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Abstract: Chromium (Cr) is considered as one of the chronic pollutants that cause damage to all living
forms, including plants. Various industries release an excessive amount of Cr into the environment.
The increasing accumulation of Cr in agricultural land causes a significant decrease in the yield and
quality of economically important crops. The Cr-induced biochemical, molecule, cytotoxic, genotoxic,
and hormonal impairments cause the inhibition of plant growth and development. In the current
study, we reviewed Cr morpho-phytotoxicity related scientific reports published between 2009 to 2019.
We mainly focused on the Cr-induced inhibition of seed germination and total biomass production.
Furthermore, Cr-mediated reduction in the root, branches, and leave growth and development were
separately discussed. The Cr uptake mechanism and interference with the macro and micro-nutrient
uptake were also discussed and visualized via a functional model. Moreover, a comprehensive functional
model has been presented for the Cr release from the industries, its accumulation in the agricultural land,
and ultimate morpho-phytotoxicity. It is concluded that Cr-reduces plant growth and development via its
excess accumulation in the plant different parts and/or disruption of nutrient uptake.
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1. Introduction

Chromium (Cr) is considered one of the major carcinogens, and is categorized 7th among the
top 20 hazardous pollutants by the Environmental Protection Agency, United States of America
(EPA, US) [1–3]. Cr(VI) and Cr(III) are the most stable form of Cr in the environment. On the bases of
bioavailability in soil and translocation to different plant parts, Cr(VI) is reported to be more toxic than
Cr(III) [3–5]. The industrial process coupled with anthropogenic and natural processes have resulted
in increased accumulation of Cr in both terrestrial and aquatic ecosystems [3,4,6]. Chromium in soil
and water directly affects human, animal, and plant physiology, and may accumulate within food
chains, which can be a serious health threat to the secondary (herbivores) and tertiary (carnivores and
omnivores) consumers [3,7,8].

Various physiological factors including plant species, rate and types of root secretion, the surface
area of the root, and transpiration rate regulate the absorption, translocation, and accumulation of
the Cr in plants [9,10]. Chromium mainly accumulates in the plant roots that triggers the uptake
and translocation of Cr to the aerial plant parts [11–13]. The toxic Cr level can provoke various
morphological, physiological, biochemical, and molecular alterations in plants [14,15].

The toxic level of Cr inhibits plant growth and development, induces ultrastructural changes in
subcellular compartments (cell wall, cell membrane, plastids, chloroplast, mitochondria, Golgi bodies,
endoplasmic reticulum, vacuole, nuclei, and microtubules), persuades leaves chlorosis, root cell
damage, reduces total pigment contents, disturbs water and mineral nutrition balance, alters enzymatic
activities, and modulates cell division and cell cycle [3,16–20].

The process of increasing Cr accumulation in soil, its uptake/translocation in plants, Cr-induced
morpho-physiological, biochemical, molecular, ultrastructural, and hormonal changes in plants are
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summarized and visualized in (Figure 1). In the current study, we reviewed the most recent studies
regarding Cr-induced inhibition in seed germination and growth retardation in roots, branches, leaves,
and total biomass in various plant species.
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Figure 1. A functional model for the release, accumulation, and toxicity in plants. Cr is released from/through
the industrial processes and anthropogenic activities in the soil. The model also visualizes the uptake of Cr
by the plant roots, translocation to the shoots. The Cr-induced morphological, physiological, biochemical,
molecular, hormonal, and ultrastructural changes in plants are also summarized in the model.

2. Chromium-Mediated Control of Seed Germination

The first phenotypic and physiological change mediated by Cr in plants is seed germination,
which is very important for the continuity of the plant life cycle [21]. Endogenous and exogenous
stimuli mediated genetic and epigenetic changes were reported to be involved in the regulation of seed
germination, and plant biochemical, molecular and ultrastructural changes [21–23]. Chromium-induced
inhibition of seed germination in various plant species have been reported, and the germination rate
depends on Cr(VI) concentration and type of plant species as shown in (Table 1). Chromium stress
affects the activities of both alpha and beta-amylase, which are the sources of energy provided to the
emerging embryos. In summary, Cr reduces the activity of amylase, leading to the reduced sugar
availability for energy production, and inhibits the rate of plant seed germination [24].

Table 1. Chromium-induced seed germination inhibition in various plant species.

Plant Species Common Name Chromium
Concentration Medium Time of Exposure (Days) Seed Germination (%) References

Avena sativa Oat 500 mg/kg Cr(VI)
2000 mg/kg Cr(III) Soil 7 ≈82

≈95 [25]

Beta vulgaris Swiss chard 50 µM Cr(III) Distilled water 12 71 [26]

Brassica juncea Mustard 300 µM Cr(VI)
1/2-strength
Hoagland 3 80.8 [27]

Brassica oleracea Cabbage 300 mg/kg Cr(VI) Distilled water 3 ≈65 [28]

Cajanus cajan Pigeon Pea 100 ppm Distilled water 3 93 [29]

Cucumis sativus Cucumber 300 mg/kg Cr(VI) Distilled water 3 ≈96 [28]

Glycine max Soybean 200 mg/L Cr(VI) Hydroponic - 72.6 [30]

Lactuca sativa Lettuce 300 mg/kg Cr(VI) Distilled water 3 ≈50 [28]

Lactuca sativa Lettuce 50 µM Cr(III) Distilled water 12 94 [26]

Oryza sativa Rice 100 µM Cr(VI) Distilled water 4 ≈50 [31]

Sorghum bicolor Sorghum 500 mg/kg Cr(VI)
2000 mg/kg Cr(III) Soil 7 ≈60

≈10 [25]

Spinacia oleracea Spinach 50 µM Cr(III) Distilled water 15 64 [26]

Triticum
aestivum Wheat

100 ppm
300 mg/kg Cr(VI)
500 mg/kg Cr(VI)

2000 mg/kg Cr(III)

Distilled water
Distilled water

Soil

0.17
3
7

63
≈90
≈70
≈25

[32]
[28]
[25]

Zea mays Corn 300 mg/kg Cr(VI) Distilled water 3 ≈99 [28]
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3. Chromium-Induced Modulation of the Root Growth and Development

The plant root is the first organ that encounters soil pollutants, Cr is one of the most important soil
pollutants, which affects root growth and development [14,23]. Chromium-induced reduction in the
root growth mainly depends on the plant species, Cr-type and its concentration as shown in the (Table 2)
Chromium is also involved in the regulations of secondary root growth and number, lateral root
development, root hair, and formation of adventitious roots [20,24,33]. The reduced root length with
a brownish appearance and reduced root hair number have been observed in Zea mays, exposed to
high Cr(VI) levels [33]. The root growth inhibition mediated by Cr(VI), maybe due to the inhibition of
cell division and reduction in the cell size of the elongation zone [14]. The reductions of mitotic cell
division in Amaranthus viridis and Arabidopsis thaliana, have been reported, which is associated with the
reduction in cell cycle-related genes and alterations in the cellular ultrastructure [3,14].

Table 2. Chromium-induced reduction in root growth as compared to control of various plant species.

Plant Species Common Name Chromium
Concentration Medium Time of Exposure

(Days)
Root Growth

(%) References

Arabidopsis
thaliana Arabidopsis 200 µM Cr(VI) 1/2 MS 1 92.8 [14]

Avena sativa Oat 500 mg/kg Cr(VI)
2000 mg/kg Cr(III) Soil 7 ≈40

≈55 [25]

Brassica campestris Cabbage 1 mg/L Cr(VI) 1/2-strength Hoagland 21 ≈35 FW [34]

Brassica juncea Mustard 300 µM Cr(VI) 1/2-strength Hoagland 15 43.7 [27]

Brassica napus Oilseed Rape 400 µM Cr(VI) Hoagland’s 6 ≈50 [35]

Brassica oleracea Cabbage 300 mg/kg Cr(VI) Distilled water 3 ≈25 [28]

Cajanus cajan Pigeon Pea 100 ppm Distilled water 10 32 [29]

Cucumis sativus Cucumber 300 mg/kg Cr(VI) Distilled water 3 ≈15 [28]

Lactuca sativa Lettuce 300 mg/kg Cr(VI) Distilled water 3 <10 [28]

Oryza sativa Rice 80 µM Cr(VI) 1/4 -strength Kimura B 7 78 [36]

Sorghum bicolor Sorghum 500 mg/kg Cr(VI)
2000 mg/kg Cr(III) Soil 7 ≈10

≈30 [25]

Triticum aestivum Wheat

500 µM Cr(VI)
10 mg/kg Cr(VI)
300 mg/kg Cr(VI)
500 mg/kg Cr(VI)

2000 mg/kg Cr(III)

Sand
Quartz sand

Distilled water
Soil

-
7
3
7

≈57
≈20
< 10
≈10
≈45

[37]
[38]
[28]
[25]

Zea mays Corn 300 mg/kg Cr(VI)
173 µM Cr(VI)

Distilled water
Hydroponic

3
7

≈43%
≈70%

[28]
[33]

4. Chromium-Induced Alteration in the Shoot Growth and Development

The growth and development of the plants’ shoots are greatly compromised by the exposure to high
Cr-concentrations and the degree of toxicity depends on the plant species, Cr-type, and concentration [3,4].
The Cr-induced alterations in various plant species are shown in the (Table 3). In a recent study, 32 plant
species were exposed to 1000 mg/kg Cr(VI), they found that Cr(VI)-reduced the stem growth of 94%
species [39]. Chromium-induced stem growth inhibition maybe due to the Cr-induced damages in the
roots, which make it incapable of sufficient nutrients and water uptake [3,4]. Furthermore, the transport
and accumulation of toxic Cr-level may have a direct inhibitory as well as structural and ultrastructural
damaging effects on the shoot growth, development, and the capability of performing certain
physiological, biochemical, molecular, and metabolic activities [3].
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Table 3. Chromium-reduced shoot growth as compared to control in various plant species.

Plant Species Common Name Chromium
Concentration Medium Time of Exposure

(Days)
Shoot Growth

(%) References

Arabidopsis thaliana Arabidopsis 800 µM Cr(VI) 1/2-strength MS 2 ≈50 FW [15]

Avena sativa Oat 500 mg/kg Cr(VI)
2000 mg/kg Cr(III) Soil 7 Reduced [25]

Brassica campestris Cabbage 1 mg/L Cr(VI) 1/2-strength Hoagland 21 ≈70 FW [34]

Brassica juncea Mustard 300 µM Cr(VI) 1/2-strength Hoagland 15 89.1 [27]

Brassica napus Oilseed Rape 400 µM Cr(VI) Hoagland 6 58–67 [35]

Cajanus cajan Pigeon Pea 100 ppm Distilled water 10 Reduced [29]

Hordeum vulgare Barley 100 µM Cr(VI) Nutrient solution 50 ≈7–20 DW [40]

Oryza sativa Rice 80 µM Cr(VI) Hydroponic 7 77 [36]

Parthenium
hysterophorus

Solanum nigrum

Santa Maria
Black Nightshade 500 µM Cr(VI) Soil 21

43 FW
65 DW
110 FW
115 DW

[41]

Sorghum bicolor Sorghum 500 mg/kg Cr(VI)
2000 mg/kg Cr(III) Soil 7 Reduced [25]

Triticum aestivum Wheat 500 µM Cr(VI)
10 mg/kg Cr(VI)

Sand
Quartz sand 7 ≈80%

≈80%
[37]
[38]

Zea mays Corn 173 µM Cr(VI) Hydroponic 7 ≈80% [33]

5. Chromium Mediated Changes in Leaf Growth and Morphology

Leaf structure and growth have been intensely investigated as an important indicator under
various abiotic stresses [42]. Chromium-induced various biochemical, ultrastructural, and physiological
changes have also been reported [19]. The leaf morphological changes in Cr-treated seedlings indicated
that the appearance of the leaf was significantly changed in the size, and it was chlorotic and wilted
as compared to those plants exposed to control condition [39,43]. The prolonged Cr exposure caused
permanent necrosis, turned wilted and dry, and finally shed of leaves has been reported in the Cr-treated
plants [44]. The reduction in leaf size of Arabidopsis thaliana upon Cr exposure is also reported, which
can be due to the inhibition in cell division [15]. The watermelon plants exposed to Cr toxicity showed
a phenotype of reduced number and size of leaves with a yellow appearance, wilted and turgor loss
due to low water contents in the leaves [45]. Chromium-induced phenotypic alteration and growth
inhibition in the leaf of various plant species have been summarized in the current review as shown in
(Table 4).

Table 4. Chromium-altered leaf morphology and growth as compared to control in various plant species.

Plant Species Common Name Chromium
Concentration Medium Time of Exposure

(Days)
Induced Changes in Leaf
Growth and Morphology References

Arabidopsis
thaliana Arabidopsis 800 µM Cr(VI) 1/2-strength MS 2

Reduced: growth, water
content (RWC),

chlorophyll (chl), cell and
tissue viability

[15]

Brassica juncea Mustard 300 µM Cr(VI) Semi-hydroponic
medium 5 Reduced: growth, RWC,

and chl content [46]

Brassica napus Oilseed Rape 400 µM Cr(VI) Hoagland 6 61–71% Reduced biomass [35]

Hordeum vulgare Barley 100 µM Cr(VI) Nutrient solution 50 ≈62–67% Reduced DW [40]

Oryza sativa Rice 80 µM Cr(VI) Hydroponic 7 Chlorosis [36]

Zea mays Corn 173 µM Cr(VI) Hydroponic 7 Reduced leaf number [33]

6. Chromium-Mediated Changes in Total Biomass Production in Plants

The biomass production is considered proportional to yield, which is greatly compromised in
the plants exposed to Cr, indicating that Cr is reducing plant biomass as well as the yield of the
important crops worldwide [15,19,47,48]. Numerous, species were investigated and reported to exhibit
reduced biomass production under high Cr(VI) levels, and the toxicity varies based on the different
plant species, and concentration and type of Cr(VI) used as shown in (Table 5). Several factors such as
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reduction/imbalance in the uptake/translocation of water and nutrients, cell division and division rate
inhibition, selective inorganic nutrient uptake inefficiency, increased ROS accumulation, essential nutrient
substitution from ligand and plant key molecules, and Cr-induced ROS mediated alteration and damages
to plastids, pigment contents, mitochondria, lipids, RNA, and DNA are involved in the Cr-decreased
growth, development, and yield in plants at molecular, cellular, tissue, and organ levels are involved
in the alteration in the plant biomass production [3,15–17,19,47,49,50]. The degree of severity of these
factors depends on the type of Cr and plant species [3]. The hyper heavy metal accumulator plants such
as Brassica juncea and Alyssum maritime are were reported to be potentially more tolerant and can survive
a range of high Cr concentrations [4,9].

Table 5. Chromium-meditated reduction in the total plant biomass as compared to control in various
plant species.

Plant Species Common Name Chromium
Concentration Medium Time of Exposure

(Days)
Total Biomass
Production (%) References

Amaranthus viridis and
Amaranthus cruentus

Green and Blood
Amaranth 50 µM 1/2-strength Hoagland 7 >50 FW

≈80 FW [51]

Arabidopsis thaliana Arabidopsis 800 µM Cr(VI) 1/2-strength MS 2 50 FW
75 DW [15]

Brassica juncea Mustard 300 µM Cr(VI) Semi-hydroponic medium 5 80–89 growth [46]

Brassica juncea Mustard 100 µM Cr(VI) Soil 20 >50 FW and DW [52]

Brassica napus Oilseed Rape 400 µM Cr(VI) Hoagland 6 67 DW [35]

Brassica napus Rapeseed 500 µM Cr Soil 56 30.6 FW
28 DW [53]

Citrus reticulata Kinnow Mandarin 750 µM Cr(VI) Soil 120 63 DW [54]

Cyperus alternifolius and
Coix lacryma-jobi

Umbrella Palm
and Adlay Millet 40 mg/L Cr(VI) Soil 120 77 DW

44 DW [55]

Hordeum vulgare Barley 100 µM Cr(VI) Quartz sand 60 ≈23.7DW [56]

Lemna minor Duckweed 500 µM Cr(VI) SIS growth medium 7 60 [57]

Oryza sativa Rice 80 µM Cr(VI) Hydroponic 7 58 [36]

Parthenium hysterophorus
Solanum nigrum

Santa Maria
Black Nightshade 500 µM Cr(VI) Soil 21

65.5 FW
64.DW
110 FW
106 DW

[41]

Solanum melongena Eggplant 25 µM Cr(VI) 1/2-strength Hoagland 7 87 FW
83 DW [48]

Triticum aestivum Wheat 500 µM Cr(VI) Sand
Quartz sand 7 ≈65% [37]

Zea mays Corn 173 µM Cr(VI) Hydroponic 7 ≈85 FW [33]

7. Chromium Interferes with the Uptake and Translocation of Macro and Micronutrients

Chromium interferes with the nutrients uptake and translocation mechanisms of plants due
to the structural similarity with the various essential ions [58,59]. The interference of Cr with the
uptake and translocation of macro and micronutrients depends on the type of plant species and
Cr-type. The decrease in the common nutrient uptake/translocation could be because of the competitive
binding potential of Cr with carrier channels and reduced plasma membrane H+ATPase activity [3].
Chromium exposure may displace the nutrients from the binding sites both in the soil and inside the
plant body. Mostly, Cr is reported for playing an antagonistic role in the uptake and translocation of
essential nutrients, it also interacts synergistically with some essential nutrients such as Cu, Ca, Mg,
and Mn [60,61]. The Cr-induced interruptions and variations in the nutrients uptake and translocation
have been reviewed in (Table 6).
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Table 6. Chromium-induced alteration in the uptake and translocation of the essential nutrients in
various plant species.

Plant Species Common Name Nutrients Alteration in
Uptake/Translocation Reference

Brassica juncea Brown Mustard Na, K, Ca, Mg, C, H, and N Reduced both [27]
Cocos mucifera Coconut Palm Fe, K, Cu, Zn, Mn, and Mg Uptake [3]

Hordeum vulgare Barley P, K, Mg, S, Fe, Zn, Mn, and Ca Uptake and Translocation [40]
Lactuca sativa Lettuce K, Mg, Fe, and Zn Uptake/translocation [62]
Oryza sativa Rice N, P, K, Ca, Mg, Mn, Zn, Fe, and Cu Uptake/translocation [63,64]

Pisum sativum Pea Decreased micro and macronutrients (except S) Uptake/translocation [65]
Raphanus sativus Radish Fe, S, P, Zn, Mn, Cu, and B Translocation [59]

Solanum lycopersicum and Solanum melongena Tomato and Eggplant Affected N, P and K content Translocation [66]

8. Conclusions

Based on the available literature reviewed in the current study, we can conclude that increasing
Cr concentration reduces plant biomass accumulation. The plants have no specialized intake channels
for the Cr uptake. Cr competes with essential elements (macro and micro) for access to plant uptake
machinery. High Cr concentration reduces the uptake of essential elements and increases its accumulation
in the plant in different parts, which causes various phenotypic, ultrastructural, and biochemical changes
in plants. Cr-induces endogenous plant stress molecules that may cause a reduction in plant growth and
biomass accumulation. The reduction in the essential element may also participate in the retardation of
plant growth and biomass production (Figure 2).
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