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Computational image analysis is one means for evaluating digitized histopathology

specimens that can increase the reproducibility and reliability with which cancer

diagnoses are rendered while simultaneously providing insight as to the underlying

mechanisms of disease onset and progression. A major challenge that is confronted

when analyzing samples that have been prepared at disparate laboratories and

institutions is that the algorithms used to assess the digitized specimens often exhibit

heterogeneous staining characteristics because of slight differences in incubation times

and the protocols used to prepare the samples. Unfortunately, such variations can render

a prediction model learned from one batch of specimens ineffective for characterizing an

ensemble originating from another site. In this work, we propose to adopt unsupervised

domain adaptation to effectively transfer the discriminative knowledge obtained from

any given source domain to the target domain without requiring any additional labeling

or annotation of images at the target site. In this paper, our team investigates the

use of two approaches for performing the adaptation: (1) color normalization and (2)

adversarial training. The adversarial training strategy is implemented through the use of

convolutional neural networks to find an invariant feature space and Siamese architecture

within the target domain to add a regularization that is appropriate for the entire set

of whole-slide images. The adversarial adaptation results in significant classification

improvement compared with the baseline models under a wide range of experimental

settings.

Keywords: histpathology, unsupervised domain adaptation, color normalization, adversarial training,

convolutional neural networks

1. INTRODUCTION

Advances in whole-slide scanner technology have increased the speed and reliability with
which histopathology slides and other microscopic specimens are digitized. As a result of these
improvements, there has been a sharp increase in the number of investigators and health-care
providers adopting the use of these devices in routine research and clinical workflows. The sheer
volume of digitized specimens now being generated at both small and large institutions has grown
accordingly. Once digitized, these specimens are well suited for the application of sophisticated
pattern recognition and machine-learning algorithms and strategies that can facilitate automated
decision-support and computer-assisted diagnosis. Over the course of hundreds of years, scientists
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and pathologists have gone to great length to develop and
optimize staining methods that augment and enhance the
contrast of biological components of interest within these
samples at the tissue, cell and sub-cellular levels. Hematoxylin
& Eosin (H&E) is a popular stain that is applied to specimens,
routinely, that results in nuclei exhibiting a bluish color with
cytoplasmic regions rendered in pink (Titford and Bowman,
2012). In spite of the best efforts of the technicians preparing
the specimens, however, slight variations in the manner in
which these stains are applied to specimens often results in
histopathology sections that are inconsistent in visual appearance
and samples often containing processing artifacts. While there
have been many attempts to completely standardize these
methods, the current technology still grapples with these
challenges (Reinhard et al., 2001; Gurcan et al., 2009; Khan
et al., 2014; Li and Plataniotis, 2015). Since these inherent issues
described can lead to variations in the results obtained using
image-based quantification approaches to analyze the specimens,
our team has been investigating new methods to remove color
variation across digitized specimens originating from different
institutions as well as batches of imaged specimens that may have
been acquired at a single institution at different time points. In
earlier attempts to mitigate the color normalization issue, some
investigators chose to convert the color images into gray-scale
versions before performing quantitative analysis (Hamilton et al.,
1997; Jafari-Khouzani and Soltanian-Zadeh, 2003; Ruiz et al.,
2007; Qureshi et al., 2008; Basavanhally et al., 2010). However,
the conversion from color space to grayscale eliminates some
informational content from the digitized specimens that may
be essential for rendering proper classifications and accurate
diagnosis.

While the noted color variations in digital specimens
present formidable technical challenges for any image analysis
algorithm, mechanical distortions that can sometimes be
introduced during tissue sectioning and slight variations in the
underlying morphologic and structural patterns within imaged
specimens can further complicate the process of automating
classifications (Jafari-Khouzani and Soltanian-Zadeh, 2003;
Tabesh et al., 2007; Ren et al., 2015, 2017; Epstein et al.,
2016; Lafarge et al., 2017). In spite of all of the difficulties,
investigators throughout the scientific community continue
to pursue this line of research because of the potential
impact that automated, computer-aided analyses could have in
clinical practice and investigative research by accelerating the
throughput while reducing or eliminating the negative effect
of inter- and intra-observer variations during the assessment
of microscopic images. Methods based on convolutional neural
networks (CNN) are currently considered state-of-the-art due
to the high performance rates recently reported by some recent
investigations (Otálora et al., 2015; Hou et al., 2016; Litjens et al.,
2016). Most of these studies, however, focused on supervised
classification. Unfortunately, supervised classification models
used on one annotated dataset (source domain) may render
ineffective for another set (target domain) collected at a different
institute. A widely used approach to address the challenge is to
label new images on the target domain and fine-tune the model
trained on source domain (Schmidhuber, 2015). In fact, methods

that can learn from existing datasets and adapt to new target
domains, without the need for additional labeling, are among
the most desirable approaches because they lend themselves to
high-throughput clinical environments and big data research
experiments involving large patient cohorts (Ren et al., 2018).

In this study, we aim to address the challenges presented
by variations in staining, morphologic and architectural profiles
within histopathology whole-slide images (WSIs) in a completely
unsupervised manner. We use two approaches to achieve
knowledge transfer from the source domain to the target
domain. In the first approach, we adopt two off-the-shelf color
normalization (Macenko et al., 2009; Vahadane et al., 2016) on
the images from the target domain, where the model learned
from the source domain is applied to the target images after
being normalized to the reference image chosen from the source
domain. In the second approach, we adopt an unsupervised
domain adaptation paradigm to align the image distributions
along the annotated source domain and the unlabeled target
domain (Ganin et al., 2016; Tzeng et al., 2017). We apply
adversarial training to minimize the distribution discrepancy in
the feature space between the domains, using the loss function
adopted from the Generative Adversarial Network (Goodfellow
et al., 2014). We subsequently develop a Siamese architecture
for the target network to serve as a regularization of patches
within the WSI’s. We validate the proposed methods on a set
of publicly available histopathology datasets and then further
test performance using a new dataset that is collected locally at
Rutgers Cancer Institute of New Jersey. The experimental results
show the merit of these strategies.

2. RELATED WORKS

2.1. Color Normalization
In an attempt to address the challenge of the previously described
color batch effects, many investigators have applied color
normalization methods to the imaged histopathology specimens
prior to analysis (Ranefall et al., 1997; Meurie et al., 2003; Mao
et al., 2006; Kong et al., 2007; Kothari et al., 2011; Khan et al.,
2014; Tam et al., 2016; Vahadane et al., 2016; Alsubaie et al.,
2017; del Toro et al., 2017; Janowczyk et al., 2017; Gadermayr
et al., 2018; Sankaranarayanan et al., 2018; Zanjani et al., 2018a).
One common approach for analyzing tissue samples is to treat
stains as agents exhibiting selective affinities for specific biological
substances. With an implicit assumption that the proportion
of pixels associated with each stain is same in source and
target images, histogram-based methods are investigated (Jain,
1989; Kong et al., 2007; Tabesh et al., 2007; Hipp et al., 2011;
Kothari et al., 2011; Papadakis et al., 2011; Krishnan et al.,
2012; Basavanhally and Madabhushi, 2013; Bejnordi et al., 2016;
Tam et al., 2016). The main drawback of histogram-based
methods is that they often introduce visual artifacts into the
resulting images. Color deconvolution strategies (Macenko et al.,
2009; Niethammer et al., 2010; Gavrilovic et al., 2013) have
been utilized extensively in the analysis imaged histopathology
specimens by separating RGB images into individual channels
such as by converting from RBG to Lab (Reinhard et al., 2001)
or HSV space (Zarella et al., 2017). The limitation of this
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approach is that both the image-specific stain matrix and a
control tissue stained with a single stain is required to perform
the color deconvolution. Another strategy that has been explored
is to utilize blind color decomposition which is achieved by
applying expectation and maximization operations on color
distributions within the Maxwell color triangle (Gavrilovic et al.,
2013). This strategy requires a heuristic randomization function
to select stable colors for performing the estimation, thus it
is prone to be affected by achromatic pixels at the weak stain
pixels. Tissue inherent morphological and structural features
may not be preserved after color deconvolution since statistical
characteristics of decomposition channels are modified during
this process. Model-based color normalization has also been
studied in such applications by including Gaussian mixture
models (Reinhard et al., 2001; Magee et al., 2009; Basavanhally
and Madabhushi, 2013; Khan et al., 2014; Li and Plataniotis,
2015), matrix factorization (Vahadane et al., 2016), sparse
encoder (Janowczyk et al., 2017), and wavelet transformation
with independent component analysis (Alsubaie et al., 2017).
Other studies utilize generative models (Goodfellow et al.,
2014) to achieve the stain normalization (Cho et al., 2017;
Bentaieb and Hamarneh, 2018; Shaban et al., 2018; Zanjani et al.,
2018b). Typically, a reference image is needed from a group
of image dataset. The different reference image would give the
different domain adaptation performance. Color normalization
models can provide stain estimation, but they are solely
dependent on image color information, while the morphology
and spatial structural dependency among imaged tissues is not
considered (Gavrilovic et al., 2013; Bejnordi et al., 2016; Tam
et al., 2016; Zarella et al., 2017), which could lead to unpredictable
results especially when strong staining variations appear in the
imaged specimens.

2.2. Adversarial Domain Adaptation
In recent years, there have been many studies on unsupervised
domain adaptation for transferring the learned representative
features from the source to the target domain (Bousmalis et al.,
2017; Herath et al., 2017; Wu et al., 2017; Yan et al., 2017). The
works based on CNN show significant advantages due to better
generalization across different distributions (Krizhevsky et al.,
2012; Luo et al., 2017). With the development of the Generative
Adversarial Networks (GAN) (Goodfellow et al., 2014), studies
show the synthesized images could be used to perform
unsupervised domain adaptation in a learned feature space
where a generator is applied to learn the image distribution and
generate the synthetic images while a discriminator is trained to
differentiate the synthesized and the real distribution (Bousmalis
et al., 2016; Liu and Tuzel, 2016). For example, Generate-to-
Adapt (Sankaranarayanan et al., 2018) proposes to learn a joint
embedding space between the source and target domain, where
the embedding space could be used to synthesize both the source
and target images. Inspired by previous studies, we utilize the
adversarial training to find a discriminative feature space that
can be used to transfer the knowledge from source to target
domain. Furthermore, we introduce a Siamese architecture at
target domain which can be used to regularize the classification
of WSIs in an unsupervised manner.

3. MATERIALS

For the purposes of the current study, we focus on unsupervised
domain adaptation of imaged prostate cancer histopathology
specimens. Prostate cancer is the most common non-
cutaneous malignancy afflicting 1 in 7 men in the United
States (Ferlay et al., 2015). Over the years, Gleason scores
have consistently served as a reliable predictor for differential
prostate cancer diagnosis (Epstein et al., 2016). Unfortunately,
Gleason grading can be extremely time-consuming when
attempting to systematically evaluate large, giga-pixel-sized
WSIs. Furthermore, inter- and intra-observer variability errors
often arise when pathologists are called upon to render diagnoses
based onWSIs. In order to provide an objective and reproducible
Gleason grading score on such datasets, reliable computational
methods are required for detection, extraction, and recognition
of the underlying histopathological patterns. Much of the
progress in this area of research has focused on supervised
classification of the imaged tissues (Doyle et al., 2007; Tabesh
et al., 2007; Khurd et al., 2011; Nguyen et al., 2012; Gorelick et al.,
2013). However, the fact that histopathology WSIs obtained
from different institutions often present divergent glandular
appearances due to the fact that the acquisitional and optical
properties of the specific type of scanners used and differences
in the sectioning and staining procedures utilized introduce
significant variations in the resulting images. Additionally, WSIs
scanned by from different institution may have different image
resolution as they were scanned under various microscopy.
Figure 1 shows representative prostate cancer tissue images
originating from different institutions. Note the variations in
glandular distributions and staining appearance.

Our team investigated the use of unsupervised domain
adaptation for histopathology images and tested the approach on
two datasets. The first which is publicly available is called The
Cancer Genome Atlas (TCGA) dataset (Kandoth et al., 2013).
The other is a dataset collected locally at Rutgers Cancer Institute
of New Jersey (RCINJ) after obtaining institutional review board
(IRB) approval. All the histopathology images are H&E stained.
For the first setting of unsupervised domain adaptation, we
only use the TCGA dataset. The TCGA prostate cancer dataset
includes histopathology WSIs uploaded from 32 institutions that
have been acquired at 40× and 20× magnifications. We crop
the WSIs into patches of size 2,048 × 2,048. We calculate the
tissue area on the grayscale images and remove the images
with tissue area less than half of the patch size. The dataset
includes Gleason scores, ranging from 6 to 10, that have been
annotated by pathologists. As the University of Pittsburgh (UP)
had contributed more images than other institutions, we treat
the UP images as the target domain where the annotations are
withheld and the images from other institutions as the source
domain, which we denote as TCGA (w/o UP). We show the
total number of WSIs and the cropped patches from TCGA
in Table 1 and UP in parentheses. We denote the adaptation
setting as TCGA (w/o UP) → UP. For the second setting of
the unsupervised domain adaptation, we use all the images from
TCGA as the source domain, and images from RCINJ as the
target domain. The images from RCINJ are acquired at 20×

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 May 2019 | Volume 7 | Article 102

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Ren et al. Domain Adaptation of Histopathology Images

FIGURE 1 | Examples of prostate cancer histopathology WSIs from TCGA (A) and RCINJ (B). The WSIs from different institutes present different glandular distribution

and staining appearance.

TABLE 1 | The number of WSIs and patches of the prostate histopathology images from TCGA under different Gleason scores.

Gleason 6 Gleason 7 Gleason 8 Gleason 9 Gleason 10

# WSIs 115 (32) 395 (95) 94 (20) 128 (24) 4 (0)

# Patches 16,293 (6,517) 67,162 (26,583) 16,204 (4,968) 23,978 (9,606) 342 (0)

The images from University of Pittsburgh (UP) are shown in parentheses.

magnification. More details of the RCINJ dataset are shown in
Table 2. The dataset was labeled as Gleason scores as 6 or 8 by a
board-certified pathologist. We denote this adaptation as TCGA
→ RCINJ.

For the two sets of unsupervised adaptation, we aimed to
transfer the knowledge gained from the source image data to
the images in target domain so that a network could reliably
classify theWSIs in the target domain into low- and high-Gleason
score categories. Specifically, the methods were used to divide the
TCGA dataset into low Gleason grade for the WSIs with score
as 6 and 7, and high Gleason grade for the WSIs with score as
8, 9, and 10. In the case of the RCINJ dataset, the WSIs with
Gleason score of 6 belong to the low-Gleason grade whereas those
assigned a Gleason score of 8 belonging to high Gleason grade.

4. METHODS

In this section, we introduce the two different unsupervised
methods to solve the domain variation necessary for rendering
accurate classification of histopathology images.

4.1. Problem Formulation
For the purposes of the experimental design, the annotated
images are established at source domain whereas the unlabeled
images are housed at the target domain. To facilitate the study,
for the source domain, we denote S as the image distribution, Ns

as the total number of annotated images,
{

(xsi , y
s
i)
}Ns

i=1
as the ith

image xs with the one-hot category information of ys. Similarly,
for the target domain, we denote T as the image distribution, Nt

as the total number of unlabeled images,
{

(xti)
}Nt

i=1
as the ith image

unlabeled image xt .
We use the images from the source domain to learn amapping

functionMs that can reliably transform the images to the feature

TABLE 2 | The number of WSIs and patches of the prostate histopathology

images from RCINJ under different Gleason scores.

Gleason 6 Gleason 8

# WSIs 57 26

# Patches 3,933 666

space. Then we apply two approaches for the unsupervised
domain adaptation. The first transfers the staining information
from the images of the source domain to the images of the target
domain so that the classification of target domain can be easily
achieved by using Ms. The second identifies the mapping Mt

that must occur at the target domain to obtain a similar feature
space to that found within the source domain. The prediction
for images at the target domain can be obtained by using Mt

directly. Each domain makes use of training, validation and test
sets while the labels for the training images in the target domain
are withheld.

4.2. Learning at Source Domain
Images from the source domain are annotated and the
classification of each is independently confirmed by a board-
certified pathologist. These images are subsequently used to teach
the source domain CNN to map the images into a discriminative
feature space. Due to the giga-pixel size of histopathology WSI,
each was cropped into manageable sized patches and the cross-
entropy loss was adopted Lc to optimize the performance of the
classifier C in a supervised manner.

Lc = Exs∼S −

Ns
∑

i=1

ysi · logC(Ms(x
s
; θ

S)). (1)
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FIGURE 2 | Detailed architectures of source domain network, discriminator and Siamese network of target network: (A) The convolutional neural network applied in

the source domain. All the convolution layers (Conv) are followed by the Batch Normalization layer (BN) and Rectified Linear Units (ReLU), except for the last Conv

layer that gives the classification. The Conv5 and Conv6 layers are also followed by a Dropout layer with the ratio as 0.5. (B) The architecture of the discriminator. All

the FC layers are followed by the BN and ReLU, except for the last FC layer that gives the domain prediction. (C) The Siamese network applied in the target domain.

The Conv5 and Conv6 layers from the two branches are followed by a Dropout layer with the ratio as 0.5. And the two branches share the same parameters. The

feature maps from Conv6 are concatenated to feed into a FC layer to give the similarity prediction between input patches. The Conv6 layers are also followed by a

Conv7 layer with the same kernel size as shown in the source domain CNN.

In the above equation, θ
S represents the weights of the

source domain CNN. We used a modified fully convolutional
AlexNet (Krizhevsky et al., 2012) as the source domain CNN
for the classification task. The network does not include a fully
connected (FC) layer, instead it only contains convolutional
layers. All of the convolutional layers are followed by the Batch
Normalization layer (Ioffe and Szegedy, 2015) and Rectified
Linear Units (ReLU), except for the last layer that provides
the actual prediction. The details of the network are shown in
Figure 2A. To achieve the classification for the WSIs, we apply a
majority vote on all cropped patches within each WSI which, in
turn, provides the prediction.

Due to the high number of domain variations that are
exhibited in histopathology images, the network learned from
the source domain may not always generalize sufficiently within
the target domain. To address this issue, we introduced two
approaches to minimize the domain variations with the details
followed.

4.3. Color Normalization for Target Domain
The first approach for achieving unsupervised domain
adaptation in the histopathology images of target domain
utilizes the color normalization. As it can be applied to improve
the automated diagnostic performance of histopathology
images by decreasing the staining variation among the entire
cohort (Ren et al., 2015; Ciompi et al., 2017; Bentaieb and
Hamarneh, 2018; Zanjani et al., 2018b).

In order to apply the source mappingMs on the target domain
directly, we transfer the H&E staining information from source
domain to the target domain by normalizing the target images

according to a reference image chosen from the source domain.
In this case, only the test images from target domain are required
to validate the performance while the training images from the
target domain are withheld. However, choosing the reference
image from source domain is a non-trivial process given the large
number of candidate images. Therefore, we uniformly sample a
total of Nl reference images from source domain. For each image
xt in the target domain, we normalize it using each reference
image and forward the normalized image xtj into the source

domain CNN to generate the logits feature vector. Then we
adopt unweighted averaging, as it has been shown as a reasonable
ensemble method in deep learning networks (Simonyan and
Zisserman, 2014; He et al., 2016), to construct the ensemble logits
feature lNl

of xt for the Nl iterations, as shown below:

lNl
=

1

Nl

Nl
∑

j=1

Ms(x
t
j; θ

S). (2)

Thus the class prediction for xt could be achieved by using
softmax on lNl

. In this study, we apply two color normalization
methods, which are Macenko (Macenko et al., 2009) and
SPCN (Vahadane et al., 2016), as their advantages have been
shown in histopathology images (Roy et al., 2018).

4.4. Adversarial Adaptation for Target
Domain
The color normalization process makes it possible to perform the
stain transfer from source domain to target domain on images
directly. The second approach we investigated was unsupervised
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domain adaptation of histopathology images, in which we
explored the adaptation of knowledge on feature space from
source to target domain. Therefore, we learn a target mapping
function Mt , which is a CNN, to map the images from target
domain into a discriminate feature space. In order to optimize the
target network, we leverage the adversarial training to minimize
the discrepancy between the feature space of the target domain
and the one of the source domain. We perform asymmetric
adaptation where the network at the target domain is fine-tuned
from the network of the source domain. Through optimization,
the feature space of the target domain learns to mimic the
distribution of the source feature space. Thus, the target network
is trained to extract the domain invariant features from input
samples, which have the same distribution as the source domain.
In the process, the training images of target domain are used to
carry out the adversarial adaptation.

4.4.1. Adversarial Training
We implement adversarial training following the idea from
GAN loss (Goodfellow et al., 2014) on the feature spaces
of source and target domain. The feature vectors generated
from the network of source domain or the network of target
domain are fed into the discriminator D. D is trained to map
the input feature vectors into a binary domain label, where
the “true” denotes the input feature vectors are from source
domain and “false” denotes the feature vectors are from target
domain. Additionally, the target mapping Mt is learned in an
adversarial manner to purposely misdirect the discriminator D
by reversing the domain label so that the discriminator cannot
distinguish between the two feature spaces. Since the mapping
parameterization of source model is determined before the
adversarial training, we only optimize the target mapping step
Mt . By using adversarial learning, weminimize the discrepancy of
feature spaces between the source and target domain. Therefore,
estimating the category information for the images from target
domain can be implemented by Mt . More specifically, the
adversarial loss LadvD for optimizing the discriminator D is
represented as:

min
D

LadvD = −Exs∼S logD(Ms(x
s
; θ

S); θD)

− Ext∼T log(1−D(Mt(x
t
; θ

T); θD). (3)

where θ
T represents the weights of the target domain CNN and

θ
D represents the weights of the discriminator. The discriminator

is composed of three fully connected layers where each is
followed by a Batch Normalization layer and a ReLU layer with
the exception of the last one. The details for the architecture of the
discriminator are shown in Figure 2B. The mapping loss LadvM
for optimizing the target mappingMt is represented as:

min
Mt

LadvM = −Ext∼T log(D(Mt(x
t
; θ

T); θD)). (4)

For the adversarial training, we optimize the La, where La =

LadvD + LadvM .

4.4.2. Siamese Architecture for Target Network
Although there are no annotations for the images at the target
domain, the patches cropped from the same WSI should be
estimated as the same class by the network at target domain.
However, the adversarial loss only forces the distribution of
the feature spaces across the two domains to be similar, it can
not constrain the target network to determine the similarity
of the input samples. Therefore, we introduce a Siamese
architecture (Chopra et al., 2005) at target domain to explicitly
regularize patches from the same WSI to be classified into the
same category. As shown in Figure 3, the two identical networks
in the target domain share the same weights with the input as
a pair of images (xt1, x

t
2) ⊆ T × T . The feature maps obtained

from the second to the last layer of the two networks, namely
the Conv6 feature maps as shown in Figure 2C, are concatenated
together to serve as the input vector for a one-layer perceptron
to classify the features. Therefore, the input samples are classified
by the function f (xt1, x

t
2; θ

F), that f : T × T 7→ ȳ and θ
F ⊆ θ

T ,
where ȳ=1 indicates input patches belong to the same WSI while
ȳ=0 denotes not. We learn the binary classifier f using categorical
cross-entropy loss Ls as following:

Ls = E(xt1 ,x
t
2)∼T
−

Np
∑

i=1

ȳi · f (x
t
i1, x

t
i2; θ

F). (5)

where Np denotes the total number of training pairs.
To learn the network at target domain by adversarial

adaptation, we adopt a two-stage training process. For the first
stage, we train the network at source domain, which is the same as
using the color normalization in the adaptation process. For the
second stage, we optimize the Siamese network at target domain
by applyingLt whereLt = La+Ls. For optimizingLs, we sample
the images pairs in the training set of target domain both from
the patches cropped from the same WSI and the patches from
different WSIs. The learning algorithm for the target network is
shown in Algorithm 1.

Algorithm 1: Learning Algorithm for the Network at Target
Domain

1 Input: Initialized target network from source network with

weights θ
T = θ

S

for number of training iterations do
2 sample two same number of mini-batches xs ∼ S ,

xt ∼ T ;
3 obtain the estimation y = Ms(x

s; θS), y′ = Mt(x
t; θT);

4 θ
D ← back propagate with stochastic gradient

▽LadvD (y, y
′);

5 θ
T ← back propagate with stochastic gradient

▽LadvM (y
′);

6 sample mini-batches with paired of images xt1, x
t
2 ∼ T ;

7 obtain the estimation ȳ = f (xt1, x
t
2; θ

F);

8 θ
F ← back propagate with stochastic gradient ▽Ls(ȳ);
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FIGURE 3 | The architecture of the networks for the adversarial domain adaptation. The source network and the target network map the input samples into the

feature space. The adaptation is accomplished by jointly training the discriminator and target network using the GAN loss to find the domain invariant feature. A

Siamese network at target domain adds constrains for patches within the same WSIs.

5. EXPERIMENTS

In this section, we validate the proposed approaches using the
unsupervised domain adaptation for the classification of the
histopathology images.

5.1. Implementation Details
We conducted two sets of unsupervised domain adaptation for
classification of prostate histpathology images, which are TCGA
(w/o UP)→ UP and TCGA→ RCINJ. We firstly use the images
in source domain to train a binary classification network. The
data from source domain is randomly divided into the training
and the testing sets at a ratio of 80% (validation set is randomly
selected from the training set) / 20%. The patients with more
than one WSI can only contribute the images to the training set
or the testing set. During the training process, the images are
resized as 256× 256 and randomly cropped to 224× 224 to feed
into the network. During the testing process, all the patches are
resized to 256 × 256, we do the single center-crop for all testing
patches. The network is trained from scratch. For the adaptation
using color normalization, we utilize the source domain CNN
as the network for target domain to determine the prediction
from the testing set. For the adversarial adaptation, we optimize
the Siamese network at target domain by fixing the parameters
of source domain CNN and training the target network and the
discriminator network at the same time. The prostate images at
the target domain are randomly divided into the training and the
testing sets at a ratio of 80 and 20%.

Our implementation is based on Tensorflow (Abadi et al.,
2016). To train the source network, we use mini-batch Stochastic
Gradient Descent (SGD) with mini-batch size as 128. The
momentum is 0.9 and the weight decay is 0.0005. The initial
learning rate is 0.001 and periodically annealed by 0.1. To train
the target network for the adversarial adaptation, we use Adam

TABLE 3 | The source domain network performance.

Accuracy (%)

Previous study (del Toro et al., 2017) 73.5

TCGA (w/o UP) 76.9

TCGA 83.0

The source domain classification network outperforms previous study (del Toro et al.,

2017) using prostate cancer data from TCGA without UP and TCGA. The source domain

network using one all TCGA prostate cancer data achieves higher classification accuracy

than using TCGA without UP because of more data included for training the network.

optimization (Kingma and Ba, 2014) with the fixed learning rate
as 0.00001. The mini-batch size for optimizing La and Ls is
set as 128.

5.2. Source Domain Performance
As the training process contains two steps, we first show
the performance of the network at the source domain. The
comparison between the source network and the previous
study (del Toro et al., 2017) is shown in Table 3. From the results,
we can see both of our models have better performance than (del
Toro et al., 2017). However, the study at del Toro et al. (2017) uses
less WSIs than ours and the network with the best performance
reported in del Toro et al. (2017) is wider and deeper than
our study. Although such differences lead to biased comparison,
it could still demonstrate the source domain network is well
trained to classify the TCGA prostate images into low Gleason
score and high Gleason score. We have tried deeper network,
such as ResNet-50 (He et al., 2016), but the modified AlexNet
used in the study has a better performance. For example, the
modified AlexNet has the accuracy of 83.0% on TCGA while the
ResNet-50 (He et al., 2016) has the accuracy as 79.8%.
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FIGURE 4 | Example images selected from the testing set of target domain are normalized by the reference images sampled from the training set of source domain

using two color normalization methods including Macenko (Macenko et al., 2009) and SPCN (Vahadane et al., 2016). (A) The adaptation of TCGA (w/o UP)→ UP. (B)

The adaption of TCGA→ RCINJ.

TABLE 4 | Unsupervised domain adaptation for TCGA (w/o UP)→ UP and TCGA

→ RCINJ using color normalization and adversarial adaptation.

TCGA (w/o

UP) → UP

TCGA →

RCINJ

Baseline 54.3 56.3

Macenko (Macenko et al., 2009) 1-Ensemble 65.7 ± 11.9 51.3 ±6.1

Macenko (Macenko et al., 2009) 2-Ensemble 70.0 ± 5.9 53.8 ±8.5

Macenko (Macenko et al., 2009) 5-Ensemble 72.3 ± 3.8 55.0 ± 7.3

Macenko (Macenko et al., 2009) 10-Ensemble 72.6 ± 2.3 55.0 ± 4.7

SPCN (Vahadane et al., 2016) 1-Ensemble 70.0 ± 7.3 56.3 ± 13.4

SPCN (Vahadane et al., 2016) 2-Ensemble 71.7 ± 6.7 55.0 ± 15.3

SPCN (Vahadane et al., 2016) 5-Ensemble 72.9 ± 2.6 55.6 ± 9.8

SPCN (Vahadane et al., 2016) 10-Ensemble 73.4 ± 1.8 54.4 ± 8.4

Color augmentation (Liu et al., 2017) 74.5 56.3

Generate-to-Adapt (Sankaranarayanan et al., 2018) 71.7 62.5

La only 71.4± 1.1 62.5 ± 2.5

Lt 77.1± 1.1 75.0 ± 2.5

The classification accuracy of two color normalization methods including

Macenko (Macenko et al., 2009) and SPCN (Vahadane et al., 2016) with different

number of ensembles, and the target network with adversarial loss (La) only and the

target network with adversarial loass and Siamese loss together (Lt) are shown for two

sets of adaptations. We also compare our approach with color augmentation (Liu et al.,

2017). Our proposed approach has a better performance than other state-of-the-art

study (Sankaranarayanan et al., 2018) on the unsupervised adaptation task.

5.3. Comparison Results
In this section, we show the comparative results using different
approaches for learning the classification model at the target
domain.

5.3.1. Adaptation Using Color Normalization
First, we show the domain adaptation results only using color
normalization. The qualitative results for the color normalization
are shown in Figure 4. We sample different number of reference
images, which is Nl in Equation 2, due to the large number

of training set in source domain. For each color normalization
method, we use Nl-Ensemble to indicate the number of reference
images. For each Nl, we run the experiments for 10 times and
report the mean and the standard deviation values in Table 4.
Additionally, we show the baseline results in Table 4 where the
source domain CNN is applied on the original images from target
directly. We can see that due to the different image distributions
of the source and target domains, the network learned from
source domain is not working appropriately when applied on
target domain directly. For the adaptation of TCGA (w/o UP)
→ UP, the results show using the two color normalization
methods both improve the classification accuracy and with
more reference images, it could achieve the better classification.
Furthermore, SPCN (Vahadane et al., 2016) achieves better
results compared to Macenko (Macenko et al., 2009) as it has
higher mean classification accuracy and less standard deviation.
While for the adaptation of TCGA → RCINJ, no better result
is observed by using the color normalization, which indicates
color normalization may not be robust when applied for the
domain adaptation of the prostate histopathology images. For
both TCGA (w/o UP) → UP and TCGA → RCINJ, using
more reference images could decrease the standard deviation
of the ensemble results. On the other hand, the high standard
deviation indicates the high sensitivity when choosing a reference
image, which makes the color normalization less practicable for
unsupervised domain adaptation given the difficulty of deciding
the optimal reference image within the source domain.

Additionally, we show the comparison with color
augmentation, which has been proved effective for the data
augmentation of histopathology images (Liu et al., 2017; Nazeri
et al., 2018; Rakhlin et al., 2018). We follow the methods
introduced in Liu et al. (2017) where random color perturbations
is applied on each patch in the training set. Experimental results
in Table 4 show the color augmentation is more effective than
color normalization on the two sets of experiments.
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FIGURE 5 | The confusion matrix of the target network before and after the adaptation for TCGA (w/o UP)→ UP and TCGA→ RCINJ. (A) The confusion matrix for

UP before domain adaptation. (B) The confusion matrix for UP after domain adaptation. (C) The confusion matrix for RCINJ before domain adaptation. (D) The

confusion matrix for RCINJ after domain adaptation.

FIGURE 6 | (A,B) show the example images from RCINJ with Gleason score 6. (C) shows the example image from RCINJ with Gleason score 8. The left column

shows the original images with heatmaps overlaid on them; the middle column shows the heatmaps generated from the baseline model (using source domain

network); the right column shows the heatmaps generated from the model optimized by Lt.
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5.3.2. Adversarial Adaptation
Second, we show the results of using the adversarial domain
adaptation for TCGA (w/o UP) → UP and TCGA →
RCINJ. The quantitative results for the adaptation are
shown in Table 4. Through the adversarial adaptation, we
could effectively adopt the discriminative knowledge from
TCGA (w/o UP) to the UP and from TCGA to RCINJ
without requiring additional annotations. Compared with
the adaptation using color normalization, the adversarial
adaptation achieves better classification results for the two
setting of experiments, which demonstrates its effectiveness
and robustness. Additionally, we compare our approach with
the Generate-to-Adapt (Sankaranarayanan et al., 2018) on
the two tasks and our approach outperforms the current,
state-of-the-art algorithm of the unsupervised domain
adaptation.

We further calculate the statistically significance of the
accuracy improvement between the adapted network and the
baseline network using McNemar Test (Fagerland et al., 2013)
and demonstrates the improvement of classification accuracy
is statistically significant with a p < 0.05. In addition, we
show the result of the ablation study in Table 4 that using Lt

achieves better classification accuracy thanLa only. Figures 5A,B
show the confusion matrices for the adaptation for TCGA (w/o
UP) → UP and Figures 5C,D show the confusion matrices
for the adaptation of TCGA → RCINJ. Compared to before
domain adaptation and after domain adaptation, the true low-
grade classification accuracy are significantly improved. It is
crucial for prostate cancer diagnosis for patients with low
Gleason grade is one of the main criteria for active surveillance
and intervention.

We show the qualitative results for TCGA → RCINJ in
Figure 6. We use the probability predicted by the network
on the patches to generate a classification probability heatmap
and overlay the heatmap on the original image. The red color
indicates the high Gleason score and blue color indicates the
low Gleason score. Figures 6A,B show example prostate WSIs
from RCINJ with the low Gleason score and the ground-truth
heatmap overlaid on it. Figure 6C shows the WSI with high
Gleason score. After the unsupervised domain adaptation, the
target network could correctly classify most of patches into the
correct Gleason score.

6. DISCUSSION AND CONCLUSION

In this paper, we investigate viable approaches for addressing
the challenges presented by the heterogeneous characteristics
exhibited within digitized specimens, that arises when analyzing
samples that have been prepared at disparate laboratories
and institutes. We present two different unsupervised domain
adaptation methods to resolve the domain variations to
make it possible to render accurate classification of imaged
histopathology specimens. To meet the requirements of this
endeavor required color normalization to transfer the staining
information from images in source domain to the images in
target domain whereas adversarial training was implemented
to transfer the discriminate information in feature space from
the source to the target domain. Throughout these experiments,
our team utilized a well-trained CNN at source domain that
was shown to outperform other methods used on the TCGA
prostate cancer dataset. This work shows that when compared
with color normalization, adversarial training is more robust
for performing unsupervised domain adaptation, indicating that
adversarial training may also serve to decrease the differences
in the morphologic and structural patterns for histopathology
images that can be introduced during processing at disparate
institutions. In this research, we further proposed to leverage
a Siamese architecture to add the regularization for the target
domain to achieve better results than that resulting from
utilizing the state-of-the-art method for unsupervised domain
adaptation. Due to the limited size of the datasets in these
feasibility studies, we plan to conduct expanded experiments
using a wider range of histopathology image classification
problems.
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