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Abstract: In this study, we elucidate that polyamine metabolite is a powerful biomarker to study
post-radiation changes. Metabolomics in radiation biodosimetry, the application of a metabolomics
analysis to the field of radiobiology, promises to increase the understanding of biological responses
by ionizing radiation (IR). Radiation exposure triggers a complex network of molecular and cellular
responses that impacts metabolic processes and alters the levels of metabolites. Such metabolites
have potential as biomarkers for radiation dosimetry. Among metabolites, polyamine is one of many
potential biomarkers to estimate radiation response. In addition, this review provides an opportunity
for the understanding of a radiation metabolomics in biodosimetry and a polyamine case study.

Keywords: ionizing radiation; polyamines; metabolomics; radiation biodosimetry; biomarker

1. Introduction

Globally, there are concerns over the elucidation risks associated with radiation exposure; hence,
it is important to comprehend the biological effects of radiation exposure. Driven by the need to
detect the presence of radiation exposure, a biomarker to monitor potentially exposed situation after
radiological accidents can be developed and would be extremely valuable for biological response.
Ionizing radiation (IR) has inevitably become major public health concerns due to exposure from
artificial sources such as radiological medical usage and from natural sources like space travel [1,2].
Especially, radiation exposures from nuclear and radiation accidents and the threat of terrorism
including use of radioactive isotopes are big issues [2,3]. The interaction of radiation with a biological
system is a common factor irrespective of the condition of accidental radiation exposure. This involves
deposition of energy to cellular targets either directly or involving highly reactive free radicals.
DNA, RNA, proteins, lipids, carbohydrates and many metabolites may lead to various pathological
conditions [4–9]. The monitoring of damage by radiation has been of great interest for developing
simple and reliable methods for detection of radiation exposure as an essential factor in clinic.
Cytogenetic analysis, particularly the dicentrics chromosome aberration assay of peripheral blood
lymphocytes is a gold standard technique for estimating the extent of radiation exposure [6–9]. Despite
considerable advances in detection methods, it has several drawbacks such as being time-consuming and
labor-intensive. To overcome this bottleneck, a metabolomics platform is introduced as a methodology
for high-throughput assessment of the radiation dose received.

Metabolomics is a rapidly advancing field that aims to characterize the concentration changes of
all small molecules existing in a sample. Furthermore, application of metabolomics technologies to
the understanding of physiology, toxicology, and disease progression has led to appreciable advances
by defining novel drug and carcinogen metabolites, as well as biomarkers of disease. At the same
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time, metabolomics technologies have contributed to a general understanding of how metabolites
and their concentrations change under defined conditions. However, in contrast to transcriptomics
and proteomics, broad-based metabolomics studies have not been used to analyze the cellular effects
of IR. Radiation metabolomics, the application of a metabolomics in biodosimetry analysis to the
field of radiobiology, give a promise to increase the understanding of biological responses to ionizing
radiation [10–15]. Radiation exposure triggers a complex network of molecular and cellular responses
that impact metabolic processes and alter the levels of metabolites. Such metabolites have potential as
biomarkers for radiation dosimetry. An understanding of the molecular and cellular effects of ionizing
radiation have depended on profiling technologies such as genomics, transcriptomics, and proteomic
platforms. Such efforts have shown ionization radiation-induced perturbations of DNA, RNA,
and protein molecules and have been successful in developing biomarkers that provide information
regarding radiation-induced phenomena such as the threshold dose. Furthermore, integrating data
from combinations of such platforms, in the spirit of emerging systems biology, has given investigators
the ability to reconstruct and analyze ionization radiation responsive pathways. However, pathways
generated from such analyses remain incomplete without similar global measurements of metabolites.
Despite recent advances in metabolic profiling developments, changes in small-molecule metabolites
remain underexplored and underexploited. This is particularly unfortunate because, as the end
products of transcriptional and proteomic signaling events, metabolites may represent the most incisive
and accurate indicators of the state of cellular physiology, toxicology, and disease progression, and have
led to appreciable advances by defining novel drug and carcinogen metabolites, as well as biomarkers
of disease. A biomarker, which means biological marker, is an important feature that can be used to
measured or assess kinds of biological characteristics or parameters with different types of effects
being induced by radiation responses [16]. Although viable technology is well established to analyze
free radicals for mechanisms of DNA repair from radiation damage in biological models, its clinical
and protection level of use for even humans is challenged with various factors [17,18]. Here, we review
the current status of radiation metabolomics that have contributed to a general understanding of
how metabolites and their biomarkers change like polyamines under defined conditions. This article
provides an understanding of radiation metabolomics in biodosimetry and a polyamine case study.

2. Radiation Metabolomics in Biological Dosimetry

2.1. Metabolomics Platform in Biodosimetry

Exposure to ionizing radiation elicits a set of complex biological responses involving gene
expression and protein turnover that ultimately manifest as dysregulation of metabolic processes
representing the cellular phenotype. Metabolomics in radiation biodosimetry is one of the core
disciplines for discovery of novel biomarkers. The discipline focuses on the study of low molecular
weight metabolites in biological responses by ionization radiation. The quantitative complement
of all metabolites is defined as the metabolomics and sample-specific metabolomics can be studied,
e.g., biofluids (blood or urine) metabolomics or tissue metabolomics.

Radiation metabolomics operates with a workflow [19] starting from a biological question and
experiment, proceeding through sample collection and preparation, analytical experiments to acquire
data, data pre-processing and analysis followed by biological interpretation. This general process for
conducting radiation metabolomics studies is displayed in the flow diagram in Figure 1.

The first step is sample generation from radiation effects. A well-planned radiation effect with
multiple doses, multiple time points for sample collection and preparation are very important,
and the analytical work is global profiling that usually involves an analysis for identification of
spectra of nuclear magnetic resonance (NMR) or mass spectrometry (MS) spectral data including
gas chromatography (GC) and liquid chromatography (LC) to determine new biomarkers or spectral
patterns of biomarkers that can be related to radiation exposure. The second step involves data
acquisition may be undertaken. Principal component analysis (PCA) is applied to the NMR or MS data
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initially to look for patterns and outliers, and to determine if there are any easily discernable biomarkers.
After PCA, many other types of supervised methods like partial least squares-discriminate analysis
(PLS-DA) can be employed for further statistical data analysis. This is an exciting time to be working
in the field of metabolomics because of advances on every front. Improvements are legion, from
instrumentation for biomarker discovery, to computer methods for data analysis, to understanding of
pathways, to instrumentation for targeted analysis. The recent published results, and ongoing studies
in cell lines and animal models, indicate a dose response, and show clustering and discrimination
based on combined detections of groups of metabolites derived from samples such as urine that can
be obtained non-invasively. Data from these studies analyzed by bioinformatics methods led to the
discovery-phase identification of groups of metabolites useful for screening and biodosimetry. This is
extremely encouraging and makes extension of the work to human populations important, even with
the limitations inherent in such a study. Finally, the power of the results from discovery is realized
if they can be utilized to streamline targeted analysis and to provide new kinds of information in
discovery. Ion mobility methods have simplified quantitative detection of biomarkers, but have also
allowed the elimination or simplification of sample cleanup and pre-separation. With the reduction
in overall analysis time within minutes, it is possible to follow kinetics or responses at a rate that is
otherwise difficult, and it is possible to process data from larger cohorts in discovery. The third step is
data interpretation for biomarkers. At this step, the biomarker to radiation exposure will be elucidated.
The results provide putative biomarkers that were previously not reported or originate from a biological
mechanism not known before. Once discovery studies have been performed, the putative biomarkers
are validated in the general things where the biomarker will be applied to assess specificity and
selectivity. This applies an analytical method for absolute quantification. This metabolomics method
can then be employed for future application in radiation biology. The application of metabolomics to
the radiation biodosimetry has led to the description of a number of metabolites that have the potential
to be developed into robust biomarkers applied in biological interpretation to radiation exposure.
In general, the metabolomics method provides clues that lead to the discovery of new and better
biomarkers, as well as to insightful hypotheses regarding mechanisms of radiation effects.
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2.2. Metabolomics Technologies

The role technological developments provided in scientific discoveries has been suggested
that progress in science depends on new techniques, new discoveries and new ideas, probably
in that order. Metabolomics suggests the simultaneous and relative quantification of thousands
of different metabolites within a given sample using sensitive and specific methodologies such
as LC or GC coupled to MS for assessment of biomarker discovery in response to radiation.
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The first definitions of metabolomics were reported in 1998 [20,21]. From that time, there have
been huge advances in methodological and analytical technologies that have led to the discovery
of biomarkers and greater knowledge regarding diseases. Technological advances from the 1960s
with gas chromatography/mass spectrometry (GC/MS), liquid chromatography/mass spectrometry
(LC/MS) [22] and NMR spectroscopy [23,24] allowed the first holistic studies of mammalian biofluids
to be performed. In the last 15 years, technological advances have driven metabolomics to its current
status. A combination of sample preparation and analytical platforms is recommended to acquire
good coverage of detected metabolites. Today, metabolomics is a routinely applied tool with greater
than 19,390 publications reported in PubMed (as of March 2018). Especially, the study of radiation
metabolomics accounts for 450 publications reported in PubMed (as of March 2018).

2.3. Potential Biomarkers

Biomarkers are biological characteristics that are objectively measured and evaluated as indicators
of biological responses to radiation exposure. The search for biomarkers of effective dose and the early
effects of ionization radiation exposure in both humans and experimental animals has a history
spanning several decades. Biomarkers that can help identify exposed individuals are critically
important in the event of mass casualty incidents. Metabolomics approaches for biomarkers allow the
simultaneous, quantitative analysis of thousands of different metabolites within a given sample [25].
It aims at identifying unique fingerprints of specific disturbances such as example effects of exposure
to radiation. Polyamines (putrescine, spermidine, and spermine) are aliphatic polycations present
in all cells, where they have pleiotropic effects that allow their linkage to DNA, RNA, and proteins,
for example, with a relevant regulatory role in a number of steps of cell metabolism. The putrescine,
spermidine, and spermine from polyamines play a pivotal role in living organisms [26–28]. Polyamines
are low molecular weight organic polycations displaying their important biological activities having
mediated a multitude of in vivo processes. In general, the polycationic nature of polyamines is
important for their biological activities and their in vivo interaction with multiple kinds of molecules
such as polyanionic nucleic acids and proteins. The chemical structures are presented in Figure 2.
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Figure 2. Chemical structure of polyamines.

Regarding their functions, polyamines play a critical role in cell metabolism [29],
cell proliferation [30], and cell differentiation [31] through cellular processes including the metabolic
pathways of synthesis, degradation and transport [32,33]. Especially, spermidine from polyamine
is an aliphatic polycation that is present in all cells, where it has pleiotropic effects that allow their
linkage to DNA, RNA, and proteins. Spermidine plays a regulatory role in a number of steps of cell
metabolism in living organisms. The pathway of polyamine metabolism including metabolites and
genes is represented in Figure 3. Since polyamine metabolism is involved in many biologically relevant
processes, polyamines and most of the enzymes involved in their metabolism have been extensively
studied. All of them have been isolated, purified, and kinetically characterized and their genes have
been cloned. Much information is available concerning the enzymes, their activities, regulation,
functional features and gene expression [34]. Polyamines are produced from the metabolism of cationic
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amino acids of arginine. The first step in their biosynthesis is a decarboxylation. Their terminal
catabolism by amine oxidases releases compounds with a high potential to produce damage: aldehydic
compounds that eventually can be exported or oxidized and reactive oxygen species. Transferases play
a role in both metabolic pathways. Finally, S-adenosylmethionine is a donor of aminopropyl groups in
the biosynthesis of polyamines [35–38]. As for the polyamine pathway, the steady state intracellular
concentrations of polyamines are influenced by the regulation of the key enzymes of their metabolic
pathways, but also by the regulation of transporters for their uptake and release. On the other hand,
the storage of very important quantities of amines into vesicles of their producing cells is a well-known
fact for amines, including polyamines [39,40]. Increases in polyamine concentration have also been
linked to carcinogenesis [41]. Recent reports have shown that adequate polyamine levels are required
for the maintenance of cell proliferation and cell differentiation. Ionizing radiation generally results in
increased oxidative stress triggered by the direct ionization of biological responses (e.g., DNA, protein),
and indirect modifications to cellular components through reactive oxygen species generated by the
radiolysis of water, such as hydroxyl radicals. Acute and chronic levels of radiation-induced oxidative
stress have been demonstrated to cause deleterious cellular injury as measured by an increase in the
extent of lipid peroxidation, DNA, and aromatic hydroxylation, as well as the upregulation of various
antioxidant enzymes, which reflects an adaptive cellular response mechanism to radiation damage.
A metabolomics platform in radiation biodosimetry is a powerful tool to study post-radiation changes
in polyamine metabolism.
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The behavior of spermidine kinds of polyamines as biomarkers was investigated by the Roh
group in a mouse model exposed to an acute whole-body sublethal dose of 6 Gy. A time lag of
12 h post-irradiation showed spermidine as a significantly elevated metabolite among sham and
γ-irradiated mice [42]. As shown in Figure 4, the plot showing serum-normalized fold change
(FC) for the spermidine biomarker was calculated with respect to the average of the metabolite
in the sham-irradiated group. Another work used UPLC-ESI-TOF-MS (ultra performance liquid
chromatography coupled with electrospray ionization-time of flight-mass spectrometry) coupled
with PCA for the analysis of serum from mice exposed to 3 Gy of radiation showed changes of
DNA damage biomarkers and a N1-acetylspermidine in polyamines. Thus, findings from this study
emphasize the role of polyamine metabolism toward impacting the efficiency of DNA damage and
repair which suggests that polyamine is a potent biomarker and a non-invasive feature for radiation
responses [43,44]. It was also reported that high polyamine levels are required to protect healthy cells
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against reactive oxygen species (ROS)-triggered damage while polyamine confers on cancer cells a
higher resistance to these oxidative attacks which indicates the protective effects of polyamines as free
radical scavengers [45,46].Biomolecules 2018, 8, x FOR PEER REVIEW  6 of 8 
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3. Conclusions

Metabolomics platforms use small molecules including endogenous metabolites and exogenous
compounds obtained from nutrients, in numerous ways. Metabolites are used to provide energy,
furnish building blocks to create cells and tissues, and can be used to signal at the cellular or
physiological level. The importance of metabolites in radiation biodosimetry has driven the
development of metabolomics approaches to enable the detection and quantification of biological
metabolites from biological samples to radiation response. Changes in metabolite levels can reveal
important information about the metabolites and metabolic pathways affiliated with a radiation
response. Metabolites like polyamines appear to be a good biomarker to estimate radiation damage
lethality or diseases in living organisms. The future of metabolomics in understanding radiation
response is an exciting prospect. The result of this new understanding will be both a deeper knowledge
of biological pathways to radiation exposure and affected systems, and new technologies that enhance
discovery and provide clinical tools.
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