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Abstract: The plant-specific NAC transcription factors play important roles in plant 

response to drought stress. Here, we have compared the expression levels of a subset of 

GmNAC genes in drought-tolerant DT51 and drought-sensitive MTD720 under both 

normal and drought stress conditions aimed at identifying correlation between GmNAC 

expression levels and drought tolerance degree, as well as potential GmNAC candidates for 

genetic engineering. The expression of 23 selected dehydration-responsive GmNACs was 

assessed in both stressed and unstressed root tissues of DT51 and MTD720 using real-time 

quantitative PCR. The results indicated that expression of GmNACs was genotype-dependent. 

Seven and 13 of 23 tested GmNACs showed higher expression levels in roots of DT51 in 

comparison with MTD720 under normal and drought stress conditions, respectively, 
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whereas none of them displayed lower transcript levels under any conditions. This finding 

suggests that the higher drought tolerance of DT51 might be positively correlated with the 

higher induction of the GmNAC genes during water deficit. The drought-inducible 

GmNAC011 needs to be mentioned as its transcript accumulation was more than 76-fold 

higher in drought-stressed DT51 roots relative to MTD720 roots. Additionally, among the 

GmNAC genes examined, GmNAC085, 092, 095, 101 and 109 were not only drought-inducible 

but also more highly up-regulated in DT51 roots than in that of MTD720 under both 

treatment conditions. These data together suggest that GmNAC011, 085, 092, 095, 101 and 

109 might be promising candidates for improvement of drought tolerance in soybean by 

biotechnological approaches.  

Keywords: comparative expression analysis; drought stress; NAC transcription factor; 

real-time quantitative PCR; soybean  

 

1. Introduction 

Drought is one of the most devastating abiotic stresses, which negatively impacts plant growth and 

development [1]. In response to water deficit, plants trigger a number of physiological and metabolic 

processes to promote their survival [2,3]. At a molecular level, upon perceiving the environmental 

stress signal, numerous genes in plants, including those encoding transcription factors (TFs), have 

altered their expression for stress adaptation [4]. TFs have been known to play important roles in plant 

stress responses by regulating various signaling pathways through their binding to the cis-acting 

element(s) located in promoter region of downstream target genes, thereby activating them, and/or 

through interaction with other proteins [5]. A significant number of TFs, such as those belonging to 

AP2/ERF (Apetala 2/ethylene-responsive element binding factor), bZIP (basic-domain leucine zipper), 

MYB (myeloblastosis), WRKY, and NAC (NAM—no apical meristem, ATAF—Arabidopsis 

transcription activation factor, and CUC—cup-shaped cotyledon) families, have been reported to be 

involved in regulation of drought stress responses [6–10].  

The plant-specific NAC TF family was first described in Petunia more than 15 years ago [11].  

In the last decade, advances in genomic sequencing have allowed the research community to identify 

the NAC family members in a number of sequenced species, such as 117 genes in Arabidopsis, 151 in rice 

(Oryza sativa) [12], 163 in poplar (Populus trichocarpa) [13], 152 in tobacco (Nicotiana tabacum) [14], 

and approximately 200 members in soybean (Glycine max) [15]. The NAC TFs are multi-functional 

proteins and involved in diverse processes, including auxin signaling and lateral root formation [16], 

embryo development [17], flowering [18], regulation of secondary cell wall synthesis, cell division [19], 

biotic and abiotic stress responses [20,21]. In general, the NAC TFs share a conserved DNA-binding 

domain located at the N-terminal end, and a variable domain at the C-terminal end important for the 

transcriptional regulatory functions [17,22–24]. In drought stress signaling, NAC TFs are involved in 

both abscisic acid (ABA)-dependent and ABA-independent pathways [2]. The involvement of NAC 

TFs in regulation of drought response was first reported in Arabidopsis with the discovery of  

the multiple stress-responsive ANAC019, ANAC055 and ANAC072 genes, whose overexpression 
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significantly improved drought tolerance of Arabidopsis transgenic plants [10]. Following this study, a 

number of NAC genes have been identified in various species, including crop plants, such as OsNAC6, 

SNAC1 and ONAC45 in rice [21,25–27], TaNAC69 and TaNAC2a in wheat (Triticum aestivum) [28,29], 

and AhNAC3 in peanut (Arachis hypogaea) [30], which showed strong potential for genetic 

engineering of improved stress-tolerant crops. 

Soybean is a nutritionally important crop due to its great supplies of protein- and oil-rich food for 

human consumption and animal feed [31]. According to the Food and Agricultural Organization of 

United Nations’s statistic (2012), worldwide soybean production is more than 250 million metric tons, 

mainly from United States, Brazil, Argentina, China and India. Vietnam, with distribution of  

175,295 metric tons, also belongs to the top 25 soybean-producing countries [32]. However, drought 

stress has led to significant reductions in soybean yield (24%–50%) at various locations over the  

world [33,34]. To cope with drought stress, in recent years intensive research has been conducted to 

gain a better insight into molecular mechanisms underlying drought responses in soybean, especially  

at transcriptional and translational levels to discover and functionally analyze the genes  

involved [1,35–38]. Thanks to the completion of the soybean genomic sequence in 2010, at least 61 TF 

families were identified in soybean by computational prediction, among which the NAC TF family 

was predicted to consist of more than 180 members by several research groups [15,39,40]. The first six 

GmNAC genes called GmNAC1-6 were identified by Meng et al. in 2007 [41], and the expression of 

these genes under osmotic stress was thoroughly examined [42]. Later on, in the first large-scale study 

of the GmNAC family, expression profiling of 31 GmNAC genes in soybean seedlings demonstrated 

that 9 GmNAC genes were induced by dehydration, high salinity, cold and/or ABA treatments [31]. 

More recently, a comprehensive analysis of GmNAC family by Le et al. (2011) identified 152 full-length 

GmNAC TFs, including 11 membrane-bound members within soybean genome [43]. Furthermore,  

out of 38 GmNAC genes the authors found 25 and 6 GmNACs induced and repressed 2-fold or more, 

respectively, in roots and/or shoots of soybean seedlings by dehydration treatment using real-time 

quantitative PCR (RT-qPCR). In addition, the same group demonstrated the complexity in the 

dynamics of drought-responsive expression of the GmNAC genes as they reported that several  

GmNAC genes displayed different drought-responsive expression profiles in different tissues at the 

same development stage or in the same tissue at different development stages [44]. Strong lines of 

evidence obtained from various model and crop plants, including soybean, collectively suggest that 

NAC TFs play an important role in plant adaptation to various stresses, thereby providing novel tools 

and resources for improvement of stress tolerance in economically important crops.  

In spite of their important roles in plant responses to stresses, the potential of GmNACs has not 

been fully explored in soybean. In this study, we have carried out differential expression analysis of  

23 selected dehydration-responsive GmNAC genes in DT51 (a drought-tolerant soybean variety) and 

MTD720 (a drought-sensitive soybean variety) that have contrasting drought-responsive phenotypes. 

We hypothesized that differential expression of GmNAC genes might contribute to drought tolerance 

of DT51 versus MTD720. Therefore, we examined the correlation between expression of GmNAC genes 

and drought tolerance degrees to identify possible role of GmNACs in DT51 that has enhanced 

drought-tolerant trait. Additionally, the differentially expressed GmNACs could serve as potential 

genetic resources for development of soybean elite cultivars with improved drought tolerance by 

genetic engineering.  
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2. Results and Discussion 

2.1. Differential Expression of a Subset of Drought-Responsive GmNAC Genes in the Roots of DT51 

and MTD720  

Previously, among 152 GmNACs, which have putative full-length open reading frame, 50 stress-related 

genes were predicted based on phylogenetic analyses of GmNAC, ANAC and ONAC families [43]. Out 

of these 50 genes, 38 genes were checked by RT-qPCR, and 25 up-regulated and 6 down-regulated 

genes were identified in roots and/or shoots of 12-day-old soybean seedlings in response to 

dehydration [43]. To determine whether the differential expression of GmNAC genes would contribute 

to enhanced drought tolerance we have carried out differential expression analysis of selected genes in 

a drought-tolerant (DT51) and in a drought-sensitive soybean variety (MTD720). These varieties have 

contrasting drought-tolerant phenotype under the same experimental conditions by comparing their 

relative water content (RWC) and drought-tolerant index (DTI) with 11 other soybean cultivars  

(data submitted for publication to BioMed Research International, Thu et al.). In addition, under  

non-stressed conditions, DT51 has longer root and shoot lengths than MTD720, especially at V3-stage 

(not shown). From the identified 31 dehydration-responsive GmNAC genes [43], we selected 23 genes 

that displayed the highest expression change by dehydration treatment, including 17 up-regulated and 

all 6 down-regulated genes, grouped to Group A and B in this work, respectively, for comparative 

expression analyses (Table S1).  

Root plasticity has been considered as an important physiological trait in genotypic adaptation to 

drought stress. Plants with desirable root traits, such as longer primary root and/or larger lateral root 

system, can adapt better to drought stress as they can reach water at lower soil layers and forage 

subsoil surface moisture [45–47]. Since regulation of root plasticity has been implicated as one of the 

most important activities reflecting the plant responses against drought stress, in this study we had the 

highest interest in analyzing differential expression of the selected GmNAC genes in roots of DT51 and 

MTD720 to identify the possible correlation between enhanced drought tolerance of DT51, as well as 

potential GmNAC genes for genetic engineering.  

Using the criteria of the ratio change ≥2 and p-value < 0.05, out of 23 selected dehydration-responsive 

GmNACs a total of 19 genes displayed altered expression in roots of DT51 and/or MTD720 after  

the drought treatment (Figure 1, Table 1). We found that among 14 genes of Group A, 9 genes 

(GmNAC011, 043, 085, 092, 095, 099, 101, 102 and 109) were up-regulated in DT51 roots, whereas 

GmNAC148 was down-regulated as a consequence of the drought treatment (Figure 1A, Table 1).  

The remaining 4 genes of Group A (GmNAC006, 019, 038 and 062) did not show significant 

transcriptional change under our experimental conditions. As for the GmNAC genes in Group B, our 

data showed that GmNAC022 and 027 were induced, while the expression of the remaining genes 

(GmNAC017, 071, 083 and 113) was considered as unaltered in drought-treated roots of DT51 based 

on the predefined criteria (Figure 1B, Table 1). 

In drought-sensitive MTD720, as shown in Figure 1A and Table 1, 12 genes in Group A displayed 

significant expression change in the roots under drought stress. Among these genes, apart from 

GmNAC006, 011, 019 and 148, whose expression was assigned as down-regulated, 8 remaining genes, 

including GmNAC038, 043, 062, 085, 095, 099, 101 and 109, showed up-regulation in response to 
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drought stress. The remaining two genes of Group A (GmNAC092 and 102) did not have their  

gene expression changed during drought stress. Regarding to the GmNACs in Group B, 4 genes 

(GmNAC027, 071, 083 and 113) were down-regulated, while GmNAC022 was induced in drought-treated 

MTD720 roots (Figure 1B, Table 1).  

Figure 1. Expression of 17 selected dehydration-inducible (A) and six selected  

dehydration-repressible (B) GmNAC genes in roots of MTD720 and DT51 under normal 

(white bars) and drought (black bars) conditions. Asterisks on the top of bars indicate 

statistically significant differences (* p-value < 0.05; ** p < 0.01; *** p < 0.001) between 

treated and untreated root samples within a cultivar.  

 

The diverse dehydration/drought-responsive expression of GmNAC genes observed in the roots of 

DT51 and MTD720 might suggest that the expression of GmNAC genes is genotype-dependent. This 

diversification would suggest that there might be a positive correlation between drought-responsive 

expression levels of GmNAC genes and drought tolerance degrees of DT51 and MTD720, as more  

up-regulated and less down-regulated genes were identified in drought-treated roots of DT51, whereas 

the opposite tendency was observed in that of MTD720 (Table 1). Specifically, among 19 GmNAC 

genes with altered drought-responsive expression in DT51 and/or MTD720, there were 11 up-regulated, 

7 unaltered and only 1 down-regulated genes in drought-stressed roots of DT51, whereas  

9 up-regulated, 2 unaltered and 8 down-regulated genes were found in the respective tissues of MTD720. 
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Table 1. Genes of Group A (gray) and Group B (white) with at least 2-fold up- or  

down-regulation by drought treatment in the roots of DT51 and/or MTD720. Data in italics 

indicate insignificant expression changes (≤2-fold and/or p-value ≥ 0.05) and classified as 

“unaltered” regulation. Data in bold indicate significant expression changes (≥2-fold and  

p-value < 0.05). 

Nomenclature Glyma ID DT51 p-value Regulation MTD720 p-value Regulation 
Regulation in 

roots of W82 * 

GmNAC006 Glyma02g07700.1 1.4 0.1884 Unaltered 3.3 0.0085 Down Unaltered 

GmNAC011 Glyma02g26480.1 2.9 0.0074 Up 13.3 0.0098 Down Unaltered 

GmNAC019 Glyma04g38990.1 1.9 0.0299 Unaltered 9.1 0.0089 Down Up 

GmNAC038 Glyma06g15990.1 1.3 0.2121 Unaltered 2.2 0.0121 Up Up 

GmNAC043 Glyma06g38410.1 3.4 0.0478 Up 5.8 0.0001 Up Up 

GmNAC062 Glyma08g19300.1 1.9 0.2011 Unaltered 2.6 0.0340 Up Up 

GmNAC085 Glyma12g22880.1 5.5 0.0402 Up 5.9 0.0008 Up Up 

GmNAC092 Glyma12g35000.1 3.5 0.0126 Up 1.3 0.3609 Unaltered Up 

GmNAC095 Glyma13g05540.1 6.0 0.0289 Up 4.7 0.0447 Up Unaltered 

GmNAC099 Glyma13g31660.1 7.8 0.0097 Up 5.9 0.0114 Up Unaltered 

GmNAC101 Glyma13g35550.1 3.0 0.0026 Up 5.7 0.0009 Up Up 

GmNAC102 Glyma13g35560.1 2.1 0.0143 Up 1.0 0.4799 Unaltered Up 

GmNAC109 Glyma14g24220.1 3.3 0.0016 Up 2.3 0.0315 Up Up 

GmNAC148 Glyma20g04400.1 7.6 0.0027 Down 12.0 0.0151 Down Up 

GmNAC022 Glyma04g42800.1 10.5 0.0203 Up 2.1 0.0450 Up Unaltered 

GmNAC027 Glyma05g24910.1 3.2 0.0434 Up 7.9 0.0013 Down Unaltered 

GmNAC071 Glyma10g04350.1 1.6 0.1411 Unaltered 2.7 0.0207 Down Unaltered 

GmNAC083 Glyma12g13710.1 1.3 0.3577 Unaltered 2.0 0.0093 Down Unaltered 

GmNAC113 Glyma15g07620.1 1.6 0.1812 Unaltered 5.2 0.0016 Down Unaltered 

* The information was obtained based on expression data of untreated and dehydrated root samples of W82 cultivar reported in  

Le et al. (2011) [43]. 

As a means to find further evidence for the existence of the positive correlation between the 

expression levels of the examined GmNAC genes and the different tolerance degrees of DT51 and 

MTD720, we compared the expression levels of the tested GmNACs in the root tissues of the two 

cultivars under both normal and drought conditions. Our data showed that under unstressed conditions, 

7 genes, namely GmNAC085, 092, 095, 101, 109 and 148 of Group A, and GmNAC017 of Group B,  

had significantly higher expression levels in DT51 roots relative to MTD720 roots (Table 2).  

The expression levels of the remaining genes did not significantly differ in DT51’s and MTD720’s 

untreated root tissues. On the other hand, there were more genes, 13 out of 23 tested GmNACs, 

showing significantly higher expression levels in roots of DT51 than in that of MTD720 under drought 

stress. These included GmNAC006, 011, 019, 085, 092, 095, 101 and 109 of Group A, and 

GmNAC017, 022, 027, 071 and 083 of Group B. Not a single GmNAC gene was observed to have 

higher expression in MTD720 roots relative to DT51 roots under either condition. In addition, we 

found that GmNAC085, 095, 101 and 109 were not only drought-inducible in roots of DT51 and 

MTD720 but also had higher transcript levels in roots of DT51 than in that of MTD720 under both 

normal and drought conditions (Tables 1 and 2). It is also worthy to note that GmNAC011 and  
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027 exhibited opposite tendency in regulation between the two varieties. Since these two genes were 

induced in drought-stressed roots of DT51 but repressed in the respective tissues of MTD720, 

GmNAC011 and 027 showed more than 76- and 20-fold higher expression, respectively, in roots of 

DT51 than in that of MTD720 under drought stress (Figure 1; Table 1). Taken together, these results 

suggest that the better drought tolerance of DT51 is, at least in part, associated with the enhanced 

expression of a subset of the GmNAC genes under normal and/or drought stress conditions. 

Table 2. Genes of Group A (gray) and Group B (white) with at least 2-fold differential 

expression ratio in DT51 versus MTD720 comparisons under unstressed and stressed 

conditions. The comparisons were performed individually for roots of the two cultivars 

under either normal or drought condition. Lower expression levels in DT51 compared to 

MTD720 were indicated by negative fold changes. Data in italics indicate insignificant 

expression changes (≤2-fold and/or p-value ≥ 0.05). Data in bold indicate significant 

expression changes (≥2-fold and p-value < 0.05).  

Nomenclature Glyma ID 
Roots Regulation 

Normal p-value Drought p-value DT51 MTD720 

GmNAC006 Glyma02g07700.1 −1.5 0.1098 3.0 0.0386 Unaltered Down 
GmNAC011 Glyma02g26480.1 2.0 0.0707 76.6 0.0008 Up Down 
GmNAC019 Glyma04g38990.1 1.3 0.2279 23.3 0.0016 Unaltered Down 
GmNAC085 Glyma12g22880.1 2.3 0.0119 2.1 0.0467 Up Up 
GmNAC092 Glyma12g35000.1 2.4 0.0349 11.3 0.0045 Up Unaltered 
GmNAC095 Glyma13g05540.1 3.3 0.0129 4.2 0.0438 Up Up 
GmNAC101 Glyma13g35550.1 3.8 0.0002 2.0 0.0101 Up Up 
GmNAC109 Glyma14g24220.1 4.8 0.0075 6.9 0.0001 Up Up 
GmNAC148 Glyma20g04400.1 2.6 0.0039 4.2 0.1324 Down Down 
GmNAC017 Glyma04g33270.1 5.4 0.0443 9.8 0.0085 Unaltered Unaltered 
GmNAC022 Glyma04g42800.1 2.9 0.1947 14.3 0.0040 Up Up 
GmNAC027 Glyma05g24910.1 −1.3 0.1492 20.2 0.0194 Up Down 
GmNAC071 Glyma10g04350.1 2.0 0.0952 9.1 0.0061 Unaltered Down 
GmNAC083 Glyma12g13710.1 1.6 0.1714 4.4 0.0161 Unaltered Down 

2.2. Potential Drought-Responsive Genes for Genetic Engineering 

One of the objectives of this study was to identify drought-responsive genes that could be used  

for development of soybean cultivars with improved drought tolerance via genetic engineering 

technologies. One strategy, which is often used to identify promising candidate genes, is differential 

expression analysis of cultivars with contrasting drought-tolerant phenotypes [35]. Thus, taking the 

advantage of this study we searched for GmNAC genes that have more highly expression levels in 

DT51 than in MTD720, especially under stress conditions [35]. Furthermore, on the basis of the 

hypothesis that a potential candidate gene should be applicable to any genotype to overcome the 

drought stress and the genetic engineering approach could be either over-expression of knockdown, the 

candidate gene should be in general either induced or repressed in response to drought in both 

contrasting cultivars [35]. The candidate genes may also be those that are unaltered in  
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drought-sensitive cultivar but induced in drought-tolerant cultivar, or repressed in drought-sensitive 

genotype and unaltered or induced in drought-tolerant genotype [48].  

According to these principles, we have identified a number of genes that can be considered for 

further functional characterizations prior to using them in genetic engineering. When comparing the 

gene expression levels in the root tissues of the two cultivars exposed to drought stress, GmNAC085, 

095, 101 and 109 were drought-inducible in root tissues of both cultivars and showed significantly 

higher expression levels in DT51 not only under drought but also under normal conditions  

(Tables 1 and 2). Among these 4 genes, of particular interest is GmNAC085 since it shares 39% 

identity at protein level with SNAC1, a rice NAC gene, whose overexpression enhanced drought 

tolerance of transgenic rice plants under field conditions [26]. GmNAC011 (GmNAC20 in [22]) is also 

a very attractive candidate gene as its overexpression in Arabidopsis was shown to enhance salt 

tolerance and improved lateral root development [22], that could thus benefit plant adaptation to 

drought stress as well [45–47]. The expression level of GmNAC011, which was found to be up- and 

down-regulated in drought-stressed roots of DT51 and MTD720, respectively, was approximately 

76.6-fold higher in DT51 roots than in that of MTD720 under drought stress. GmNAC092  

(previous named GmNAC4 in [31,41,42]), which was up-regulated in drought-stressed roots of DT51 

but unaltered in that of MTD720 and expressed at higher level in DT51 roots under both conditions, 

can be considered a potential candidate gene, too. GmNAC092 was grouped together with ANAC019, 

ANAC055 and ANAC072 in phylogenetic analyses [41,43], which were demonstrated to enhance 

drought tolerance when overexpressed in transgenic Arabidopsis plants [10].  

In summary, we identified six potential candidate genes including GmNAC011, 085, 092, 095, 101 

and 109. Not only their coding regions, but also their drought-inducible promoters may be promising 

for genetic engineering. Increasing evidence has indicated that application of stress-inducible promoters 

in biotechnology can overcome the negative effect of excessive overproduction of the protein resulted 

from the usage of constitutive promoters [49,50]. To gain an insight into the potential applications of 

the promoters of these candidate GmNAC genes in transgenic technologies under various stress 

conditions, we have searched for the well-known stress-responsive cis-motifs, including ABRE1 (ABA 

responsive element 1), ABRE2 (ABA responsive element 2), CE1 (coupling element 1), CRT (C-repeat), 

ICEr1 (induction of CBF expression region 1), ICEr2 (induction of CBF expression region 2), LTRE 

(low temperature-responsive elements), MYBR (MYB recognition site), MYCR (MYC recognition site), 

NACR (NAC recognition site) [8,51], G-box [52], CE3 (coupling element 3), DRE (dehydration-responsive 

element), T/G box, EE (evening element) [53,54] and ZFHDRS (ZFHD recognition sequence) [55],  

in their promoter regions (3000-bp upstream sequences from transcription start site [15]). Among these 

15 motifs, 9 (ABRE2, CE3, DRE, ICEr2, MYBR, MYCR, G-box, T/G box and EE) were found in the 

promoter regions of the GmNAC candidate genes (Table S2). ICEr2 has been known as a cold-responsive 

cis-element [51], while ABRE2, CE3, DRE, MYBR, MYCR, G-box, T/G box and EE were identified 

as dehydration-inducible cis-motifs [51–54]. Consistent with their drought-inducible expression profile 

(Table 1), all six GmNACs contain one or more dehydration-inducible cis-motifs in their promoter 

regions. Furthermore, our results indicated that in addition to dehydration-inducible cis-motifs,  

ICEr2 was also found in the promoter region of GmNAC109, suggesting that GmNAC109 might also 

be induced by cold stress, and its promoter could be used in genetic engineering of soybean plants 

against not only drought but also cold stress. 
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3. Experimental Section  

3.1. Plant Growth, Drought Treatment and Collection of Root Tissues 

Two local soybean cultivars with contrasting drought-responsive phenotypes, DT51 (drought-tolerant) 

and MTD720 (drought-sensitive), were obtained from Legumes Research and Development Center 

and Can Tho University, Vietnam, respectively (Thu et al. unpublished data [56]). Plants were grown 

in plastic tubes (80 cm in height and 10 cm in diameter) filled with a mixture of soil, coconut fiber and 

cow pat (6:2:2 w/w) from Southern Fertilizer Company, under well-watered and greenhouse conditions 

(30/28 °C day/night temperatures, photoperiod of 12/12 h, and 60%–70% humidity) for 12 days.  

For drought treatment, the 12-day-old plants were non-irrigated for 15 days when the soil moisture 

content (SMC) was decreased to 5%–6%. For well-watered control, water was given to plants regularly 

once per day to maintain SMC at 65%–70%. After the drought treatment, control and drought-treated 

plants were removed carefully by cutting the plastic tubes longitudinally. The root tissues were 

collected, frozen in liquid nitrogen and stored at −80 °C until RNA isolation. The sampling process 

was performed with three biological replicates. 

3.2. Total RNA Isolation and cDNA Synthesis 

Total RNA was purified using Trizol reagent and PureLink RNA Mini Kit (Invitrogen, Carlsbad, 

CA, USA). DNaseI treatment was carried out using On-column PureLink DNase (Invitrogen, 

Carlsbad, CA, USA). RNA concentration was quantified twice for each sample using UV-vis 

spectrophotometer (Biotek, Winooski, VT, USA). First-stranded cDNA synthesis was performed using 

1 µg of total RNA from each sample using cDNA Synthesis Kit (Thermo Scientific, Vilnius, Lithuania).  

3.3. Real-Time Quantitative PCR 

Gene-specific primer pairs for 23 GmNAC genes used in this study were showed in Table S1 with 

reference to [43]. For RT-qPCR of GmNAC genes, Fbox was used as reference gene [57]. RT-qPCR 

reactions were prepared in 25 µL final volume, which includes SYBR Green PCR Master Mix 

(Thermo Scientific, Vilnius, Lithuania), primer sets with final primer concentration of 0.4 µM/primer 

and 1 µL of cDNA template. The thermal profile of the RT-qPCR was 95 °C for 10 min, 40 cycles of  

95 °C for 15 s and 60 °C for 1 min (Mastercycler® ep realplex, Eppendorf, Hamburg, Germany). 

Dissociation curves were obtained using a thermal melting profile performed after the RT-qPCR cycle: 

95 °C for 15 s followed by a constant increase in the temperature between 60 and 95 °C. The relative 

gene expression was calculated using the 2−ΔCt method. In addition, fold change review between two 

conditions and cultivars was determined by the 2−ΔΔCt method. Background-corrected raw fluorescence 

data were exported from Mastercycler® ep realplex, Eppendorf system (Hamburg, Germany) and 

analyzed in LinRegPCR software (version 2012.0, Academic Medical Center, Amsterdam, 

Netherlands, 2012) with a built-in baseline correction and amplification efficiency calculation [58]. 

The calculated amplification efficiencies of 24 specific primers (23 examined GmNAC and the  

Fbox reference gene) used in this study were showed in Table S1. 
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3.4. Discovery of cis-Regulatory Motifs in Promoter Regions of GmNACs 

The identified positions of cis-motifs were described and presented in Table S2. The sequences of 

16 well-known stress-inducible cis-motifs, including ABRE1, ABRE2, CE1, CRT, ICEr1, ICEr2, 

LTRE, MYBR, MYCR, NACR [8,51], G-box [52], CE3, DRE, T/G box, EE [53,54] and ZFHDR [55], 

were obtained from literature (Table S2). The 3000-bp promoter regions (3000-bp upstream sequences 

from transcription start site) of GmNAC genes were obtained from SoybeanTFDB [15]. The cis-motif 

search was performed as previously described [15]. 

3.5. Statistical Analysis of the Data 

Drought-responsive genes were defined if the change in expression was at least 2-fold induction or 

repression under the water deficit treatment. When comparing expression of GmNAC genes between 

cultivars, differential expression ratio with at least 2-fold was considered as significant. The mean 

values of relative expression to Fbox were used to plot figures, and error bars on the top of bars 

represent standard errors of 3 biological replicates. The data were analyzed by Student’s t-test (one tail, 

unpaired, equal variance) to identify the statistical significance of differential gene expression within 

or between two cultivars under either normal or drought treatment with p-value < 0.05. 

4. Conclusions 

The results of this study suggested that in response to drought stress, transcriptional regulation of 

GmNAC genes may vary dependently on the genotypes of the cultivars. In addition, our study 

demonstrated that there is a positive correlation between the root-related expression of a subset 

GmNAC genes and the improved drought tolerance of DT51, in comparison with the drought-sensitive 

MTD720. This study also enabled us to identify a number of GmNAC candidates that may be subjected 

to in-depth functional characterizations aimed at improving drought tolerance in soybean.  
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