumina Paired-End Sequencing Library Protocol, v.
1.0). After PCR amplification of purified enriched pooled libraries,
each pool of 96 libraries was sequenced on one lane of a HiSeq2000
instrument using 2 � 91 PE sequencing (BGI, Shenzhen, China). The
raw data is available in the NCBI Sequence Read Archive (BioProject
PRJNA434356, Accessions SRR6812717–SRR6813075).

2.3 Read mapping and variant calling

Raw reads were trimmed and quality filtered by Trimmomatic
(v0.32)30 and mapped onto the draft perennial ryegrass genome

sequence12 with default settings of BWA-MEM (version 0.7.8-r455)31

and GSNAP (version 2016-09-23).32 Duplicate reads were marked us-
ing Picard-tools (release 1.113). Local realignment around indels was
performed according to the best practices workflow of the Genome
Analysis Toolkit (GATK) (v.3.7).36,37 RD and coverage were calcu-
lated on the resulting BAM files using BEDTools (v2.25.0).33

Four different VC pipelines were used: SAMtools (version 1.2-115-
gb8ff342),34 Freebayes (v1.0.2-2-g7ceb532),35 GATK Unified Genotyper
(GATK UG) and GATK HaplotypeCaller (GATK HC).36,37 Multi-allelic
variants were removed using VCFtools (v0.1.14).38 For hard filtering, a
custom Python script was used to remove variant positions and genotype
calls with a RD lower than 6 and a genotype quality (GQ) lower than
30. SNPs and indels were automatically integrated by the VMC (v1.0),39

in 10 and 2 partitions, respectively. The estimated precision (EP) was cal-
culated using a custom Python script based on the formulas given in
Gézsi et al.39 The concordance of SNP and indel sets identified by four
VC pipelines was determined using information in the INFO field of the
VCF file returned by VMC and visually represented using Upset,40 before
and after precision-based filtering (EP > 80%). Functional effects of
sequence variants were predicted with SnpEff (version 4.3T).41 To vali-
date consistency of genotype calls in an F1 segregating population,
Mendelian inheritance errors (MIE) were defined after precision-based
filtering (EP > 80%) using PLINK (v1.90b2t), for two parents and their
F1 progeny of 29 individuals. Variants with a missing genotype call in
either one of the parents were excluded from analysis, as were MIEs
derived from a missing genotype call in one of the 29 F1 progeny.

2.4 Hi-Plex amplicon sequencing

To generate an independent variant set, 78 genotypes were selected
for resequencing of 171 amplicon regions of 80–140 bp. Of these,
147 amplicons overlap with 28 candidate genes. Primers were
designed with Primer342 and divided into two highly multiplex
(Hi-Plex) PCR-reactions according to their amplification efficiency
(Supplementary Data S4). DNA was extracted using the CTAB
method28 and DNA concentration was measured using the Quantus
double-stranded DNA assay (Promega, Madison, WI, USA). Per
sample, the final DNA concentration was adjusted to 40 ng/ml and
the amplicons were PCR-amplified while adding sample specific indi-
ces. Libraries were prepared using the KAPA Hyper Prep PCR-free
Kit according to manufacturer directions (Kapa Biosystems, USA).
Hi-Plex amplification reactions and library preparations were done
by Floodlight Genomics LLC (Knoxville, TN, USA). The libraries
were sequenced with 2 � 150 PE on a HiSeq3000 instrument
(OMRF, Oklahoma City, OK, USA). Paired-end reads were merged
with PEAR (v0.9.8)43 and adapter sequences were removed. The
read data is available in the NCBI Sequence Read Archive
(BioProject PRJNA437219, Accessions SRR6813540–
SRR6813585). BWA-MEM was used for read mapping, and VC
was done by running the four VC pipelines. Bi-allelic variants were
extracted using VCFtools and combined by VMC and the EP was
calculated as described above.

2.5 Identification of divergent alleles of LpSDUF247

Per genotype, all reads were used for De Bruijn Graph assembly
without scaffolding (CLC Genomics Workbench 9.5.3, https://www.
qiagenbioinformatics.com (date last accessed 14 september 2018)).
Contigs of at least 200 bp were retained and mapped onto the refer-
ence genome with BWA-MEM using default parameters, to group all
contigs of the 736 genotypes per candidate gene. Per candidate gene,
sequences of overlapping allelic fragments were extracted from the
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BAM files using BEDtools and clustered with the OLC assembler
CAP3 (version date 02/10/15).44 Singlet sequences returned by CAP3
were removed from further analysis. All resulting alleles are assigned
to their respective candidate gene and are available as
(Supplementary Data S5), allowing the reader to repeat the analyses
described below for any other candidate gene.

One of the candidate genes of the 503 gene set, LpSDUF247, is
known to be highly polymorphic and was selected to demonstrate in-
depth reconstruction of divergent alleles. The 34 contigs of
LpSDUF247 were aligned using MUSCLE and six highly similar
sequences (>98% identity) were removed. The reference gene model of
LpSDUF247 was projected onto the contigs using GenomeThreader
(v 1.6.6)45 to identify CDS regions (Supplementary Data S6) and corre-
sponding protein sequences (Supplementary Data S7).

All B. distachyon members of the DUF247 gene family
(HOM03M000101) were used in a tBLASTn search against the pe-
rennial ryegrass genome sequence, and 25 LpDUF247 genes were
identified and manually annotated (Supplementary Data S8). After
multiple sequence alignment of all 25 LpDUF247 protein sequences
with B. distachyon and H. vulgare gene family members using
MUSCLE, a phylogenetic tree was built with PhyML using 100
rounds of bootstrapping (Supplementary Fig. S5). Similarly, a phylo-
genetic tree was built using the reference protein sequences of
LpDUF247-01, LpSDUF247, LpDUF247-03 and LpDUF247-04, the
protein sequences of the LpSDUF247 alleles, and five LpSDUF247-
02 alleles identified by Manzanares et al.46 (Supplementary Fig. S6).

The 28 novel alleles were added to the reference genome sequence
and read mapping was repeated for all 736 genotypes onto this
multi-allelic reference genome. A matrix was created with the aver-
age RD per LpSDUF247 allele per genotype using BEDtools. This
matrix was normalized per genotype, by dividing the RD per
LpSDUF247 allele by the sum of RDs across all LpSDUF247 alleles,
to identify alleles with the highest relative RD for each genotype
while correcting for differences in library size and capture efficiency
across the set of 736 samples.

3. Results and discussion

3.1 Identification, classification and curation of target

genes

To identify L. perenne genes putatively involved in the regulation of
plant growth and development, plant architecture, induction of flow-
ering, cell wall biogenesis and phytohormone biosynthesis, signalling
and response, we first searched the literature for Arabidopsis thali-
ana genes with a well-defined molecular and physiological function
(Supplementary Table S1). Next, the corresponding 174 gene fami-
lies were identified with the comparative genomics platform PLAZA
3.0 Monocots.20 For each of the A. thaliana candidate genes, a com-
prehensive list of orthologous loci in the draft genome sequence of L.
perenne12 was delineated. A phylogenetic tree was built for A. thali-
ana and B. distachyon gene family members of the 174 PLAZA gene
families, to select the closest orthologous L. perenne sequences of the
candidate genes. When no clear one-to-one orthologous pairs were
found due to lineage-specific gene duplication or gene loss events, the
best two or three L. perenne loci were selected from the respective
clades. The final selection contained 503 L. perenne candidate genes
(Supplementary Table S1). For 407 of these loci, an annotated gene
model was available.12 For the other 96 loci, a gene model needed to
be annotated ab initio, in line with previous observations that the an-
notated gene space of L. perenne is 76% complete.47 The available

gene models were evaluated using multiple protein sequence align-
ments with all their monocot gene family members according to
PLAZA 3.0 Monocots. In addition, mapped RNA-seq data23–25 was
used to refine gene models and delineate untranslated regions. Taken
together, manual curation of 503 gene models (Supplementary Data
S1), showed that previously available gene models12 were correct for
272 loci (54%) and needed small adaptations for 135 loci (27%). A
completely new gene model was annotated at 96 loci (19%) using
RNA-seq data. The length of the protein sequences corresponds well
to that of their closest B. distachyon orthologs (Supplementary Fig.
S1), showing that the 503 manually curated L. perenne gene models
are of high quality (HQ). This was required to delineate regions for
probe design and to correctly position variants relative to the reading
frame in the CDS to functionally interpret the consequences of se-
quence polymorphism in the genic regions. Finally, the 503 candi-
date genes were assigned to biological processes based on the known
function of their A. thaliana orthologs (Table 1 and Supplementary
Table S1). This HQ gene set can also be used to train and validate
gene prediction algorithms to improve genome-wide gene
annotation.

3.2 Design and efficacy of targeted resequencing by

probe capture enrichment

For each candidate gene, a target region was delineated spanning the
curated gene model and an additional 1,000 bp upstream promoter
region, as described previously.48 Probes were designed for a total
length of 2.3 Mbp, corresponding to a coverage of 85% of each tar-
get region on average, as probes targeting repetitive regions were
excluded (Supplementary Data S2). Targeted resequencing of 736
genotypes resulted in 3.2 million reads per genotype on average
(range 20 thousand–31 million). After duplicate read removal,
a mean of 1.9 million reads was retained per genotype, correspond-
ing to a mean RD of 80� per position within the target regions.
For VC analysis in heterozygous diploid species, a coverage of at
least 6–10� is desirable to avoid false negative heterozygous calls.49

Saturation curves show a non-linear relationship between number of
reads per library and target region coverage at a given RD threshold,
as expected for probe capture enriched shotgun sequencing libraries
(Fig. 1). At least 550,000 uniquely mapped reads per genotype were
required to reach the probe region coverage plateau at 95% for RD
� 1. Further increasing the number of reads per sample did not sub-
stantially increase probe region coverage (see Ruttink et al.48). The
probe region coverage was slightly lower at higher RD thresholds
(89% for RD � 6 and 85% for RD � 10 (boxplots in Fig. 1).

3.3 Optimization of variant calling pipelines to compile

a reliable catalogue of sequence variation

To obtain a complete and reliable variant set, we selected two mapping
algorithms and four frequently used multi-sample VC pipelines to reach
maximal sensitivity. Read mapping algorithm BWA-MEM31 was com-
pared to GSNAP,32 which is able to handle short and long insertions
and deletions. Two alignment based VC pipelines were selected for their
strength in SNP calling50: GATK Unified Genotyper (GATK UG)36,37

and SAMtools.34 Additionally, two haplotype-based VC pipelines were
chosen for their strength in indel detection: GATK HaplotypeCaller
(GATK HC) and Freebayes.35 We compared the resulting variant sets
and assessed the performance of hard filtering to improve the precision
of variant sets. Finally, the four individual variant sets and correspond-
ing variant quality annotations were merged by the VMC,39 allowing
for precision-based filtering as an alternative to hard filtering.
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3.4 Influence of read mapping algorithms and variant

calling pipelines

For each VC pipeline, the similarity of SNP and indel sets identified
using BWA-MEM or GSNAP mappings was calculated using the
Jaccard Index (Fig. 2). The similarity of SNPBWA and SNPGSNAP sets
was lowest for Freebayes (0.73) and highest for SAMtools (0.83).
The similarity of indelBWA and indelGSNAP sets was lower than
that of SNPBWA and SNPGSNAP, independent of the VC pipeline.
Jaccard index between indelBWA and indelGSNAP sets ranged from
0.47 (Freebayes) to 0.70 (GATK HC). On average, 11% of the SNPs
were uniquely identified in the SNPBWA set and 9% of the SNPs were
uniquely identified in the SNPGSNAP set. Likewise, on average, 17%
of the indels were uniquely identified in the indelBWA set and 19% of

the indels were uniquely identified in the indelGSNAP set. In summary,
the choice of read mapper did not affect the SNP and indel sets as
much as the choice of VC pipeline. For results presented below, only
variants identified on BWA-MEM mappings are shown, as the same
trend was observed for GSNAP mappings.

3.5 Concordance of variant sets produced by four

variant calling pipelines

Next, the size and concordance of variant sets (bi-allelic SNPs and
indels) identified by the four VC pipelines were compared (Fig. 3).
The number of SNPs was highest for GATK UG and SAMtools and
considerably lower for Freebayes. The number of indels was at least
four times lower than the number of SNPs identified by the same VC

Table 1. Assignment of 503 candidate genes to pathways and distribution of high impact mutations per pathway

Pathway Gene families # candidate
genes

Stop gain Splice site Frame
shift

Plant development and architecture
Development BCH1, BRIZ, CBP80, DRM1, HB13, HYL1, ING2,

RSM1, SAMDC4
14 2 (14%) 4 (29%) –

Cell wall 4CL, ALDH, C3H, C4H, CAD, CAD2,
CCoAOMT, CCR, CES, COMT, F5H, HCT,
HPRGP, IRX, LAC, OFP, PAL, POX, SND, XylS,
XylT

121 41 (34%) 16 (13%) 5 (4%)

Cell wall TF ERF, WRKY 6 2 (33%) – 1 (17%)
Cell wall TF MYB MYB 21 3 (14%) – 1 (5%)
Cell wall TF NAC NAC 11 2 (18%) 4 (36%) 1 (9%)
Chromatin remodelling MET1, SWI 4 3 (75%) 2 (50%) –
Lateral organ initiation ANT, SLOMO, TOP1A 6 1 (17%) – –
Lateral organ patterning

morphogenesis
AS, CLF, DOT5, GRF, KAN, NOV, SE, TRN1,

YABBY, ZPR1, ZPR3
30 7 (23%) 3 (10%) 2 (7%)

Lateral organ identity AN3, BOP, HDZIPIII 10 4 (40%) 1 (10%) –
Light signalling bHLHABAI, CO1, COP9, CRY, DET1, HY5, LHY,

PCI, PFT1, PHYB, PIF, SPA
29 4 (14%) 7 (24%) –

Shoot apical meristem BARD1, BLH, CLPS3, FTA, KNAT, OBE1, ULT1,
USP1, VEF2, WOX14, WUS

25 8 (32%) 5 (20%) 3 (12%)

Self-incompatibility DUF247, GK 4 2 (50%) 1 (25%) 1 (25%)
Transition to flowering CCA, FCA, FIE, FKF1, FLD, FPA, FT, FVE, FWA,

FY, GI, LHP1, MBD9, PHP, RAV, SDG8, SPL3,
VIL3, VRN1, VRN1-like

45 19 (42%) 12 (27%) 1 (2%)

Flower development ESD4, HAC3, LFY3, LUG, MADS, RGA, SEU,
SUF4, SUP

31 2 (6%) 4 (13%) –

Transcription factor BIM2, TCP 8 2 (25%) – –
Phytohormone biosynthesis, signalling and response
ABA biosynthesis NCED1, PDS1, PDS3 4 1 (25%) 1 (25%) –
ABA signalling ABI1, ABI3, ABI5, ABI8, AIP3, DRIP, GBF, GPA,

GTG2, HD2C, PSY, SAD1, SIR3, WIG, ZEP
29 10 (34%) 3 (10%) –

Auxin biosynthesis TAA1, TAR2, YUC 6 3 (50%) – 1 (17%)
Auxin signalling ADA2B, AMP1, ARF, AUXIAA, AXR, AXR1,

AXR4, AXR6, CAND1, GH3, TIR1
20 8 (40%) 3 (15%) –

Auxin transport AUX1, ENP, PGP4, PID2, PIN1, PIN1like, SPS 12 1 (8%) – –
Brassinosteroid biosynthesis DWF1, DWF3, DWF5, DWF7, SQS 8 2 (25%) 1 (13%) –
Brassinosteroid signalling BES1 2 – – –
Cytokinin signalling ARR, CRE, GCR1, RR 11 2 (18%) 1 (9%) –
Ethylene biosynthesis ACS 2 1 (50%) – –
Ethylene signalling EBF1, EBF2, EIL3, EIN2, ETO1, ETR1 13 7 (54%) 1 (8%) 1 (8%)
Gibberellin biosynthesis GAOX 11 4 (36%) – 2 (18%)
Gibberellin signalling GID1A, SHI, SPY 5 – 1 (20%) –
Strigolacton biosynthesis D14, D27, MAX1, MAX3, MAX4 11 3 (27%) 2 (18%) –
Strigolacton signalling MAX2, TB1 4 – – –
Total 180 503 144 72 19
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pipeline. GATK UG and GATK HC identified the highest number of
indels, and SAMtools the least. The concordance of all four VC pipe-
lines was low: only 150k SNPs (33% of the total number of SNPs

identified) and 6.8k indels (5% of the total number of indels identi-
fied) were commonly identified, in line with previous reports.14

3.6 Precision-based filtering is more reliable than hard

filtering

Hard filtering on e.g. minimal RD and GQ is a commonly used strat-
egy to improve the precision of variant sets. As expected, both num-
ber of variant positions and call rate (number of genotype calls per
position across 736 genotypes) decreased by filtering on minimal RD
of six and minimal GQ score of 30 (Fig. 4a and b). Notably, hard fil-
tering did not increase the concordance between VC pipelines
(Supplementary Fig. S2), indicating that true variants were not neces-
sarily identified by multiple VC pipelines. These results corroborate
that it is difficult to build a reliable catalogue of sequence variation
using a single VC pipeline and applying hard filtering.51

As an alternative for hard filtering on individual VC pipelines, the
VMC39 uses support vector machines to automatically combine mul-
tiple information sources (including RD and GQ values) generated
by the four VC pipelines, and estimates the probability that a variant
is a true genetic variant and not a sequencing artefact. The unfiltered,
VMC integrated probe capture variant set contained 444,222 SNPs
and 132,766 indels, determined in 736 genotypes and 503 candidate
genes. By ordering the variants according to their probability, an EP
was calculated for each variant, which can be used for precision-
based filtering. In general, variants identified by multiple VC pipe-
lines were assigned higher EP scores. As precision in this context
refers to the number of true called variants, choosing an EP threshold
is equivalent to finding a dataset- and aim-specific balance between
sensitivity and precision of VC.39

3.7 Empirical determination of the EP threshold

Instead of using an arbitrary EP threshold, we reasoned that the EP
threshold should be determined empirically, based on the distribu-
tions of EP values of HQ and low quality variants (LQ). In the
absence of a published reference set of variants for the genotypes and
genes used in this study, we generated an independent variant set for
a subset of 78 genotypes using a Hi-Plex amplicon sequencing as-
say52 of 171 amplicons, of which 147 overlap with 28 out of the 503
candidate genes. Hi-Plex amplicon sequencing resulted in 126,000
reads per genotype on average (range 11,000–418,000), correspond-
ing to an average RD of 619 reads per amplicon (range 24–20,000).

Using the four VC pipelines integrated by the VMC resulted in a
Hi-Plex variant set containing 813 SNPs and 184 indels, compared
with 775 SNPs and 246 indels in the probe capture variant set that
overlap with these amplicons. In total, 593 SNPs and 60 indels were
commonly identified by the two independent sequencing-based geno-
typing methods. Together, these variants were defined as the HQ
subset of variants. Conversely, SNPs and indels that were unique to
either set (i.e. non-reproducible and more likely to be random arte-
facts), were defined as the LQ subset of variants per genotyping
method.

To further validate HQ variants, we compared genotype calls of
two methods (probe capture vs Hi-Plex) at the individual genotype
level. The mean genotype call consistency, calculated as percentage
of identical genotype calls on the total of 593 HQ SNPs and 60 HQ
indels, over all 78 genotypes was 97% (range 93–100%). This high
level of genotype call consistency confirmed the HQ of commonly
identified variants. Inconsistent genotype calls are most likely the re-
sult of failed probe capture, low RD, the complexity of the region
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potentially hampering read mapping, allele specific amplification
bias in the amplicon sequencing data, or combinations thereof.

Comparison of EP value distributions of HQ and LQ variant posi-
tions (Fig. 5) revealed that EP values of the Hi-Plex variant set were
generally lower than those of the probe capture variant set, possibly
because of higher RD and lower complexity of amplicon reads.
Furthermore, EP values associated with HQ SNPs were higher than
EP values of LQ SNPs for both Hi-Plex and probe capture SNP sets.
Taken together, these data show that an EP threshold of 80% differ-
entiates most HQ variants from LQ variants in the probe capture
SNP set, whereas the EP threshold needs to be set at 70% to remove
LQ variants from the Hi-Plex SNP set. This further indicates that dif-
ferent EP thresholds ought to be used depending on the genotyping
method. In contrast to SNPs, there was no clear differentiation be-
tween EP values associated with HQ or LQ indels (Fig. 5). This
shows that indel detection remains challenging because of mapping
and/or realignment errors, and errors near repetitive regions,53 thus
leading to an incomplete indel set and underestimation of frameshift
variants.

Using the empirically validated EP threshold of 80% for the probe
capture variant set containing variants of 736 genotypes and 503
candidate genes resulted in 252,406 SNPs and 5,074 indels
(Supplementary Data S3). The high genotype call consistency indi-
cates that the VMC, at least for SNPs, was able to reliably integrate
variant sets without losing genotype call quality. Moreover, using
the VMC for precision-based filtering led to a higher genotype
call rate compared with hard filtering of individual VC pipelines
(Fig. 4c and d).

3.8 Validation of the resulting variant set in an F1

progeny

Mendelian inheritance in a segregating F1 progeny derived from a
bi-parental cross was used as an accuracy measurement for the

precision-based filtered variant set: MIEs are most likely the result
of erroneous genotype calls. The set of 736 individuals contained
2 parents and their respective F1 progeny of 29 individuals. The ge-
notype calls of these individuals were used to calculate the number of
MIEs. Out of the 257,480 variants, 10,669 contained a missing
genotype call in either one or both parents (4%) and could not be
tested. For the 246,881 remaining variants and 29 individuals,
89,789 MIEs were identified, of which 57,326 (63%) were due to a
missing genotype call. The other 32,463 MIEs represent a genotype
call error in only a fraction of all genotype calls among the 246,881
variants in this F1 progeny (<0.5%). Moreover, these MIEs corre-
sponded to 9,440 variant positions (4%) of which most had a MIE
in a single individual (Supplementary Fig. S3).

3.9 Effects of sequence variation on gene function

We investigated the consequences of sequence variants on predicted
gene function, using the manually curated HQ gene models to
annotate the variants with SnpEff.41 The complete annotation of
functional effects for each of 252,406 SNPs and 5,074 indels is avail-
able as Supplementary Data S3. Out of the 257,480 variants, 65,225
resided in exon regions (25%) and 116,274 in intron regions (45%)
corresponding to a density of 8.6 and 10.1 variants per 100 bp,
respectively. Among the SNPs in coding regions, 38% were non-
synonymous substitutions, which is consistent with previous obser-
vations in L. perenne transcriptomes.23–25

A general overview of the abundance of high impact effects on gene
function, listed per functional category or pathway is presented in
Table 1. These include gain of stop codons, frame shifts and alterations
in splice sites, as they are most likely to disrupt protein
function, possibly leading to loss of function (LOF), and causing phe-
notypic variation. For instance, the variant set contained 256 stop gain
variants, affecting 144 out of the 503 candidate genes. The position of
each stop gain relative to the total CDS length could indicate the degree
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to which the protein is affected (Supplementary Fig. S4). Most of these
stop gain variants occur at low allele frequency across the germplasm
collection. Additionally, 72 candidate genes were affected by splice site
variants: 40 variants affected donor splice sites and 47 variants affected
acceptor splice sites. In line with the relatively low number of indels
(5,074), only 20 frameshift variants were identified in 19 genes. In sum-
mary, naturally occurring LOF alleles could be readily identified in as
much as one-third of the genes tested across various pathways that are
important for plant growth and development.

This variant catalogue can be exploited in a dual fashion:
(1) to associate genomic variation with phenotypic variation using
an association mapping approach, which we are currently perform-
ing for architectural traits and cell wall digestibility, or (2) to mine
for rare defective alleles, i.e. variants that disrupt gene function or
regulation, and to subsequently select carriers of these variants for
detailed phenotypic analysis. For example, we observed naturally oc-
curring alleles for the single copy genes GIGANTEA (LpGI-01) and
ENHANCED RESPONSE TO ABSCISIC ACID 1 (LpERA1-01),

in which a premature stop codon truncates translation at 5% and
23% of the protein length, respectively. Crosses with the carriers of
these putative null alleles could help to clarify the function of LpGI-
01 in the regulation of flowering time, circadian clock, and/or hypo-
cotyl elongation54 and LpERA1-01 in meristem organization and
the ABA-mediated signal transduction pathway.55

Sequence variants were determined in a germplasm collection repre-
senting commercial cultivars, breeding populations and wild accessions,
so as to ensure the downstream application in current breeding pro-
grams. For instance, the 170 amplicons used to estimate the EP thresh-
old, and to validate the genotype calls of the probe capture set, were
designed to cover the genetic diversity in 28 genes putatively involved in
flowering time and other phenotypic traits of interest to breeders.
Design and validation of these amplicons is a clear illustration of the ap-
plication of the variant set. Since a comprehensive set of SNPs and
indels are now known for our breeding materials, detailed and custom-
ised design of PCR primers targeting specific SNPs in candidate genes
spread across the genome, while avoiding polymorphisms in the
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flanking primer binding site, becomes feasible. Similar methods and cri-
teria apply to the design of hybridization probes for high density SNP
arrays. We are currently using Hi-Plex amplicon sequencing as a very
cost- and time-efficient method to screen hundreds of variants simulta-
neously in a few thousand genotypes, a scale required to screen for pu-
tative associations with phenotypic traits in our current breeding
populations.

3.10 Reconstruction of divergent alleles enables better

characterization of genetic variation

The prime goal of targeted resequencing is to de novo discover alleles
that are divergent from the reference genome sequence. However,
the capture efficiency of a divergent sequence is reduced with increas-
ing sequence dissimilarity to the reference sequence for which the
probes were designed. Additionally, reads may fail to map to highly
divergent regions if the parameters for short read alignment are too
stringent.18 To circumvent mapping short reads to a single reference
sequence, on which classical VC pipelines rely, we devised a de novo
assembly strategy to reconstruct full-length alleles. First, de novo as-
sembly of the captured reads was performed per individual genotype
to reconstruct alleles for each of the 503 candidate genes in parallel.
Next, all de novo assembled contigs from all 736 genotypes were
aligned to the reference genome to sort out and extract all corre-
sponding allelic fragments per candidate gene. Per gene, all contigs
were clustered using the OLC assembler CAP344 to collapse allelic
redundancy and resolve fragmented gene sequences. This three-step
approach results in a collection of alternative alleles assigned to each
of the 503 candidate genes (on average 58 contigs per gene, range
4–203). The entire set of 29,320 CAP3 contigs is available as
Supplementary Data S5. The value of this approach is that we can

now characterize genetic variation in regions of high sequence diver-
sity where traditional short read mapping-based VC pipelines fail.

We demonstrate the value of this approach for LpSDUF247, but
all analyses described below may be repeated for any of the other 502
candidate genes, using the sequence data supplied as Supplementary
Data S5. LpSDUF247 is a highly polymorphic gene co-segregating
with the S-locus that determines the grass self-incompatibility sys-
tem.46 CAP3 clustered the allelic diversity present in the 736 geno-
types into 34 separate contigs. Alignment of CAP3 contigs identified a
central region of the protein with high sequence divergence, while this
region is virtually free from SNPs in the VC dataset, showing the limi-
tations of read mapping-based VC. Six contigs displayed high se-
quence similarity (98%) to the reference sequence or to other contigs
and were removed. Within the remaining allelic contigs, a single exon
encoded for the DUF247 protein. The translated proteins showed
only 73–84% global sequence identity with each other (Fig. 6a).
These data are consistent with the previously reported identification
of at least five unique alleles of LpSDUF247 with 80–90% protein
sequence identity.46 Phylogenetic analysis confirmed that de novo
assembled contigs were indeed novel alleles of LpSDUF247 at the S-
locus, and not of any of the 24 other DUF247 paralogs in the L.
perenne genome (Supplementary Figs S5 and S6).

Next, we analysed the distribution of LpSDUF247 alleles across
the L. perenne germplasm collection. The 28 novel alleles were
added to the reference genome sequence, thus complementing the ref-
erence LpSDUF247 allele, and giving reads the opportunity for near-
perfect mapping at their respective allele. Differential read mapping
across the alleles in a multi-allelic context was then used to score
which alleles are present in each genotype. Mapping reads in a multi-
allelic context eliminates the need for VC, but only if alleles are suffi-
ciently divergent so that differential RD can be used to identify which
alleles are present per genotype. Near-perfect mapping of the raw
reads onto the newly constructed LpSDUF247 alternative alleles
confirmed their existence in the L. perenne germplasm collection, ex-
cept for allele 31 which had no read support (Fig. 6c). This also
shows that the capture efficiency of 120 bp probes was sufficient to
detect alleles with as little as 80% sequence identity to the reference
genome sequence.

In the vast majority of genotypes (501 out of 736) the reads al-
most exclusively mapped onto a combination of two LpSDUF247
alleles, often at similar RD, and only a minor fraction (<5%) of
reads mapped to additional alleles (Fig. 6c). There was no bias for
combinations of alleles across wild accessions, breeding populations
and cultivars, and clear segregation of alleles was observed in the F1
progeny (n¼29) of a bi-parental cross that was included in the set of
736 individuals (Supplementary Fig. S7). Furthermore, 57 genotypes
displayed reads mapping only to a single allele, suggesting either ho-
mozygosity or the failure to capture and sequence yet undiscovered
alternative alleles with even stronger sequence divergence to the ref-
erence genome sequence used to design the probes. Finally, 177 gen-
otypes displayed RD spread over three or more alternative alleles. In
65 of them, the higher allele count could be explained by a consistent
co-segregation of LpSDUF247-04 with LpSDUF247-28 suggesting a
gene duplication, in combination with an additional, variable third
allele. In the remaining 112 genotypes, the observation that reads
map to more than two alleles in a multi-allelic reference genome,
could indicate ambiguity of read mapping between closely related
alleles, or the presence of additional alleles derived from cross-over
events at the LpSDUF247 locus.

Although LpSDUF247 was the most extreme case of sequence di-
vergence in alternative alleles, Supplementary Figure S8 presents four
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other candidate genes with different levels of divergence, global or lo-
cal. The alternative alleles of LpMAX3-01 and LpETR1-01 showed
only local sequence divergence, at the introns and 50UTR regions,
respectively. The sequence variation of LpFT-04 was captured in
only four contigs, explaining why the variant density across the gene
region was low, especially when low frequent SNPs were filtered out.
Taken together, the analysis of LpSDUF247 demonstrates the rich
sequence diversity that can be mined for in this catalogue of genomic
diversity across 503 candidate genes.
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