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Abstract Exploring the mechanisms of maintaining microbial community structure is important to

understand biofilm development or microbiota dysbiosis. In this paper, we propose a functional

gene-based composition prediction (FCP) model to predict the population structure composition

within a microbial community. The model predicts the community composition well in both a

low-complexity community as acid mine drainage (AMD) microbiota, and a complex community

as human gut microbiota. Furthermore, we define community structure shaping (CSS) genes as func-

tional genes crucial for shaping the microbial community. We have identified CSS genes in AMD

and human gut microbiota samples with FCP model and find that CSS genes change with the con-

ditions. Compared to essential genes for microbes, CSS genes are significantly enriched in the genes

involved in mobile genetic elements, cell motility, and defense mechanisms, indicating that the
nces and
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functions of CSS genes are focused on communication and strategies in response to the environment

factors. We further find that it is the minority, rather than the majority, which contributes to main-

taining community structure. Compared to health control samples, we find that some functional

genes associated with metabolism of amino acids, nucleotides, and lipopolysaccharide are more

likely to be CSS genes in the disease group. CSS genes may help us to understand critical cellular

processes and be useful in seeking addable gene circuitries to maintain artificial self-sustainable

communities. Our study suggests that functional genes are important to the assembly of microbial

communities.
Introduction

There has never been a better time to investigate microbial
communities [1]. Not only is the influence of microbial com-
munities on biogeochemical cycles, Earth’s climate, and
human health beginning to be understood, but also

cultivation-independent omics techniques as well as high-
throughput sequencing technologies are driving a rapid revolu-
tion of our knowledge on the diversity and complexity of

microbial communities in natural environments [2]. Microor-
ganisms are probably the most diverse organisms and micro-
bial community structures are very important to understand

ecosystem functions [3]. However, many issues remain elusive,
such as the mechanisms underlying microbiota development
and maintenance [4]. Maintaining the structure of microbial
communities is critical to ecosystem and human health. On

the one hand, there are great differences in the microbial com-
munity structure between lowly and highly metal contami-
nated samples [5]. On the other hand, gut microbial

dysbiosis is associated with various diseases, including irritable
bowel syndrome (IBS) [6–8] and depression [9]. Accordingly,
understanding the development and maintenance of micro-

biota may be helpful in providing feasible strategies for
bioremediation and disease therapy.

Many studies on microbial communities were focused on

the influence of various environmental factors on the microbial
community assemblage, such as the imposed treatments [10],
biochar [11], substrate inputs [12], and pH [13]. However, the
roles of functional genes in community structure remain

unknown. Functional genes are important to confer the meta-
bolic phenotypes of microbes, leading to complex ecological
interaction, which is a major determinant of microbial commu-

nity structure [14]. Admittedly, it has long been known about
so-called essential genes for microbes, i.e., the genes of an
organism or of a genome that are widely considered to be cru-

cial for its survival under given conditions [15]. Current studies
on essential genes have made great progress and improved our
knowledge of their associated biological functions [16–19].
However, in natural environments, more than one type of

microorganism lives together within a community, interacting
with each other and exhibiting various social behaviors. In
practice, the essential genes have not yet provided us an insight

into the way to shape a microbial community for many a
microorganism in natural environments. Thus, functional
genes crucial for shaping community structure (we proposed

as the community structure shaping genes, i.e., CSS genes),
rather than the essential genes, are more expected to reveal
the impacts of genes on development and maintenance of com-

munity structure in natural environments.
A well-known limitation of current studies on the microbial

community structure is that monitoring the dynamics of
community structure over time, even with an appropriate
experimental design, is still difficult and cost-consuming [20].
Fortunately, mathematical models offer an access to study

the microbial communities that are difficult to be cultivated
in the lab. Several methods are available for modeling the
dynamics of microbiota. The microbial assemblage prediction

(MAP) [21], a predictive model based on artificial neural net-
works, has achieved much. However, this model takes biolog-
ical processes as black boxes, taking less account of the inner

workings or parts. Rigorous mathematical models are more
conducive to realizing the fundamental elements of microbial
populations. The generalized Lotka–Volterra model [22,23]

and generalized additive model [24] are commonly used and
have made much progress. However, they fail to show good
prediction and have certain known limitations [25,26]. The
generalized Lotka–Volterra equations do not capture mutu-

alisms and some other types of relationships [26], whereas
the generalized additive model assumes that the relationships
are additive, which may not be realistic for complex ecosys-

tems [26]. The replicator dynamics model [27] is the first and
most successful model to study classic evolutionary game the-
ory and has been used extensively in many fields, such as pop-

ulation genetics, biochemical evolution, and sociobiology.
However, these dynamic models do not take environmental
factors into consideration and assume constant population

size, which may not hold for microbial populations [28]. In
summary, these methods have shed light on modeling micro-
bial communities, while their limitations deserve a serious con-
cern in state-of-the-art methods, such as poor performance

and doubtful assumptions.
In this paper, we proposed a modified replicator dynamics

model, functional gene-based composition prediction (FCP)

model, to predict the population structure composition within
a microbial community. Compared to the classical replicator
dynamics models, FCP has made three main improvements

by (1) explicitly analyzing the dynamics of microbes with vari-
able population size; (2) linking environmental parameters,
microbial community structure, and functional characteristics;
and (3) using the dissimilarity of taxonomic units at the func-

tional level based on gene annotation of metagenomic
sequences and environmental variations to quantify the fitness.
Fitness is the most central parameter in replicator dynamics

models and its quantification has been a long-time goal for
evolutionary game theory [29]. The fitness describes the viabil-
ity of microbes as compared to that of other microorganisms

in the community. The interspecific competition and environ-
mental variations have promoted the evolution of microbial
community, but in opposite directions [30]. Environmental fil-

tering increases functional similarity within communities while
competition for limited resources tends to decrease functional
similarity [30]. Consequently, unlike classical replicator
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dynamics models that often merely consider microbial interac-
tions, we used both microbial interactions and environmental
variations to quantify fitness. In summary, we set out to design

and test a model focused on predicting microbial community
assemblages. Furthermore, we defined functional genes that
are indispensable for shaping microbial community structure

as the CSS genes. With the application of the FCP model,
we identified CSS genes and investigated which parts of func-
tional genes were critical for shaping the community structure.

CSS genes may be useful in seeking addable gene circuitries to
maintain artificial self-sustainable communities and treating
diseases related to microbiota dysbiosis. Our model provides
a viewpoint of the relationships between functional genes

and microbial community structure, and our study suggests
that functional genes are key to the assembly of microbial
communities.
Results

The overview of AMD microbial communities

Since predicting microbial community assemblages is often
limited by the inherent complexity of biological systems, we
performed the current study by analyzing acid mine drainage
(AMD) metagenomic sequences as the model metagenome

data. AMD biofilm is a relatively self-contained and low-
complexity system [31]. The genomes of AMD microorganisms
were sequenced with high-throughput sequencing strategies

[32]. After data preprocessing (see methods), totally 17 AMD
samples, characterized by acidity, heat, and high
Figure 1 Hierarchical cluster analysis of AMD samples

A.Hierarchical cluster analysis of environmental factors of AMD samp
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concentrations of heavy metals, had been collected from the
air-solution interface by Banfield and colleagues [32]. A broad
variety of environmental factors at each sample site had been

measured [32] and clustered. As shown in Figure 1A, tempera-
ture and pH were clustered in one group, revealing a close cor-
relation between these two factors. Proteins from the

chemoautotrophic iron-oxidizing bacteria Leptospirillum
group II (59.48 ± 12.54%) were predominantly present in
almost all samples (Figure 1B). The 17 samples have been clus-

tered into two groups, representing different developmental
stages (Figure 1B). The classification results are quite similar
to those reported previously [32]. The group with a high rela-
tive abundance of Leptospirillum group II (79.41 ± 5.70%)

was in the early developmental stage. The other group was
in mature stage and had lower relative abundance of Leptospir-
illum group II (53.35 ± 5.34%, Student’s t test, P < 10E�9).

To examine the gene distribution in AMD community, we
aligned the near-complete genomes of nine species in AMD to
all predicted peptides in the Clusters of Orthologous Groups

(COG) protein database [33] (http://www.ncbi.nlm.nih.gov/
COG/). By blasting to totally 4631 COGs in the database,
we found that AMD samples had 7380 different genes which

were classified into 1998 COGs. The gene function annotation
indicated the difference between bacterial and archaeal gen-
omes (Figure 2). About 4.31% of COGs were shared in all
microbes and enriched in the COG categories of J (translation,

ribosomal structure and biogenesis), C (energy production and
conversion), and O (post-translational modification, protein
turnover and chaperones), reflecting the similarities in transla-

tion and post-translational modification of bacteria and
archaea. Genes in the categories M (cell wall/membrane/
les. Environmental factors including solution discharge rate (Flow,

cm), and the concentrations of ferrous (Fe2+, M)/ferric and ferrous

Ca, mM)/ sulfate (SO4
2�, M)/nitrate (NO3

�, nM)/nitrite (NO2
�, nM)

es of environmental factors are color-coded in the heatmap, with

nalysis of microbial community composition of AMD samples. A-
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. type II indicate Leptospirillum group II, Leptospirillum group III,

are from the archaeal Richmond Mine acidophilic nanoorganisms

ssified into two groups. The group (S3/S4/S12/S13) with higher
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Figure 2 Comparison of COG distributions in AMD samples

Comparisons of the distributions of COGs shared in all species,

bacteria, and archaea, respectively. The vertical axis shows the

different COG categories and the percentage of shared COGs in

each category is shown on the horizontal axis. Asterisks indicate

that the enrichments are significant (Fisher’s exact test, P < 0.05).

COG refers to Clusters of Orthologous Groups. The COG

categories are listed as follows. J, translation, ribosomal structure

and biogenesis; K, transcription; L, replication, recombination

and repair; V, defense mechanisms; T, signal transduction

mechanisms; M, cell wall/membrane/envelope biogenesis; N, cell

motility; U, intracellular trafficking, secretion, and vesicular

transport; O, posttranslational modification, protein turnover,

chaperones; X, mobilome: prophages, transposons; C, energy

production and conversion; G, carbohydrate transport and

metabolism; E, amino acid transport and metabolism; F,

nucleotide transport and metabolism; H, coenzyme transport

and metabolism; I, lipid transport and metabolism; P, inorganic

ion transport and metabolism; R, general function prediction

only; S, function unknown.
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envelope biogenesis), N (cell motility), U (intracellular traffick-
ing, secretion and vesicular transport), and T (signal transduc-
tion mechanisms) were remarkably shared in bacteria (Fisher’s
exact test, P < 0.05). Most of these genes were involved in
communication and motility, allowing bacteria to respond to
environmental changes timely. Metabolism-related genes were

rarely shared in bacterial genomes. However, there came to
almost the opposite conclusions for archaea, whose genomes
mostly shared metabolism but lacked the COG categories T

(signal transduction mechanisms), M (cell wall/membrane/
envelope biogenesis), and U (intracellular trafficking, secretion
and vesicular transport). In summary, bacterial genomes

shared more genes related to responses to extreme acidic envi-
ronments while archaeal genomes shared more genes involved
in metabolism.
Relationships between microorganisms and environmental factors

in AMD samples

We investigated the relationships among the relative

abundances of microorganisms in AMD samples with the
compositionality corrected by renormalization and permuta-
tion (CCREPE) algorithm (http://huttenhower.sph.harvard.

edu/ccrepe). Statistically significant edges (P < 0.05, after
Bonferroni correction, correlation coefficient �0.65) are
shown (Figure 3A). G-plasma, E-plasma, I-plasma, and

A-plasma, members of the order Thermoplasmatales, were
clustered in one group. The relative abundance of G-plasma
was closely related to that of Ferroplasma type II. A positive
correlation between the relative abundances of Ferroplasma

type II and Ferroplasma type I was also found. These observa-
tions suggest a potential positive correlation within genomes of
allied species. However, the relative abundance of the domi-

nant species, Leptospirillum group II, had a negative correla-
tion with that of I-plasma, thus exhibiting a potential
negative correlation with most of the remaining microorgan-

isms. Since that Leptospirillum group III and the archaeal
Richmond Mine acidophilic nanoorganism (ARMAN) lineage
2 (ARMAN2) were not present in this network, their relative

abundances showed poor associations with those of other
microorganisms in AMD samples. The common positive
correlations among closely-related species and negative rela-
tionships in distantly-related species were achieved in part by

environmental filtering, which tended to cluster similar
functions and disperse dissimilar functions. The 16S rRNA
sequences and whole genome annotation results between

Leptospirillum group II and III had a strong correlation, and
the same existed between A-plasma and G-plasma and
between E-plasma and G-plasma. However, there were no

significant direct relationships in their relative abundances.
In addition, the coefficient of variation (the ratio of standard
deviation to average) of Leptospirillum group III and
ARMAN2 were 0.38 and 1.36, respectively, which is much

greater than that of Leptospirillum group II (as 0.21). This
indicates that the relative abundances of Leptospirillum group
III and ARMAN2 are not constant. The two points above

suggest that the community composition in AMD samples is
not only affected by environments but also influenced by other
factors, for example, interspecific competition.

To measure the relative influence of different environmental
factors on microbial structure in AMD samples, we conducted
the multivariate regression tree (MRT) [34] analysis

(Figure 3B). Herein temperature appeared to be a strong
predictor of community structure, because samples with high

http://huttenhower.sph.harvard.edu/ccrepe
http://huttenhower.sph.harvard.edu/ccrepe


Figure 3 Relationships between relative abundances of microorganisms and environmental factors in AMD samples

A. Social relationship network in AMD biosystem. Only statistically significant edges (P < 0.05, after Bonferroni correction, correlation

coefficient �0.65) were retained. Dotted lines reflect negative relationship between different microbes and solid lines represent positive

ones. The thicker lines indicate higher correlation coefficients, i.e., stronger relationships between microorganisms. B. Relationships

between community structure and environmental factors in AMD samples with MRT model. C. Relative influence of environmental

factors on microorganisms using GBM method. The circles represent the outlier values and black crosses show the mean influence of the

corresponding environmental factors on microorganisms. D. Relative influence of environmental factor groups on microorganisms.

Environmental factors are divided into three groups: physical factor group (pH, temperature, flow, and conductivity), acid ion group

(SO4
2�, NO3

–, and NO2
–), and metal ion group (Fe2+, FeT, Zn2+, Cu2+, As3+, and Ca2+). Relative effects of each group on

microorganisms calculated using GBM models are presented. MRT, multivariate regression tree; GBM, gradient boosting machine.
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temperature were distinguished from those with moderate tem-

perature. Leptospirillum group II had a relatively low abun-
dance (54.98 ± 8.07%) in extremely hot environments
(temperature �38.2 �C) but was absolutely dominant

(74.11 ± 14.34%) under moderate temperature conditions
(temperature <38.2 �C). This indicates that as AMD biofilms
mature, they become increasingly heated. The energy might

come from series of complex chemical reactions in AMD bio-
films. Furthermore, we used the gradient boosting machine
(GBM) method [35] to measure the different contributions of
environmental factors to the relative abundance of each

microorganism. Our results demonstrated that pH and temper-
ature are the two most influential variables (Figure 3C). The
low relative impact of Zn2+, Fe2+, and FeT concentrations

on all microorganisms showed their limited contributions to
the dissimilarity of community structure. We classified the
environmental factors into three groups: physical factor group

(pH, temperature, flow, and conductivity), acid ion group
(SO4

2�, NO3
�, and NO2

�), and metal ion group (Fe2+, FeT,
Zn2+, Cu2+, As3+, and Ca2+). The results showed that
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physical factor group had higher impact on these microorgan-
isms than acid ion group (Figure 3D) (Student’s t test,
P< 0.05), while metal ion group had the lowest impact (Stu-

dent’s t test, P< 0.007). Previous studies [36] illustrated that
pH was the major factor contributing to community difference
in Southeast China AMD samples and Fe2+ and Fe3+ were

also relative important factors. Herein we found that pH and
temperature were closely related (Figure 1A) and both were
major factors. However, different from previous studies [36],

our results showed that Fe2+ and FeT had little influence on
most species.

Prediction of microbial community composition in both AMD

and human gut microbiota samples

We then used FCP to simulate how community composition
responds to environmental factors. The environmental factors

cause allied species to cluster, whereas interspecific competi-
tion makes them disperse, thus forming dynamic balance in
microbial communities. Using both interspecific interaction

and environmental information to quantify the driving force
of community development, FCP model achieved a satisfac-
tory prediction (Figure 4A) in AMD samples. The MAP

model, which has proven to be effective in prediction of micro-
bial assemblages [21], was applied to AMD samples as well.
The cross-validation of predicted values showed that the
FCP model (R2 = 0.92, equation of linear regression:

y= 0.96x + 0.003, Bray–Curtis similarity = 85.32 ± 9.68%)
performed better than (one-tailed Student’s t test, P = 0.032)
the MAP model (R2 = 0.72, y = 0.79x + 0.03, Bray–Curtis

similarity = 78.65 ± 15.30%) (Figure 4B). Therefore, our
FCP model demonstrated a higher degree of accuracy and
smaller variance than the MAP model. The relative influence

of environmental factors on AMD biofilms predicted using
the FCP, MAP, and GBM methods is shown in Figure 4C
(correlation coefficient(FCP, MAP) = 0.75, P = 0.0034; correla-

tion coefficient(FCP, GBM) = 0.52, P = 0.069; correlation coef-
ficient(MAP, GBM) = 0.59, P = 0.035). The high correlation
coefficient of the relative impact of environmental variables
showed good consistency between the MAP and FCP

methods.
To illustrate the effectiveness and applicability of the FCP

model, we further applied it to human gut microbiota

(Figure 4D) from healthy and diseased individuals. IBS is
one of the most prevalent functional gastrointestinal disorders,
influencing 5%–11% of the population in most countries [37].

The comorbidity of IBS with depression is common [38]. Alter-
ations in the gut microbiota have been found relevant to both
IBS and depression [39]. Thus, it is important to understand
how gut microbiome changes in persons with IBS and depres-

sion. We have collected fecal samples from 54 individuals [38],
including 21 patients with IBS, 6 with depression, 12 with
comorbid IBS and depression, and 15 health controls

(Table S1). In addition, 14 variables were measured, including
height, weight, pain threshold, and concentrations of relevant
molecules (Table S2). These samples were divided into two

sets, one for model training and another for validation. For
effective validation, each set included samples from the IBS,
depression, comorbidity, and health control groups. The

prediction using our FCP model (phylum: Bray–Curtis
similarity = 85.08 ± 9.02%, R2 = 0.72; order: Bray–Curtis
similarity = 83.55 ± 9.53%, R2 = 0.83; and genus: Bray–
Curtis similarity = 64.16 ± 24.58%, R2 = 0.40) appeared to
be better than (one-tailed Student’s t test, phylum: P = 0.15;

order: P = 0.06; and genus: P= 0.10) that using the MAP
model (phylum: Bray–Curtis similarity = 82.88 ± 10.91%,
R2 = 0.70; order: Bray–Curtis similarity = 78.76 ± 17.92%,

R2 = 0.74; and genus: Bray–Curtis similarity = 59.41
± 19.11%, R2 = 0.28) at the phylum, order, and genus levels,
respectively.

Consequently, the FCP model developed based on
functional gene usage distribution was validated for both
low-complexity and complicated microbial communities. The
performance of FCP model was better than MAP model in

both two datasets. In addition, the MAP model might generate
a few isolated nodes and thus was unable to predict corre-
sponding microorganisms well. Meanwhile, abnormal results

were observed in some samples when predicting using the
MAP mode and these outliers had to be removed (nine outliers
at the level of order and six at the genus level in 54 human gut

microbiota samples), while there were no such cases when
using our FCP model. Different from the MAP model that
takes a black-box view, our FCP model has informative

formulas and thus has the potential of grasping the intrinsic
mechanisms of complex microbial communities.

Identification of CSS genes crucial for shaping community

structure in AMD and human gut microbiota samples

With all annotated protein coding genes, the FCP model con-
structs the microbial community based on the functional gene

usage. A further question of great interest is which part of
these genes is important to shape such a microbial community.
Clearly this part of genes should be distinct from the set of

essential genes. To test this, we defined this part of genes as
CSS genes in this study. Using the FCP model and metage-
nomic data, we developed a selection method to identify CSS

genes (see Methods). Considering that many genes have the
same or similar functions, we measured CSS genes in the unit
of homologous genes according to the COG database. Apply-
ing the selection method to AMD samples (Table S3, Figure 5),

we identified 583.3 ± 103.3 CSS genes (Figure 5A). Among
the samples, sample S14 had the lowest number of CSS genes,
amounting to 375 CSS genes, while sample S12 had the highest

number of CSS genes, amounting to 841 CSS genes.
As mentioned above, we finally identified 1998 COGs after

alignments in AMD samples. Now we compared the 1998

COGs with CSS genes to discover enriched or depleted func-
tions in the CSS genes. The remarkable enrichment of CSS
genes in the COG category X (mobilome: prophages, trans-
posons) revealed that gene exchange and recombination were

important in AMD samples (Figure 5B). Previous studies
[31] illustrated that AMD communities might have a high
mutation rate or gene conversion frequency. One of the inter-

esting findings is that 8/20 transposases had a high probability
(>0.975) to be CSS genes. Transposases, regarding as selfness
genes, might mobilize or activate genes that induce advanta-

geous rearrangements [40] and enhance their hosts’ fitness
[41]. Therefore they are important to community structure.
Meanwhile, these 1998 COGs had 846 different profiles of

hit numbers for nine species, and the probability distribution
of each profile in the CSS gene set in 17 AMD samples to a



Figure 4 Comparison of prediction accuracies between the FCP and MAP methods

A. Prediction accuracies of the FCP and MAP methods in AMD samples. The prediction accuracies for the training dataset and validating

dataset in AMD samples are measured using Bray–Curtis similarity, with the average accuracies also shown. B. Cross-validation of the

predicted relative microbial abundances with MAP and FCP methods in AMD communities. The linear regression of the FCP model is

expressed as y= 0.96x + 0.003 (R2 = 0.92) and that of the MAP model is expressed as y= 0.79x + 0.03 (R2 = 0.72), respectively. C.

Relative influence of environmental factors on AMD biofilms using GBM, FCP, and MAP methods. D. Comparison of prediction

accuracies between the FCP and MAP models in human gut microbiota samples. The accuracies are measured using Bray–Curtis

similarity. FCP, functional gene-based composition prediction; MAP, microbial assemblage prediction.
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U shape (Figure 5C). The upper and lower quartiles of this U-
shape distribution were 0.01 and 0.79, respectively, indicating
that a large percentage of genes are always CSS genes and

some genes are always not. Compared to genes with low prob-
abilities in the CSS gene set, the genes with high probabilities
were involved in the categories M (cell wall/membrane/envel-

ope biogenesis), X (mobilome: prophages, transposons), T
(signal transduction mechanisms), and L (replication, recombi-
nation and repair) (Figure 5D). These data indicate that genes
related to exchange and communications are important to

shape community structure in all 17 samples.
Our analysis further showed that the number of CSS genes

increased with the relative abundance of bacteria (correlation
coefficient = 0.60, P = 0.01) in AMD samples. The average
number of CSS genes in the late succession stage samples (with
549.38 ± 74.74 COGs) was much smaller than that of early

succession stage ones (with 693.42 ± 115.80 COGs). Further-
more, CSS genes in the early and late developmental stages
were completely clustered into two groups (Figure 6A). It

reveals that CSS genes were distinctly different at these two
stages, possibly due to community physiological changes dur-
ing ecological succession. Compared to the biofilms in the late
succession stage, CSS genes involved in the COG categories V

(defense mechanisms), U (intracellular trafficking, secretion,
and vesicular transport), R (unknown functions), and P (inor-
ganic ion transport and metabolism) were enriched in the early



Figure 5 Analyses of CSS genes in AMD samples

A. Numbers of CSS genes in AMD samples. The circles represent the outlier values and black crosses show the average numbers of CSS

genes in corresponding samples. B. Comparison of the distribution of CSS genes with 1998 hit COGs. The radar map shows the relative

size of CSS genes and hit COGs in each COG category. The asterisks show that the enrichments are significant (Fisher’s exact test,

P < 0.05). C. The distribution of probabilities of functional genes in the CSS gene set. D. The distribution of functional genes whose

probabilities in the CSS gene set are in the first 25 percentage (upper quartile) and the last 25 percentage (lower quartile). Details of the

COG categories are provided in the legend of Figure 2. CSS, community structure shaping.
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developmental stage biofilms (Figure 6B). In the late develop-
mental stage samples, we found more CSS genes involved in

the categories N (cell motility), I (lipid transport and metabo-
lism), M (cell wall/membrane/envelope biogenesis), O (post-
translational modification, protein turnover, and chaperones),

and J (translation, ribosomal structure and biogenesis). These
results substantially agree with previous studies [32], stating
that proteins associated with physical and chemical stress

defense, transcription, mobile genetic elements, and unknown
functions were significantly overexpressed at the early stage,
while proteins involved in motility, environmental signaling,
chaperones and protein turnover, membrane biosynthesis,

translation, and core metabolism were concentrated in mature
biofilms.

As mentioned above, we do not regard the CSS genes as the

essential genes. To discover the differences among them, we
compared CSS genes with the database of essential genes
(DEG, http://www.essentialgene.org/) [15]. We found that

CSS genes were involved in more gene functions about infor-
mation communication, such as categories X (mobilome: pro-
phages, transposons), N (cell motility), L (replication,
recombination and repair), and V (defense mechanisms)
(Figure 7A and B) than essential genes. More genes related
to categories R (general function prediction only) and S (func-

tion unknown) were enriched in the CSS genes than essential
genes. Out of the 1998 hit COGs, 672 COGs had unique hit
number profile. Among them, 308 COGs had high probabili-

ties (>0.5) in the CSS gene set and 472 COGs were found in
DEG. There were 229 COGs shared by CSS gene set and
DEG, and the permutation test showed that this overlap

was significant (permutation time = 10,000, P= 0.01)
(Table S4). The distribution of these 229 COGs revealed that
some genes involved in metabolism and central dogma were
both essential genes and CSS genes (Figure 7C). 79 COGs,

which were probable CSS genes and not find in DEG, were
enriched in the categories X (mobilome: prophages, trans-
posons), L (replication, recombination and repair), and J

(translation, ribosomal structure and biogenesis), which were
related to central dogma and mobile genetic elements. 243
COGs, found in DEG but not in the CSS gene set, were mostly

related to the categories J (translation, ribosomal structure and
biogenesis), E (amino acid transport and metabolism), C
(energy production and conversion), and H (coenzyme trans-
port and metabolism). Among 672 COGs with unique hit

http://www.essentialgene.org/


Figure 6 Comparison of CSS genes in AMD samples at the early and late succession stages

A. Cluster analysis of probabilities of functional genes in the CSS gene set in AMD samples. The color in the heatmap shows the

probabilities of functional genes in the CSS gene set, with larger values in red while smaller values in yellow. The results show that these

functional genes are clustered into two groups. B. Comparison of the relative magnitudes of CSS genes in the early and late stage samples.

The radar map shows the relative size of CSS genes in the early and late succession stage samples in each COG category. The asterisks

show that the enrichments are significant (Fisher’s exact test, P < 0.05). Details of the COG categories are provided in the legend of

Figure 2.
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number profile, there were 144 COGs with probabilities >0.5
in the CSS gene set in all 17 samples. These 144 COGs formed

core CSS gene set, which were enriched in E (amino acid trans-
port and metabolism), J (translation, ribosomal structure and
biogenesis), and H (coenzyme transport and metabolism), with

30 COGs in E, 27 in J, and 17 in H categories, respectively.
74.31% (107/144) core CSS genes were found in DEG. The
COGs that belonged to core CSS genes but not in DEG

(totally 37 COGs) were mostly enriched in the categories S
(function unknown), X (mobilome: prophages, transposons),
and R (general function prediction only), with 7 COGs in S,
6 in X, and 5 in R categories, respectively.

We find that there are great differences in the contribution
levels of each genome to CSS genes, essential genes, and all hit
COGs. Among the total 1998 hit COGs, about 34.3%
(680/1998) COGs were only present in bacterial genomes and
32.68% COGs (653/1998) in archaeal genomes in AMD com-

munity, indicating that the contribution levels of bacterial and
archaeal genomes to all hit COGs were approximately equal.
Bacterial genomes contributed much less to CSS genes than

to all hit COGs, whereas archaeal genomes contributed more
to CSS genes than to all hit COGs and to essential genes.
Among 229 COGs shared in CSS gene set and DEG,

10.04% (23/229) COGs were included only in bacterial gen-
omes and 29.26% (67/229) only appeared in archaeal genomes.
Among 79 COGs which were only present in the CSS gene set,
only 1.27% (1/79) COG was from bacterial genomes while

49.37% (39/79) COGs were only present in archaeal genomes.
For the 243 COGs which were only present in DEG, 0.4%
(1/243) COG was only in bacterial genomes, while 19.75%



Figure 7 Comparison of CSS genes and essential genes in AMD

samples

A. Comparison of the relative size of CSS genes and essential

genes in each COG category. B. Comparison of the distribution of

CSS genes with essential genes in all COG categories. The small

error bar illustrates the consistencies in all AMD samples. The

asterisks show that the enrichments are significant (Fisher’s exact

test, P < 0.05). C. The differences between CSS genes and

essential genes in all COG categories. COGs that exist in both

the CSS gene set and essential gene set are shown in gray. Blue and

orange bars indicate genes that are specific to CSS gene set and

essential gene set, respectively. Details of the COG categories are

provided in the legend of Figure 2.
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(48/243) were only in archaeal genomes. Therefore, despite of

the low relative abundances of archaea, they contributed
greatly to maintaining the community structure.

In the extreme acidic, heated, and high concentration of
heavy metals content environment, resisting the pressure from
the surroundings becomes one of the greatest challenges to
microbes. The size of CSS gene set was decreased as biofilm
matured and CSS genes involved in lipid transport and meta-

bolism, cell motility, and membrane biogenesis were more
abundant at the late developmental stage, indicating an
increase in communication and motility in mature microbial

communities. Compared to the essential genes, CSS genes were
focused on genes exchanges and responses to extreme environ-
ments, as indicated by the discovery that CSS genes were sig-

nificantly enriched in mobilome and defense mechanism.
Meanwhile, CSS genes shared 229 COGs with essential genes
and these COGs mainly were focused on metabolism and cen-
tral dogma. These indicate that some metabolism-related genes

were crucial for microorganisms no matter they were culti-
vated alone or inhabited in the natural environments with
other microorganisms. Our study shows that CSS genes could

reflect the selection pressure from environments and relation-
ships between species. It also helps to understand important
cellular processes that sustain life in the natural settings.

We also applied the workflow to identify CSS genes in
human gut microbiota samples (Figure 8, Table S5). The num-
bers of CSS genes in comorbidity, health control, depression,

and IBS groups were 1437.38 ± 292.20, 1483.35 ± 340.82,
1351.80 ± 133.90 and 1585.24 ± 371.92, respectively (Fig-
ure 8A). The numbers of CSS genes in human gut microbiota
samples were obviously higher than those of AMD samples.

This might be caused by the intrinsic complexity in the human
gut microbial communities. We found that there were 226
COGs with high probabilities (probability = 1) to be CSS

genes in all 54 samples. Compared to all hit COGs (Figure 8B),
these 226 COGs were enriched in the categories J (translation,
ribosomal structure and biogenesis), R (general function pre-

diction only), and S (function unknown).
The differences between CSS genes and essential genes in

human gut microbiota were much larger than those in the

AMD samples (Figure 8C). In 3689 COGs with unique profile,
there were 1125 essential genes and 1114 CSS genes (probabil-
ity � 0.5). However, only 153 COGs were shared by CSS genes
and essential genes. The permutation test showed that the dif-

ference between CSS genes and essential genes was significant
(permutation time = 10,000, P < 1E�4). In the 153 over-
lapped COGs, 20.92% (32/153) belonged to the category J

(translation, ribosomal structure and biogenesis). 961 COGs,
which were CSS genes but not found in DEG, were enriched
in the categories S (function unknown), R (general function

prediction only), J (translation, ribosomal structure and bio-
genesis), and C (energy production and conversion). 972
COGs, which were found in DEG but not in the CSS gene
set, were mostly related to the categories J (translation, riboso-

mal structure and biogenesis), E (amino acid transport and
metabolism), M (cell wall/membrane/envelope biogenesis),
and C (energy production and conversion).

In addition, we also examined the COGs with significantly
different probabilities to be CSS genes in four groups, includ-
ing health control group, depression group, IBS group, and

comorbidity group. Compared to samples in health control
group, we found that 15 COGs were more likely to be CSS
genes in IBS group (Student’s t test, P < 0.01) (Figure 8D,

Table S6). Herein, COG2148 (sugar transferase involved in
lipopolysaccharide biosynthesis) is involved in lipopolysaccharide
biosynthesis; COG1883 (Na+-transporting methylmalonyl-
CoA/oxaloacetate decarboxylase, beta subunit) is involved in



Figure 8 Comparison of CSS genes in different human gut microbiota sample groups

A. Comparison of the numbers of CSS genes in COMO, CON, DEP, and IBS groups in human gut microbiota samples. The circles

represent the outlier values and black crosses represent the average numbers of CSS genes in corresponding groups. B. Comparison of the

distribution of CSS genes to all hit COGs in human gut microbiota samples. C. Comparison of the distribution of CSS genes and essential

genes in all COG categories in human gut microbiota samples. COGs that are present in both the CSS gene set and essential gene set are

shown in gray. Blue and orange bars indicate genes that only exist in the CSS gene set and DEG, respectively. D. Comparison of the COGs

with significantly different probabilities to be CSS genes in CON and IBS groups. E. Comparison of COGs with significantly different

probability to be CSS genes in CON and DEP groups. COMO, comorbidity; CON, health control; DEP, depression; IBS, irritable bowel

syndrome; DEG, database of essential genes.
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the formation of oxaloacetate from pyruvate; and COG1483
(predicted ATPase, AAA+ superfamily) is a predicted

ATPase. These three COGs were associated with saccharides,
which might be utilized by intestinal microorganisms to
produce gas, thus resulting in abdominal distension.

COG0334 (glutamate dehydrogenase/leucine dehydrogenase),
COG0119 (isopropylmalate/homocitrate/citramalate syn-
thases), COG0495 (leucyl-tRNA synthetase), COG0031 (cys-

teine synthase), COG1185 (polyribonucleotide
nucleotidyltransferase; polynucleotide phosphorylase),
COG0060 (isoleucyl-tRNA synthetase), COG0503 (adenine/
guanine phosphoribosyltransferase or related PRPP-binding

protein), COG0046 (phosphoribosylformylglycinamidine
(FGAM) synthase, synthetase domain), and COG0087 (riboso-
mal protein L3) were associated with the synthesis and metabo-

lism of amino acids, nucleotides, and proteins. Amino acids are
reported to be component of mucin in the intestinal epithelial
barrier and thus associated with gut barrier function [42].

Herein, glutamine is an energy source of enterocytes [43].
Nucleotides are crucial for enterocytes in the development, mat-
uration, and repair of intestine [43]. In addition, compared to

samples in health control group, we found that 2 COGs were
more likely to beCSS genes in depression group (Student’s t test,
P < 0.01) (Figure 8E). Herein, COG4627 is a predicted S-

adenosyl-L-methionine (SAM)-dependent methyltransferase,
which transfers themethyl group fromSAMto other substrates.
For instance, catechol-O-methyltransferase, which belongs to
SAM-dependent methyltransferase fold family [44], could

methylate catechol compounds and inactivate the catechol neu-
rotransmitter dopamine in the prefrontal cortex [45], thus it has
many a times been suggested to be involved in affective disor-

ders, such as depression [46].
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Discussion

To explore the mechanisms of microbial community adapting
to the natural environments, we have proposed a novel replica-

tor dynamics model, FCP model, based on functional genes of
members within the community. With the attempt to integrate
metagenomic sequences and environmental factors to quantify

the motive power, we aim to circumvent the limitation of tra-
ditional dynamic models. Mainstream analyses in microbial
ecology mostly build models with phenotypic parameters,
which are often on the macroscopic scale. Herein, our model

based on the molecular information and phenotypic parame-
ters is built on both microscopic scale and macroscopic scale.
Our study thus provides the insight into linking functional

genes with the assembly of microbial communities. Using
FCP model, the prediction matches the observed microbial
community assemblage in both a relatively simple biological

system and a complex one. The mean and variance of pre-
dicted values using our model are superior to those obtained
using the MAP model, which has been proved to offer good

prediction accuracy and widely used [21,36]. The similarities
of relative influence of environmental factors on population
compositions obtained using different methods (i.e., FCP,
MAP and GBM models) also demonstrate the accuracy of

our model.
Furthermore, we have proposed the concept of CSS genes,

and developed an approach to select CSS genes in microbial

community. We rebuild community at the functional level,
not at the taxonomic level, which leads to good prediction per-
formance. This suggests that the community structure is deter-

mined by functional genes rather than species, which might be
helpful in holding the key to answer the fundamental question
about what determines the composition of local communities
[47,48]. In addition, our data show that despite of the low

relative abundances of archaea, they contribute greatly to
maintaining the community structure. It is the minority, not
the majority, that plays a far more important role in shaping

community structure.
We take the metagenomic data of AMD microbiota as a

typical microbial community to build the FCP model and iden-

tify CSS genes. An important focus of this study is to analyze
how the CSS genes change during biofilm maturation. As the
biofilm matures, the size of CSS gene set is decreased, partially

due to the increased genomic diversity and physiological shifts.
The clustering analysis illustrates that CSS genes in the differ-
ent biofilm growth stages are distinct. Thus, an outline of CSS
gene set could be sketched based on the developmental stage.

CSS genes involved in genes about environmental stresses such
as defense mechanisms have a higher probability of presence in
the early succession stage, while genes encoding cell motility

and membrane biogenesis are significantly increased at the late
succession stage. Moreover, the enrichment of lipid transport
and metabolism in mature biofilms with higher temperature

is supported by studies about the changes of lipid composition
in membranes of microorganisms under different temperature
conditions [49]. In summary, we suggest that the top priority of
AMD communities would be to resist pressures from extreme

environments during early growth stage. With the develop-
ment of AMD biofilms, the pressure resulting from competi-
tion for dwindling resources would be increased, thus cells
try to move to places with more resources, leading to compe-
tition alleviation.

We also apply the model to human gut microbiota samples

and identified CSS genes in each sample. We find that the num-
bers of CSS genes in human gut microbiota are much higher
than those in AMD microbiota. Some COGs have significantly

higher probability to be CSS genes in IBS group than health
control group and they are enriched in the synthesis and meta-
bolism of amino acids, nucleotides, proteins, and lipopolysac-

charide. These substances are components of mucin in the
intestinal epithelial barrier and thus important for gut integrity
and gut barrier function repairment. In addition, these
substances are gas producers, consistent with the abdominal

distention in IBS group. We also find that a predicted
SAM-dependent methyltransferase has significantly higher
probability to be CSS gene in the depression group than in

the health control group. This result is supported by many
studies about the antidepressant properties of SAM [50,51].

Although delineating the CSS gene set is still at a developing

stage, our study about identifying CSS genes might help us to
understand critical cellular processes that sustain communities.
Also, it may be useful for designing addable gene circuitries to

make an artificial self-sustainable community and treating
diseases related to microbiota dysbiosis. There are also some
limitations of our FCPmodel as following. (1) Too high dimen-
sional data (for example, too many environmental factors or

taxa) will pose a big challenge for prediction. (2) Metagenomics
sequences are needed for the FCP model, and this costs much
more than the models based on 16S rRNA sequences. (3) The

prediction is limited if the biological system is largely influenced
by the variables that we do not consider, such as undetected
environmental factors. In this paper, we annotate genes with

the COG database as an example in FCPmodel and CSS genes.
In fact, we can use gene annotation from any other databases,
such as the KEGG (Kyoto Encyclopedia of Genes and

Genomes) database. In this study, we have applied our model
and CSS gene selection method to AMD samples and human
gut microbiota, and it could be expanded to other biological
systems, such as soil systems and deep-sea systems.

Material and methods

Genomic data, gene prediction, and taxonomic classification

All genome sequences of the nine microorganisms from AMD
samples were downloaded from the NCBI BioProject database
(https://www.ncbi.nlm.nih.gov/bioproject/). The BioProject
Accession Nos are listed as follows: PRJNA18795 (Leptospir-

illum group II), PRJNA37907 (Leptospirillum group III);
PRJNA40089 (G-plasma); PRJNA29599 (A-plasma);
PRJNA40091 (E-plasma); PRJNA40093 (I-plasma);

PRJNA29595 (Ferroplasma type I); PRJNA29597 (Ferro-
plasma type II); and PRJNA38565 (ARMAN2). All metage-
nomic sequences of human gut microbiota and clinical

parameters were generated by our lab or our collaborators
[38]. We obtained 28 AMD samples and 60 human gut micro-
biota samples. Afterward, we removed samples with over half
not determined environmental factors. Finally, we got 17

AMD samples and 54 human gut microbiota samples. The rel-
ative abundance of nine species accounts for 97.65 ± 0.79% of

https://www.ncbi.nlm.nih.gov/bioproject/
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the total population of AMD samples after excluding unas-
signed sequences. In human gut microbiota samples, after
excluding unassigned sequences, the relative abundance

of taxa accounts for 98.26 ± 3.92%, 98.18 ± 2.05%, and
85.02 ± 12.10% of the total population of human gut micro-
biota samples at phylum, order, and genus level, respectively.

To carry out the analysis of the metagenomes, Quake [52]
was used to detect and correct errors in the raw data. Prinseq
[53] was used to filter out low quality reads. After that, Inte-

MAP [54] was used to assemble these preprocessed reads into
contigs. MetaGUN [55], a novel gene prediction tool, was used
to predict protein coding genes, and MetaTISA [56] was then
applied to revise translation initiation sites of predicted genes.

PhymmBL [57,58], the hybrid classifier combining analysis
from both Phymm and BLAST, was used to perform taxo-
nomic classification. Default parameters in these methods were

used for the related analyses. Each predicted gene was anno-
tated through searching COG database [33,59,60] by BLAST
[61] with E-value = 1E�5.

Statistical analyses of relationships

To quantify the influence of environmental factors on different

microorganisms, we applied MRT and GBM analyses, which
work well in interpreting the relationships between compli-
cated ecological systems and their surroundings. To learn the
relationships among the relative abundances of microorgan-

isms, we used the CCREPE method. GBM, MRT, and
CCREPE analyses were conducted with the gbm (with 5000
trees used for the boosting, 5-fold cross-validation and 3-way

interactions), mvpart (with default parameters), and ccrepe
(with default parameters) package in R statistical computing
environment, respectively. GBM is a powerful machine learn-

ing method for regression and classification problems, and it
can give a description of relative influence of several input vari-
ables on the target variations [35]. MRT analysis is a statistical

technique that can be used to study complicated non-linear
relationships by providing a taxonomy-supervised tree [34].
CCREPE takes the compositional effect into consideration
and establishes corrections based on a null distribution. Cytos-

cape [62] was used for the biological network visualization.

The FCP model

In the current study, we proposed a mathematical model based
on the functional gene usage distribution to simulate and pre-
dict microbial population structure. This model was built on

the modified replicator dynamics with variable population size.
We described the interspecific interactions using the functional
gene distribution. Then we used the interspecific interactions,

combined with environmental factors, to quantify the fitness.
In detail, for a community with num different kinds of species,
we determined fitness with interspecific interactions and envi-
ronmental filtering as follows:

fnum�1 ¼ Anum�numxnum�1 þ hnum�1

After aligning genomes to all predicted peptides in COG
database, we obtained the functional similarity through calcu-
lating the Pearson correlation coefficient between the distribu-

tions of functional genes in different species. This functional
similarity matrix is denoted as S. The matrix of functional
dissimilarity, A, is used to measure the benefit from functional
cooperation between two microorganisms, we define
A ¼ L� S, where L is a matrix whose elements are 1. The

matrix A shows that when microorganisms with similar func-
tions meet, there would be likely to have relatively low benefit
due to interspecific competition. h denotes the relationships

between environmental factors and microbes, thereby present-
ing environmental filter tendency. Environmental data are
stored in vector e. Column vector h is the product of matrix

B and vector e, that is h ¼ Be. Lasso regression, a regression
analysis method capable of variable selection, was used to
solve linear relationships between h and environmental factor
e. Thus, we determined the critical motive for constructing a

community by the functional gene distribution and environ-
mental factors.

For a community with num different kinds of species, let ni,

i 2 s ¼ 1; 2; � � � ; numf g, be the number of the ith species at a
given time. Then the population size is N ¼ P

i2sni and the rel-

ative abundance of the ith species is xi ¼ ni
N
. The models are

given by the following equation:

_xi ¼ Nc�1 fix
c
i � xi

P
j2sfjx

c
j

� �
; i 2 s

_N ¼ Nc
P

j2sfjx
c
j � dN

8<
:

Here, _xi is the first derivative of xi versus time and _N is that
of N versus time. fi is the fitness of the ith species, and d is the

death rate. Growth index c describes how much faster (c > 1)
or slower (0 < c < 1) the population size changes with time
than exponential growth. Given what we considered is a

microbial community under limited conditions, namely the
growth of species is sub-exponential, we set 0 < c < 1. We
chose this setting because microbial cells under extreme envi-

ronments are reported to catabolize 104- to 106-fold slower
than organisms in nutrient-rich cultures [63].

Prediction using the FCP model

The FCP model was solved in MATLAB with the find
minimum of constrained nonlinear multivariable function
(FMINCON). The initial values were chosen based on the

observed abundance distributions in AMD biofilms [32]. The
initial values of human gut microbiota data were from
the health control group. In fact, the FCP model is insensitive

to the initial values of parameters. When other variables were
kept the same and the initial relative abundances were altered
on a large scale, 96.57% (482,829/500,000) of results were con-

verged to a same one. The effect of initial values of population
size N and death rate d on results is also limited. When we
changed the initial values ofNfrom 1 to 1000,000, only num-

bers after the 4th decimal place of predictive results were influ-
enced; and for d from 0.001 to 1, it was the 3th decimal place.
Growth index c has some influence on community structure
but little on the average results. Each sample we set 100 differ-

ent and random initial values of h andc. The consistency of
predictions of these 100 tries (the variance of Bray–Curtis sim-
ilarity is 4:0� 3:7%) show the robustness of our FCP model.

CSS genes selection method

Due to the universality of functional redundancies, only sev-

eral of genes play an important role in maintaining the stability
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of the microbial community structure. These genes are defined
as CSS genes. Loss of CSS genes leads to significant changes of
the community structure. Thus, we can pick up the CSS genes

by testing the impact of genes on the community structure.
The FCP model allows us to quantify the contribution of

each gene to the community structure. Perturbation calcula-

tions were used for measuring changes of the community struc-
ture. Bray–Curtis similarities between the perturbed
community structures (small stochastic disturbances, 10,000

times in each sample) and unperturbed ones were calculated.
If the Bray–Curtis similarity is beyond the threshold obtained
by Student’s t test, we consider that there is a significant
change in the microbial community structure after perturba-

tion. Through screening genes one by one, we dropped genes
which did not influence community structure significantly.
To reduce the impact of the parameter selection in FCP model,

we used 50 groups of parameters with good prediction and
took the average of these 50 groups as the prediction output.
At last, after repeating the steps across all samples, we figured

out all CSS genes in the natural environments.
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