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Abstract: We introduce a modeling framework for the investigation of on-line machine learning
processes in non-stationary environments. We exemplify the approach in terms of two specific model
situations: In the first, we consider the learning of a classification scheme from clustered data by
means of prototype-based Learning Vector Quantization (LVQ). In the second, we study the training
of layered neural networks with sigmoidal activations for the purpose of regression. In both cases,
the target, i.e., the classification or regression scheme, is considered to change continuously while
the system is trained from a stream of labeled data. We extend and apply methods borrowed from
statistical physics which have been used frequently for the exact description of training dynamics in
stationary environments. Extensions of the approach allow for the computation of typical learning
curves in the presence of concept drift in a variety of model situations. First results are presented and
discussed for stochastic drift processes in classification and regression problems. They indicate that
LVQ is capable of tracking a classification scheme under drift to a non-trivial extent. Furthermore,
we show that concept drift can cause the persistence of sub-optimal plateau states in gradient based
training of layered neural networks for regression.

Keywords: concept drift; on-line learning; continual learning; neural networks; learning vector
quantization; statistical physics of learning

1. Introduction

The many challenges of modern data science call for the design of efficient methods for automated
analysis. Machine learning techniques play a key role in this context [1–3].

The development of modeling frameworks in which to obtain general insights into practically
relevant phenomena is instrumental to achieve the necessary theoretical understanding. Analytical
and computational approaches that come from or are related to statistical physics [4–9] have played an
important role in this field and continue to do so.

1.1. Concept Drift and Continual Learning

In this contribution, we address a topic which is currently attracting increasing interest in
the scientific community: the efficient training of machine learning systems in a non-stationary
environment, where the target task or the statistical properties of the example data vary with time
(see, for instance, [10–15] and references therein). Terms such as continual learning and lifelong
learning have been coined in this context.
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Frequently, the set-up of machine learning processes comprises two different stages (see, for
instance, [1–3]): In the training phase, a given set of example data is analyzed, information is extracted
and a corresponding hypothesis is parameterized in terms of, e.g., a classifier or regression system.
In the subsequent working phase, this hypothesis is applied to novel data. Implicitly, one assumes
that the training set is representative of the problem and that statistical properties of the data and the
actual target task do not change after training.

For many practical applications of machine learning, the assumption of stationarity may be
well justified. However, the conceptual and temporal separation of training and working phase is
not very plausible in human and other biological learning processes [16,17]. As an example, in a
predator and prey system, strategies can change continuously with species trying to adapt to their
adversaries’ behavior. In addition, in many technical applications of machine learning, the separation
becomes inappropriate if the actual task of learning, e.g., the target classification, changes in time [10].
Moreover, very frequently, the training samples become available in the form of a stream of data
(e.g., [11–14]). In such situations, the learning system must be able to detect and track concept drift,
i.e., forget irrelevant, older information while continuously adapting to more recent inputs. Examples
for this situation can be found, for instance, in robotics. Other problems, such as the filtering of
spam messages in e-mail communication, resemble the predator–prey example in that the learning
systems try to adapt to changing strategies of their opponents. Further applications range from fraud
detection, quality control and customer segments management to drop out prediction for e-learning
and gaming [10]. Overviews of earlier work and recent developments in the context of machine
learning in non-stationary environments are provided, for instance, in [10–15]. While drift can occur in
any learning scenario, in this contribution, we focus on supervised learning.

In the literature, two major types of non-stationary environments have been discussed [10–15]:
In so-called virtual drifts, the statistical properties of the available example data change with time,
while the actual target task, e.g., the classification or regression scheme, remains unaltered. The
term real drift has been coined for situations in which the target itself is time-dependent. Frequently,
real drift processes are accompanied by additional virtual drifts.

1.2. Models of On-Line Learning Under Concept Drift

There exists a large variety of technologies which address learning in the context of drift
(see [10–14] for overviews). On a global level, one often differentiates so-called active methods,
which aim for an explicit detection of drift and according action of the learning system, and passive
methods, which can implicitly react to drift by their design. Popular active methods combine statistical
tests for novelty detection [18] with a rearrangement or retraining of the system to account for the
observed drift. The latter is particularly efficient if, for instance, ensemble methods are used [19,20].
The need for explicit drift detection often has the consequence that only specific types of drift can
be dealt with (one exception being found in [20]). In particular, small gradual drifts are notoriously
difficult to detect [21]. Passive methods continuously adapt the model according to the given data.
Thus, they automatically react to all types of drift which is present in the training data. However,
they face the classical stability-plasticity dilemma: relevant novel information has to be dealt with
while preserving already learned signals. Local or hybrid schemes have been particularly successful in
the past years (see, e.g., [21,22]). Other popular passive technologies rely on online learning schemes,
in particular online gradient descent, which has been incorporated into drift learning strategies for
the simple perceptron, neural networks, or extreme learning machines, as an example [23,24]. The
behavior of such models varies extensively across different learning scenarios [11].

In this contribution, we study two basic scenarios of on-line learning in non-stationary
environments, addressing binary classification and continuous regression problems. We present
a mathematical model of drifting concepts in on-line training from high-dimensional data. Methods
borrowed from statistical physics facilitate the study of the typical learning dynamics for different
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training scenarios and strategies. While the approach is suitable for virtual and real drift processes,
here, we focus on the study of explicitly time-dependent target concepts.

With respect to classification, we consider Learning Vector Quantization (LVQ) as an example
framework, i.e., prototype-based systems as originally suggested by Kohonen [25–29]. LVQ training is
most frequently done in an on-line setting by presenting a sequence of single examples which are used
to improve the system iteratively [28,29]. Therefore, LVQ should constitute a promising framework
for incremental learning in the presence of concept drift.

Layered neural networks with sigmoidal, continuous activation functions serve as an example
system in the context of regression. Specifically, we consider the so-called Soft Committee Machine
(SCM), a shallow architecture which can be trained by means of on-line (stochastic) gradient
descent [30–36]. Gradient based techniques are widely used also for multi-layered deep architectures
and their suitability for the learning of non-stationary targets is a question of significant relevance [3,37].

1.3. Relation to Earlier Work

Note that several studies exist which compare different learning algorithms for streaming data
experimentally (see, e.g., [11,12] and references therein). Unlike these empirical investigations,
our contribution aims for a formal, mathematical framework which can abstract from the variations
which occur in the course of a concrete, real world training cycle.

Methods borrowed from statistical physics have been used to analyze the typical behavior
of various learning systems in model scenarios [4–7]. The particularly successful analysis of
on-line learning is based on the assumption that a sequence of independently generated random
N-dimensional examples is presented to the learning system [8,9,38]. Further simplifying assumptions
and the consideration of the so-called thermodynamic limit N → ∞ facilitate the exact mathematical
description of typical learning curves in terms of ordinary differential equations (ODE). For detailed
discussions of the limitations of the approach as well as extensions that allow to overcome them
(see several contributions in [38] and, for instance, [39]).

Various reviews, article collections and monographs present and discuss the approach with respect
to supervised learning in simple perceptrons and multilayered neural networks (see e.g., [4–9,38] and
references therein). Similarly, the dynamics of unsupervised learning has been studied, including
prototype-based competitive learning, Principal Component Analysis and related schemes [40–42].

Stationary model densities of clustered data, similar to the ones considered here for LVQ, have
been studied with respect to several unsupervised and supervised training schemes (see [40–45] for
examples and further references). Supervised LVQ training was considered more recently in the
framework of simplifying model situations in [39,46–49].

The SCM in stationary environments has been studied extensively from the statistical physics
perspective. Practically relevant phenomena, such as the occurrence of quasi-stationary plateau states
have been investigated in great detail (see [30–36,38] for examples and further references).

The presence of concept drift has also been addressed within the statistical physics of on-line
learning. State-of-the-art investigations have considered, in particular, the learning of time-dependent,
linearly separable rules as a model system in [50–53]. Note that the assumption of statistically
independent examples in the stream of data does not hinder the study of meaningful drift scenarios.
It is, for instance, well possible to consider settings in which the characteristics of the generating
density or the target itself depends, implicitly, on the previous training. As an example, adversarial
drifts have been considered in [50–53] for the simple perceptron.

To the best of our knowledge, we present here the first statistical mechanics analysis of
on-line learning under concept drift in prototype-based classification and layered neural networks
for regression.
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1.4. Outline

The main aim of this work is to present and establish a theoretical framework in which to
investigate models of learning scenarios. The considered example systems, i.e., LVQ for classification
and layered networks for regression, serve as examples to illustrate and demonstrate the usefulness
of the methodology in obtaining principled insights into the properties of learning systems under
concept drift. Typical behavior can be described in terms of learning curves, which reflect practically
relevant phenomena such as the tracking of randomly varying targets or delayed learning in gradient
descent due to quasi-stationary plateau states of the training process.

In the following sections, we first introduce the specific example systems, i.e., LVQ and SCM
considered for classification and regression, respectively. In Section 2.3, we revisit the mathematical
description of the learning dynamics in stationary environments for both systems. Next, the model is
extended to include real concept drifts. We also briefly discuss the potential introduction of virtual
drifts and the consideration of weight decay as an explicit mechanism of forgetting.

First results of our analysis are presented in Section 3, which exemplify and demonstrate the
usefulness of the methodological approach: We obtain insights into the ability of prototype-based
systems to track a time-varying classification scheme. Furthermore, we investigate the effect of concept
drift on regression systems trained by gradient-based methods. In Section 4, we conclude with a
general discussion and outlook on future work.

2. Models and Mathematical Analysis

We first introduce Learning Vector Quantization for classification with emphasis on the heuristic
LVQ1 scheme. We further introduce a suitable, clustered density of input data, which is taken to define
the target task in the model. Next, we present the Soft Committee Machine as an example regression
system which can be studied in a so-called student–teacher scenario [5–7]. Here, training is based on
stochastic gradient descent with respect to a suitable cost function.

In Section 2.3, we revisit the analytical treatment of on-line learning in stationary environments.
We extend the mathematical framework with respect to the presence of concept drift in regression
and classification in Section 2.4. In addition, we consider the incorporation of weight decay. Formally,
the modifications compared to the stationary cases are identical in both scenarios.

2.1. Learning Vector Quantization

Learning Vector Quantization constitutes a family of prototype-based algorithms which are
used in a wide variety of practical classification problems [26–29]. The popularity of the approach
is due to several appealing properties: LVQ procedures are easy to implement and very intuitive.
The classification of LVQ is based on a distance measure, frequently Euclidean, which is used to
quantify the (dis-) similarity of feature vectors and class-specific prototypes. In contrast to the
black-box character of many less transparent methods, LVQ allows for straightforward interpretations
since the prototype vectors are embedded in the actual feature space and directly parameterize the
classifier [28,29].

2.1.1. Nearest Prototype Classification and Winner-Takes-All Training

In general, several prototypes can be employed to represent each class. In this contribution,
however, we restrict the analysis to simple situations with only two prototypes ~wk ∈ RN in total,
where prototype k is supposed to represent the data from Class k ∈ {1, 2}.

A Nearest Prototype Classification (NPC) scheme is parameterized by the prototypes with respect
to the distance measure d(~w,~ξ): A given ~ξ ∈ RN is assigned to the class of the closest prototype. In the
presence of only two prototypes, the assignment is to Class 1 if d(~w1,~ξ) < d(~w2,~ξ) and to Class 2,
otherwise. In practice, ties can be broken arbitrarily.
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A variety of distance measures can be used in LVQ, further enhancing the flexibility of the
approach. Several popular choices, including adaptive distance measures in relevance learning,
are discussed in [28,29,54]. In the following, we restrict ourselves to the most popular (squared)
Euclidean measure

d(~w,~ξ) = (~w−~ξ)2. (1)

We assume that, in the training process, a sequence of single example data {~ξ µ, σµ} is presented
to the system [8,9]. At time step µ = 1, 2, . . . , the vector ~ξ µ is presented, together with its class label
σµ = 1, 2. Generic incremental or on-line LVQ updates are of the form [39,46–48]:

~wµ
k = ~wµ−1

k + ∆~wµ
k with ∆~wµ

k =
η

N
fk

[
dµ

1 , dµ
2 , σµ, . . .

] (
~ξµ − ~wµ−1

k

)
where dµ

i = d(~wµ−1
i ,~ξµ) (2)

and the learning rate η is scaled with the input dimension N. The precise algorithm is specified by
choice of the modulation function fk[. . .], which depends typically on the Euclidean distances of the
data point from the current prototype positions and on the labels k, σµ = 1, 2 of the prototype and
training example.

Arguably the most basic LVQ training scheme was suggested by Kohonen and is known as
LVQ1 [25–27]. In analogy to the NPC concept, it updates only the currently closest prototype
according to a so-called Winner-Takes-All (WTA) scheme. Formally, the LVQ1 prescription for only
two competing prototypes corresponds to Equation (2) with

fk[d
µ
1 , dµ

2 , σµ] = Θ
(

dµ

k̂
− dµ

k

)
Ψ(k, σµ), where k̂ =

{
2 if k = 1
1 if k = 2,

(3)

Θ(x) =

{
1 if x > 0
0 else,

and Ψ(k, σ) =

{
+1 if k = σ

−1 else.

Here, the Heaviside function Θ(. . .) singles out the winning prototype and the factor Ψ(k, σµ)

determines the sign of the update: The WTA update according to Equation (3) moves the prototype
towards the presented feature vector if it carries the same class label k = σµ. On the contrary, if the
prototype is meant to present a different class, its distance from the data point is increased even further.
Note that LVQ1 cannot be interpreted as a gradient descent procedure of a suitable cost function in a
straightforward way due to discontinuities at the class boundaries.

Many modifications of LVQ have been suggested and discussed in the literature, including
heuristically motivated extensions of LVQ1, cost function based schemes and variants employing
unconventional or adaptive distance measures [25–29,54]. Mostly, they retain the basic idea of attraction
and repulsion of the winning prototypes similar to Equation (3).

2.1.2. Clustered Model Data

LVQ algorithms are most suitable for classification schemes which reflect a given cluster structure
in the data. In the modeling, we therefore consider a stream of random input vectors ~ξ ∈ RN which
are generated independently according to a bi-modal distribution of the form [39,46–48]

P(~ξ) = ∑
m=1,2

pm P(~ξ | m) with P(~ξ | m) =
1

(2 π vm)N/2 exp
[
− 1

2 vm

(
~ξ − λ~Bm

)2
]

. (4)

The target classification is taken to coincide with the cluster membership here, i.e., σ = m in
Equation (3). Class-conditional densities P(~ξ | m=1, 2) correspond to isotropic, spherical Gaussians
with variances vm and means λ ~Bm. Prior weights of the clusters are denoted as pm and satisfy
p1 + p2 = 1. We assume that the vectors ~Bm are orthonormal with ~B 2

1 = ~B 2
2 = 1 and ~B1 · ~B2 = 0.

Obviously, the classes m = 1, 2 are not linearly separable due to the overlap of the clusters.
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As an illustration, Figure 1 displays data in N = 200 dimensions, generated according to a density
of the form in Equation (4). While the clusters are clearly visible in the subspace given by ~B1 and ~B2,
projections into a randomly chosen plane completely overlap.

−4 −2 0 2 4
−4

−2

0

2

4

~B1 ·~ξ(a)

~ B
2
·~ ξ

−4 −2 0 2 4
−4

−2

0

2

4

~w1 ·~ξ(b)
~ w

2
·~ ξ

Figure 1. Clustered Model Density. Illustration of the clustered density, Equation (4), in N = 200
dimensions, here with p1 = 0.4, p2 = 0.6 and v1 = 0.64, v2 = 1.44. Triangles (squares) represent
120 (180) vectors ~ξ from the clusters centered at λ~B1 (λ~B2) with λ = 1.5, respectively. (a) Projections
~B1,2 · ~ξ of the data. The cluster centers are marked by larger symbols. (b) Projections ~w1,2 · ~ξ on two
randomly chosen orthonormal vectors ~w1,2.

We denote conditional averages over P(~ξ | m) as 〈· · · 〉m, whereas mean values
〈· · · 〉 = ∑m=1,2 pm 〈· · · 〉m are defined with respect to the full density (Equation (4)). One obtains, for
instance, the conditional and full averages〈

~ξ
〉

m
= λ ~Bm, 〈~ξ 2〉m = vm N + λ2 and 〈~ξ 2〉 = (p1v1 + p2v2) N + λ2. (5)

Note that, in the thermodynamic limit N → ∞, which is considered below, λ2 can be neglected in
comparison to the terms of O(N) in Equation (5).

2.2. Soft Committee Machines

The term Soft Committee Machine (SCM) has been coined for feedforward neural networks with
sigmoidal activations in a single hidden layer and a linear output unit (see, for instance, [30–36,55,56]).
Its structure resembles that of a (crisp) committee machine with binary threshold hidden units,
where the network’s response is given by their majority vote (see [5–7] and references therein).

2.2.1. Network Definition

The output of an SCM with K hidden units and fixed hidden-to-output weights is of the form

y(~ξ) =
K

∑
k=1

g(~wk ·~ξ) (6)

where ~wk ∈ RN denotes the weight vector connecting the N-dimensional input layer with the kth
hidden unit. A non-linear transfer function g(· · · ) defines the hidden unit states and the final output
is given as their sum. As a specific example, we consider the sigmoidal

g(x) = erf
(

x/
√

2
)

with the derivative g′(x) =

√
2
π

e−x2/2 (7)



Entropy 2018, 20, 775 7 of 21

The activation resembles closely other sigmoidal functions, e.g., the popular tanh(x), but offers
great mathematical ease in the analytical treatment, as originally exploited in [30].

Note that the SCM, cf. Equation (6), is not quite representing a universal approximator, a property
which could be achieved by introducing adaptive local thresholds ϑi ∈ R in hidden unit activations
of the form g

(
~wi ·~ξ − ϑi

)
(see [57] for a general proof). Adaptive hidden-to-output weights also

increase the flexibility of the SCM and have been studied in, for instance [33], from a statistical physics
perspective. Here, however, the emphasis is on basic dynamical effects in the on-line training of an
SCM and we restrict ourselves to the simpler model defined above.

2.2.2. Regression Scheme and On-Line Gradient Descent

In the context of continuous regression, the training of neural networks with output y(~ξ) based on
examples

{
~ξµ ∈ RN , τµ ∈ R

}
is frequently guided by the quadratic deviation of the network output

from the target values [1–3]. It serves as a cost function which evaluates the network performance with
respect to a single example as

eµ
(
{~wk}K

k=1

)
=

1
2
(
yµ − τµ

)2 with the shorthand yµ = y(~ξµ). (8)

In stochastic or on-line gradient descent, updates of the weight vectors are based on the sequential
presentation of single examples:

~wµ
k = ~wµ−1

k + ∆~wµ
k with ∆~wµ

k = − η

N
∂eµ

∂~wk
eµ = − η

N
(
yµ − τµ

) ∂

∂~wk
yµ (9)

where the gradient is evaluated in ~wµ−1
k . For the SCM architecture specified above, we have

∂yµ

∂~wk
= g′

(
hµ

k

)
~ξµ and ∆~wµ

k = − η

N

(
K

∑
i=1

erf
[

1√
2

hµ
i

]
− τµ

)
1√
2π

exp
[
−1

2

(
hµ

k

)2
]
~ξµ (10)

with the inner products hµ
i = ~wµ−1

i · ~ξµ of the current weight vectors with the new example input.
Note that the change of weight vectors is proportional to ~ξµ and can be seen as a form of Hebbian
Learning [1–3].

2.2.3. Student–Teacher Scenario and Model Data

To define and model meaningful learning situations, we resort to the consideration of
student–teacher scenarios [5–8]. We assume that the target regression can be defined in terms of

an SCM with a given number M of hidden units and a specific set of weights
{
~Bm ∈ RN

}M

m=1
:

τ(~ξ) =
M

∑
m=1

g(~Bm ·~ξ). (11)

In the model, this so-called teacher network can be equipped with M > K hidden units to model
regression schemes which cannot be learnt by an SCM student of the form in Equation (6). On the
contrary, K > M would correspond to an over-learnable target. For the discussion of these highly
interesting cases in stationary environments, see, for instance, [30–34]. In a student-teacher scenario
with K and M hidden units, respectively, the update of the student weight vectors by on-line gradient
descent reads:

~wµ
k = ~wµ−1

k − η

N
ρ

µ
k
~ξµ where ρ

µ
k =

(
K

∑
i=1

erf

[
hµ

i√
2

]
−

M

∑
m=1

erf

[
bµ

m√
2

])
1√
2π

exp
[
−1

2

(
hµ

k

)2
]

(12)
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with the quantities bµ
m = ~Bm ·~ξµ and hµ

k = ~wµ−1
k ·~ξµ.

In the following, we restrict our analysis to perfectly matching student complexity with K = M =

2 only, which further simplifies Equation (12). Extensions to more hidden units and settings with
K 6= M will be considered in forthcoming projects.

In contrast to the model for LVQ-based classification, the vectors ~Bm define the target output
τµ = τ(~ξµ) explicitly via the teacher network for any input vector. While clustered input densities
of the form in Equation (4) can also be studied for feedforward networks as in [44,45], we assume
here that the actual input vectors are uncorrelated with the teacher vectors ~Bm. Consequently, we can
resort to a simpler model density and consider vectors ~ξ of independent, zero mean, unit variance
components with, e.g.,

P(~ξ) =
1

(2 π)N/2 exp
[
−1

2
(
~ξ
)2
]

. (13)

Note that Equation (13) could be recovered formally from the density (Equation (4)) as a special
case with parameters λ = 0 and v1 = v2 = 1, for which the two clusters coincide around the origin
and p1,2 become irrelevant.

2.3. The Dynamics of On-Line Training in Stationary Environments

In the following, we sketch the successful theory of on-line learning [5–8,38] as, for instance,
applied to the dynamics of LVQ algorithms in [39,46–48] and to on-line gradient descent in SCM
in [30–36]. We refer the reader to the original publications for details. The extensions to non-stationary
situations with concept drifts are discussed in Section 2.4.

The analysis follows the same key steps in both settings. We consider adaptive vectors ~w1,2 ∈ RN

(prototypes in LVQ or student weights in the SCM) while the characteristic vectors ~B1,2 specify the
target task (cluster centers in LVQ training, SCM teacher vectors for regression).

The consideration of the thermodynamic limit N → ∞ is instrumental for the theoretical treatment.
The limit facilitates the following key steps, which, eventually, yield an exact mathematical description
of the training dynamics in terms of ordinary differential equations (ODE):

(a) Order parameters

The many degrees of freedom, i.e., the components of the adaptive vectors, can be characterized
in terms of only very few quantities. The definition of meaningful so-called order parameters follows
naturally from the specific mathematical structure of the model. After presentation of a number µ of
examples, as indicated by corresponding superscripts, we describe the system by the projections

Rµ
im = ~wµ

i · ~Bm and Qµ
ik = ~wµ

i · ~w
µ
k with i, k, m ∈ {1, 2}. (14)

Obviously, Qµ
11, Qµ

22 and Qµ
12 = Qµ

21 relate to the norms and mutual overlap of the adaptive
vectors, while the four quantities Rim specify their projections into the linear subspace defined by the
characteristic vectors {~B1,~B2}, respectively.

(b) Recursions

For the order parameters, recursion relations can be derived directly from the learning algorithms
in Equations (2) and (9), which are both of the generic form ~wµ

k = ~wµ−1
k + ∆~wµ

k , by considering the
corresponding inner products:

Rµ
im − Rµ−1

im
1/N

= η ∆~wµ
i · ~Bm

Qµ
ik −Qµ−1

ik
1/N

= η
(
~wµ−1

i · ∆~wµ
k + ~wµ−1

k · ∆~wµ
i

)
+ η2 ∆~wµ

i · ∆~wµ
k . (15)
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Note that terms of order O(1/N) on the right hand side (r.h.s.) of Equation (15) will be neglected
in the following.

(c) Averages over the Model Data

Applying the central limit theorem (CLT), we can perform an average over the random sequence
of independent examples. Note that ∆~wµ

k ∝ ~ξµ or ∆~wµ
k ∝

(
~ξµ − ~wµ−1

k

)
, respectively.

Consequently, the current input ~ξµ enters the r.h.s. of Equation (15) only through its norm
| ~ξ |2= O(N) and the quantities

hµ
i = ~wµ−1

i ·~ξµ and bµ
m = ~Bm ·~ξµ. (16)

Since these inner products correspond to sums of many independent random quantities in our
model, the CLT implies that the projections in Equation (16) are correlated Gaussian quantities for
large N and their joint density P(hµ

1 , hµ
2 , bµ

1 , bµ
2 ) is given completely by first and second moments.

LVQ: For the clustered density, cf. Equation (4), the conditional moments read〈
hµ

i

〉
m
= λRµ−1

im ,
〈

bµ
m

〉
n
= λδmn,

〈
hµ

i hµ
k

〉
m
−
〈

hµ
i

〉
m

〈
hµ

k

〉
m
= vm Qµ−1

ik ,

〈
hµ

i bµ
n

〉
m
−
〈

hµ
i

〉
m

〈
bµ

n

〉
m
= vm Rµ−1

in ,
〈

bµ
l bµ

n

〉
m
−
〈

bµ
l

〉
m

〈
bµ

n

〉
m
= vm δln, (17)

where i, k, l, m, n ∈ {1, 2} and δ... is the Kronecker-Delta.
SCM: In the simpler case of the isotropic, spherical density (Equation (13)) with λ = 0 and

v1 = v2 = 1 the moments reduce to〈
hµ

i

〉
= 0,

〈
bµ

m

〉
= 0,

〈
hµ

i hµ
k

〉
−
〈

hµ
i

〉 〈
hµ

k

〉
= Qµ−1

ik〈
hµ

i bµ
n

〉
−
〈

hµ
i

〉 〈
bµ

n

〉
= Rµ−1

in ,
〈

bµ
l bµ

n

〉
−
〈

bµ
l

〉 〈
bµ

n

〉
= δln. (18)

Hence, in both cases, the joint density of hµ
1,2 and bµ

1,2 is fully specified by the values of the order
parameters in the previous time step and the parameters of the model density. This important result
enables us to perform an average of the recursion relations (Equation (15)) over the latest training
example in terms of Gaussian integrals. Moreover, the resulting r.h.s. can be expressed in closed form
in {Rµ−1

im , Qµ−1
ik }.

(d) Self-Averaging Properties

The self-averaging property of order parameters makes it possible to restrict the description to
their mean values: Fluctuations of the stochastic dynamics can be neglected in the limit N → ∞.
This concept has been borrowed from the statistical physics of disordered materials and has been
applied frequently in the study of neural network models and learning processes [4–7]. For a detailed
mathematical discussion in the context of sequential on-line learning, see [58].

Consequently, we can interpret the averaged Equation (15) directly as deterministic recursions for
the means of {Rµ

im, Qµ
ik} which coincide with their actual values in the thermodynamic limit.

(e) Continuous Time Limit and ODE

For N → ∞, we can interpret the ratios on the left hand sides of Equation (15) as derivatives with
respect to the continuous learning time

α = µ /N. (19)
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This scaling corresponds to the plausible assumption that the number of examples required for
successful training is proportional to the number of degrees of freedom in the system.

Averages are performed over the joint densities P ({hi, bm}) corresponding to the most recent,
independently drawn input vector. Here, and in the following, we have omitted the index µ.

The resulting sets of coupled ODE obtained from Equation (15) are of the generic form:[
dRim

dα

]
stat

= ηFim and
[

dQik
dα

]
stat

= ηG(1)
ik + η2G(2)

ik . (20)

Here, the subscript stat indicates that the ODE describe learning from a stationary density,
cf. Equation (4) or (13).

LVQ: For the classification model, we have to insert the terms

Fim = (〈bm fi〉−Rim 〈 fi〉) ,

G(1)
ik =

(
〈hi fk + hk fi〉−Qik 〈 fi+ fk〉

)
and G(2)

ik = ∑
m=1,2

vm pm 〈 fi fk〉m (21)

with the LVQ1 modulation functions fi from Equation (3) and (conditional) averages with respect to
the density (Equation (4)).

SCM: In the modeling of regression in a student–teacher scenario, we obtain

Fim = 〈ρibm〉 , G(1)
ik =

〈
(ρihk + ρkhi)

〉
and G(2)

ik = 〈ρiρk〉 (22)

where the quantities ρi are defined in Equation (12) for the latest input vector and averages are
performed over the isotropic input density (Equation (13)).

In both training scenarios considered here, the r.h.s. of Equation (20), as given by
Equations (21) and (22), can be expressed in terms of elementary functions. For the straightforward
yet lengthy results, we refer the reader to the original literature for LVQ [39,46] and SCM [31–34].

(f) Generalization error

After training, the success of learning is quantified in terms of the generalization error εg, which
can also be expressed as a function of order parameters.

LVQ: In the case of classification, εg is given as the probability of misclassifying a novel, randomly
drawn input vector. In the LVQ model, class-specific errors corresponding to data from clusters k = 1, 2
in Equation (4) can be considered separately:

εg = p1 ε1
g + p2 ε2

g, where εk
g =

〈
Θ
(
dk − dk̂

) 〉
k

(23)

is the class-specific misclassification rate, i.e., the probability for an example drawn from a cluster k to
be assigned to k̂ 6= k with dk > dk̂. For the derivation of the class-wise and total generalization error for
systems with two prototypes as functions of the order parameters, we also refer to [39]. One obtains

εk
g = Φ

(
Qkk −Qk̂k̂ − 2λ(Rkk − Rk̂k)

2
√

vk
√

Q11 − 2Q12 + Q22

)
where Φ(z) =

z∫
−∞

dx
e−x2/2
√

2π
. (24)

SCM: For regression, the generalization error is defined as an average 〈· · · 〉 of the quadratic
deviation between student and teacher output over the isotropic density, cf. Equation (13):

εg =
1
2

〈(
K

∑
k=1

erf
[

hk√
2

]
−

M

∑
m=1

erf
[

bm√
2

])2〉
, (25)
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the full form of which can be found in [31,32] for arbitrary K and M. For K = M = 2 with orthonormal
teacher vectors, it simplifies to

εg =
1
3
+

1
π

[
2

∑
i,k=1

arcsin
(

Qik√
1 + Qii

√
1 + Qkk

)
− 2

2

∑
i,m=1

arcsin
(

Rim√
2
√

1 + Qii

)]
. (26)

(g) Learning curves

The (numerical) integration of the ODE for a given particular training algorithm, model density
and specific initial conditions, {Rim(0), Qik(0)} yields the temporal evolution of order parameters in
the course of training.

Exploiting the self-averaging properties of order parameters once more, we can obtain the learning
curves εg(α) = εg ({Rim(α), Qik(α)}), i.e., the generalization error after on-line training with (α N)

random examples.

2.4. The Learning Dynamics Under Concept Drift

The analysis summarized in the previous section concerns learning in the presence of a stationary
concept, i.e., for a density of the form of Equation (4) or (13) with characteristic vectors ~B1,2 which do
not change in the course of training. Here, we discuss the effect of concept drift on the learning process
within the modeling framework and consider weight decay as an explicit mechanism of forgetting.

2.4.1. Virtual Drift

Several virtual drift processes can be studied in appropriate modifications of the basic framework.
Virtual drifts affect the statistical properties of observed example data, while the actual target task
remains the same. As one example, time-varying label noise could be incorporated into both models
in a straightforward way [5–7]. Similarly, non-stationary cluster variances in the input density,
cf. Equation (4), can be considered by assuming explicitly time-dependent vσ(α) in Equation (20).
A particularly relevant case would be that of non-stationary prior probabilities pσ(α) in classification,
where a varying fraction of examples represents each of the classes in the data stream. In practical
situations, varying class bias can complicate the training significantly and lead to inferior performance.

We will investigate these and similar, purely virtual drift processes in forthcoming studies.

2.4.2. Real Drift

In the presented framework, a real drift can be modeled as a process which displaces the
characteristic vectors ~B1,2 (cluster centers in LVQ, teacher weight vectors in the SCM) in the
N-dimensional feature space. Various scenarios could be considered; we restrict ourselves to the
analysis of a random diffusion of vectors ~B1,2(µ). Upon presentation of example µ, we assume that
random vectors ~B1,2(µ) are generated which satisfy the conditions

~B1(µ) · ~B1(µ− 1) = ~B2(µ) · ~B2(µ− 1) =
(

1− δ

N

)
~B1(µ) · ~B2(µ) = 0 and | ~B1(µ) |2=| ~B2(µ) |2= 1. (27)

Here, δ quantifies the strength of the drift process. The displacement of the characteristic vectors
is very small in an individual training step and we assume for simplicity that orthonormality is
preserved. In terms of the above defined continuous time α = µ/N, the drift parameter sets the time
scale 1/δ on which the vectors lose memory of their previous positions according to ~Bm(α1) · ~Bm(αo) =

exp[−δ(α1 − αo)] for α1 > αo.
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The effect of such a drift process can be accounted for in the mathematical analysis of the dynamics
in a straightforward way: For a given vector ~wi ∈ RN , we obtain [50–53][

~wi · ~Bk(µ)
]
=

(
1− δ

N

) [
~wi · ~Bk(µ− 1)

]
for k = 1, 2 (28)

under the above specified small displacement in discrete learning time. Hence, the drift tends to
decrease the student–teacher overlaps continuously which clearly deteriorates the success of training
compared with the stationary case. The resulting ODE for the training dynamics in the limit N → ∞
under the drift process (Equation (27)) reads[

dRim
dα

]
dri f t

=

[
dRim

dα

]
stat
− δ Rim and

[
dQik
dα

]
dri f t

=

[
dQik
dα

]
stat

(29)

with the terms [· · · ]stat for stationary environments taken from Equation (20). However, as the teacher
vectors are time-dependent, order parameters Rim(α) correspond to the inner products ~wµ

i ·~Bm(µ), here.

2.4.3. Weight Decay

Possible motivations for the introduction of so-called weight decay in machine learning systems
range from regularization as to reduce the risk of over-fitting in regression and classification [1–3] to
the modeling of forgetful memories in attractor neural networks [59,60].

Here, we introduce weight decay as an element of explicit forgetting to potentially improve the
performance of the trained systems in the presence of real concept drift. To this end, we consider the
multiplication of all adaptive vectors by a factor (1− γ/N) before the generic learning step given by
∆~wµ

i in Equation (2) or (9), respectively:

~wµ
i =

(
1− γ

N

)
~wµ−1

i + ∆~wµ
i . (30)

Analogous modifications of perceptron training under concept drift were discussed in [50–53],
and weight decay in the SCM has been studied in [61,62]. Since the multiplications with (1− γ/N)

accumulate in the course of training, weight decay enforces an increased influence of the most recent
training data as compared to earlier examples.

In the thermodynamic limit N → ∞, the modified ODE for training under real drift,
cf. Equation (27), and weight decay, Equation (30), are obtained in a straightforward manner and read[

dRim
dα

]
decay

=

[
dRim

dα

]
stat
− (δ + γ)Rim and

[
dQik
dα

]
decay

=

[
dQik
dα

]
stat
− 2 γ Qik (31)

with the terms for stationary environments in absence of weight decay, Equation (20).

3. Results and Discussion

We present and discuss first results that illustrate the usefulness of the modeling framework. First,
we obtain insight into the capability of LVQ to cope with concept drift in classification. Second, we
investigate the non-trivial effects of drift on the on-line gradient descent training of layered neural
networks in regression tasks.

3.1. Learning Vector Quantization in the Presence of Real Concept Drift

We study the typical behavior of LVQ1 under real concept drift as defined in Section 2.4.2.
Throughout the following, we consider prototypes initialized as independent, normalized random
vectors with no prior knowledge of the cluster structure, which corresponds to

Q11(0) = Q22(0) = 1, Q12(0) = 0 and Rim(0) = 0 for i, m ∈ {1, 2}. (32)
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Figure 2a displays example learning curves εg(α) for a drift with δ = 1 for different learning rates,
see the caption for other model parameters. Details of the initial phase of training, depend on the
interplay of initial values Qii(0) and the learning rate. Note that a non-monotonic behavior of εg(α)

can be observed for some settings.
Monte Carlo simulations show excellent agreement with the (N → ∞) theoretical predictions

already for relatively small systems. This parallels the findings presented in [39,46] for stationary
environments. As just one example, Figure 2a also shows the mean and standard deviation of εg over
25 randomized runs of the training for η = 1 and N = 1000. A systematic comparison and discussion
of the N-dependence in computer experiments of LVQ under concept drift will be presented elsewhere.

The results for large α show that the success of learning, i.e., the degree to which the drifting
concept can be tracked by LVQ1, depends on the learning rate in a non-trivial way. In contrast to
learning in stationary environments, the use of very small learning rates obviously fails to maintain
the ability to generalize in the presence of a significant real drift. On the other hand, too large learning
rates result in inferior performance as well.

0 5 10 15 200.3

0.4

0.5
η = 1.0 
η = 2.0  
η = 5.0   
η = 20.0   

α(a)

εg

0 5 10 150.1

0.2

0.3

0.4

0.5
δ = 0.0  

δ = 0.2  

δ = 0.5  

δ = 1.0

η(b)

ε∞
g

Figure 2. LVQ under Concept Drift: Learning Curves and the Role of the Learning Rate. LVQ1 training from
data according to the model density (Equation (4)) with λ = 1, p1 = p2 = 0.5 and v1 = v2 = 0.5 in
the presence of real concept drift. (a) Learning curves εg(α) for δ = 1 and various learning rates η.
Symbols and error bars mark the mean results and standard deviations observed in 25 randomized
simulations for N = 1000 with η = 1 as an example. (b) Asymptotic (α→ ∞) generalization error as a
function of the learning rate η for different drift parameters δ and in the stationary environment with
δ = 0.

After presenting many examples, i.e., in the limit α→ ∞, the system approaches a quasi-stationary
state in which the LVQ prototypes track the drifting center vectors ~B1,2 with constant overlap
parameters Rim, Qik. The configuration corresponds to the stationarity conditions[

dRim
dα

]
dri f t

=0 and
[

dQik
dα

]
dri f t

=0. (33)

Figure 2b shows the α→ ∞ asymptotic generalization error ε∞
g = limα→∞ εg(α) as a function of

η. Only in absence of drift, i.e., for δ = 0, the best possible generalization ability of LVQ1 is obtained in
the limit η → 0. We refer the reader to [39,46] for a detailed discussion of ε∞

g and its dependence of
the model parameters λ, p± and v±. For δ > 0, the limit η → 0 results in trivial asymptotic behavior
corresponding to random guesses, with ε∞

g = 1/2 for the symmetric input density with p1 = p2 and
v1 = v2, for instance.

Given the drift parameter δ, an optimal constant learning rate can be identified with respect to
the generalization ability in the quasi-stationary state. The use of this learning rate yields, for α→ ∞,
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the best ε∞
g achievable under drift. It is displayed in Figure 3a as a function of δ for small values of the

drift parameter. The optimal quasi-stationary generalization error under concept drift scales is:[
ε∞

g (δ)− ε∞
g (0)

]
∝ δ1/2 for small δ. (34)

As expected, the drift impedes the learning process. However, our results show that already the
simplest LVQ scheme is capable of tracking randomly drifting clusters and to maintain a significant
generalization ability, even in very high-dimensional spaces.

We have also studied the effect of weight decay in the presence of the above discussed real
concept drift. Figure 3b displays example learning curves for LVQ1 training with various weight decay
parameters γ for a given learning rate η. As these examples show, the implementation of weight decay
has the potential to improve the generalization behavior significantly when tracking a drifting concept.
The simultaneous optimization of learning rate and weight decay {η, γ} with respect to the success of
training in the tracking state will be addressed in forthcoming studies.
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0.5

(b)

γ = 0.0
γ = 2.0
γ = 5.0

α

εg

Figure 3. LVQ under Concept Drift: Asympotic Generalization and the Influence of Weight Decay. LVQ1 in
the presence of a real drift with model parameters λ = 1, v1 = v2 = 0.5, p1 = p2 = 0.5. (a) The (α→
∞) asymptotic generalization error of LVQ1 as obtained with an optimized constant learning rate.
Empty circles correspond to numerical results for different drift parameters, the filled circle represents
stationary data, for which ε∞

g (δ = 0) ≈ 0.158. The dashed line corresponds to a fit of the form
ε∞

g (δ=0) + 0.166 δ1/2. (b) Learning curves in the model with learning rate η = 2.0 and drift parameter
δ = 1.0. The three curves correspond to learning without weight decay (upper, solid line), with γ = 2
(lower, dash-dotted line) and γ = 5 (middle, dashed line).

3.2. SCM Regression in the Presence of Real Concept Drift

Here, we present results concerning the SCM student-teacher scenario with K = M = 2.
Already in this simplest setting and in absence of concept drift, the learning dynamics displays
non-trivial phenomena which have been studied in detail in, among others, [31,32,34]. Perhaps the
most interesting effect is the occurrence of quasi-stationary plateau-states which can even dominate
the learning curves εg(α). They reflect the existence of weakly repulsive fixed points of the ODE
(Equation (20)) and correspond to sub-optimal, more or less symmetric configurations of the student
network. The problem of delayed learning due to saddle points and related effects in gradient-based
training is obviously also of interest in the context of Deep Learning (see [3,37,63,64] for recent
investigations and further references).

In the SCM model, one can show that a plateau with Rik ≈ R and and Qik ≈ Q for all i, k ∈
{1, 2} always exists in the case of orthonormal teacher vectors and for small learning rates [31,32,34].
In this state, all student weight vectors have acquired the same, limited knowledge of the target rule.
To achieve better generalization ability, this symmetry has to be broken or, in other words, the student
hidden units have to specialize and represent specific units of the teacher network.
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Note that more complex fixed point configurations with different degrees of (partial) specialization
can be found, in general. The number of observable plateaus depends on the learning rate and increases
for larger K and M (see [34] for a detailed discussion in the absence of drift).

In practice, one expects Rim(0) ≈ 0 for all i, m unless prior knowledge is available about the
target. Hence, the student specialization Si(0) = |Ri1(0)− Ri2(0)| is also expected to be small, initially.
A nearly unspecialized configuration with Si(α) ≈ 0 persists in a transient phase of learning, which
can extend over large values of α. The actual shape and length of the plateau depends on the precise
initialization and the repulsive properties of the corresponding fixed point of the dynamics (see [34]
for a detailed discussion, which also addresses the effect of finite N in Monte Carlo simulations).

Figure 4a shows an example (lowest curve) of a pronounced plateau state in on-line gradient
descent for initial conditions

Rim = Ro + U(10−5) with Ro = 0.01, Q11 = Q22 = 0.5, Q12 = 0.49. (35)

Here, U(X) denotes a random number drawn from the interval (0, X] with uniform probability,
hence also Si(0) = O(X). The initialization corresponds to nearly identical student vectors with
little prior knowledge. It is inspired by the analyses in [32,34] which showed that the actual value of
Ro is largely irrelevant for the observed plateau length, while it depends logarithmically on X [34].
Corresponding Monte Carlo simulations are shown in Figure 4a for N = 500 and randomly drawn
initial student vectors, resulting in Rim(0) = O(1/

√
N), with Qik(0) fixed according to Equation (35).

Simulations confirm the theoretical predictions very well, qualitatively.
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Figure 4. Regression under Concept Drift: Learning Curves. Gradient-based training of the Soft Committee
Machine with K=M=2 and orthogonal teacher vectors in the presence of real target drift, with learning
rate η = 0.5 and initial conditions as specified in Equation (35). (a) Learning curves for the stationary
case with δ = 0 (lower line), for weak drift with δ = 0.005 (middle) and for strong drift with δ = 0.03
(upper line). Symbols represent the result of single Monte Carlo simulation runs for system size
N = 500. (b) The corresponding evolution of the student–teacher overlaps R11 = R22 and R12 = R21 vs.
α for the stationary case with δ = 0 (lower and upper lines), for weak drift with δ = 0.005 (intermediate)
and strong drift with δ = 0.03 (center, all overlaps equal).

For very slow drifts of the target concept, the behavior is still similar to the stationary case. For an
example with δ = 0.005, Figure 4a shows the N → ∞ theoretical learning curve and Monte Carlo
simulations: After a rapid, initial decrease of the generalization error, a quasi-stationary, unspecialized
plateau is reached. Eventually, the symmetry is broken and the system approaches its α → ∞
asymptotic state, in which a smaller but non-zero ε∞

g (δ) is achieved. Obviously, on-line gradient
descent training enables the SCM to track the drifting target to a reasonable degree and maintains
a specialized hidden unit configuration. The precise influence of finite size effects on the shape and
length of plateaus in Monte Carlo simulations will be studied in greater detail in forthcoming projects.

The behavior changes significantly in the presence of stronger concept drifts: The SCM remains
unspecialized even for α → ∞ and, consequently, the achievable generalization ability is relatively
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poor. Figure 4a displays the corresponding learning curve for δ = 0.03 as an example, together with
the result of a single Monte Carlo simulation.

Figure 4b shows the evolution of the overlap parameters Rim(α) corresponding to the learning
curves displayed in Figure 4a. While for δ = 0.005 the student units still specialize, the unspecialized
plateau state with Rim ≈ R for all i, m persists for δ = 0.03.

In Figure 5a, this is illustrated in terms of the (quasi-)stationary values of εg: The system can benefit
from the specialization in terms of a low α→ ∞ asymptotic generalization error (solid line). For δ ≈ 0,
the achievable generalization error increases linearly with the drift parameter: ε∞

g (δ) ∝ δ. Note that
ε∞

g (δ = 0) = 0 in the perfectly learnable scenario with K = M considered here. On the contrary, for
larger δ, the only stable fixed point of the system coincides with an unspecialized configuration (dashed
line). The generalization error of the latter also displays a linear dependence on δ for slow drifts.

Weight decay can improve the performance slightly in the presence of weak concept drifts.
As displayed in Figure 5a, for an example drift of δ = 0.015, the parameter γ in Section 2.4.3 can be
tuned to decrease the achievable generalization error in the unspecialized plateau (dashed line) and,
more importantly, in the final quasi-stationary tracking state (solid line). Specialization cannot be
achieved if the weight decay parameter is set too large. A more detailed analysis of the interplay of
learning rate and weight decay will be presented in a forthcoming publication.
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Figure 5. Regression under Concept Drift: Plateaus and Specialized States. Soft Committee Machine,
regression in the presence of real target drift, learning rate and model parameters as in Figure 4. (a) The
generalization error vs. the drift parameter δ for γ = 0, in the symmetric plateau state with R11 = R22

and R12 = R21 (dashed line) and in the α → ∞ stationary state (solid). (b) The influence of weight
decay: For a given drift with δ = 0.015, the α→ ∞ asymptotic generalization error is displayed as a
function of the weight decay parameter γ. In addition, the dashed line marks εg in the unspecialized
plateau state.

4. Conclusions

Here, we conclude with a brief summary, provide an outlook on potential follow-up studies and
discuss major challenges and open questions.

4.1. Brief Summary

In this contribution, we present a modeling framework which facilitates the systematic study and
exact mathematical description of on-line learning in the presence of concept drift. The framework is
illustrated by the analysis of two model scenarios: The learning of a classification scheme is exemplified
in terms of prototype-based Learning Vector Quantization, trained from a stream of clustered input data.
Regression problems are addressed in the context of gradient-based training of the Soft Committee
Machine, a two-layered feed forward neural network with nonlinear hidden unit activation. Here, the
analysis is done in the frame of a student–teacher scenario. In both setups, we study the influence of
real drifts, where the target classification or regression scheme are subject to a randomized drift process.

Most importantly, we demonstrate that the presented framework is suitable for the mathematical
analysis of a variety of learning and drift scenarios, including weight decay as a possible mechanism
of explicit forgetting.
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A discussion of the findings in detail is provided in the previous section. In brief, we show that
the simple LVQ1 prescription is indeed capable of tracking time-dependent classification schemes
in high-dimensional input space under randomized drift. Regression under concept drift displays
non-trivial effects in terms of the success of gradient based adaptation in SCM networks. In particular,
we observe the drift-induced persistence of unspecialized, sub-optimal plateaus in the learning curve.
Thus, on-line learning can display quite different behavior in the presence of concept drift, depending
on the underlying target and its properties. In both settings considered here, weight decay has the
potential to improve the generalization behavior under drift in the quasi-stationary tracking state.

4.2. Future Work and Extensions

In the present contribution, we study only a few, simple scenarios in terms of the considered
targets, drift processes and student systems. Several interesting topics can be addressed readily by
straightforward modifications of the models:

• The systematic investigation of virtual drifts as in, for instance, non-stationary label noise,
prior weights p1,2 or cluster separation λ is readily possible by consideration of explicitly
time-dependent ODE.

• Alternative LVQ prescriptions, as studied in [39,46–48] for stationary data, can be systematically
compared in terms of their potential to deal with concept drift.

• Similarly, modifications of the basic gradient descent scheme can be considered under concept
drift in the SCM student–teacher scenario (seem for instancem [35,36,38]).

• Deterministic concept drifts, similar to the processes studied in the context of perceptron training
in [50–53], can be considered as well. This way, learning from an adversary can be modeled,
where the modification of the target depends explicitly on the actual student configuration.

• The restriction to LVQ systems with one prototype per class results, effectively, in the
parameterization of linear class boundaries only. This limitation can be lifted by considering
distances different from the simple Euclidean measure (see, e.g., [29]). Alternatively,
systems with several prototypes per class correspond to non-linear (piece-wise linear) decision
boundaries which has non-trivial effects on the training dynamics, as demonstrated for stationary
environments in [49].

• Similarly, the investigation of SCM student–teacher scenarios with more general settings of K
and M will provide insight into the interplay of concept drift with the larger number of possible
plateau states for K, M > 2. Over- and under-fitting effects in mismatched situations with K 6= M
will be in the center of interest.

• The shallow SCM architectures studied here are limited to a single hidden layer of units.
The important extension to deeper networks with several hidden layers will be addressed in
forthcoming studies.

• It will be interesting to explore the extent to which the theoretically studied phenomena can be
observed in practical situations. To this end, we will investigate the behavior of LVQ and SCM in
realistic training set-ups with real world data streams.

4.3. Perspectives and Challenges

We have demonstrated that the presented modeling framework bears the promise to provide
valuable insights into the effects of concept drift in a variety of learning scenarios. Ultimately, a better
understanding of relevant phenomena should facilitate the development and optimization of robust,
efficient training algorithms for lifelong machine learning. Variational approaches, as discussed in,
for instance [5–8,35,52,53], could play an important role in this context.

One of the most important challenges, in particular for active methods, is the reliable detection of
concept drift in a stream of data. Learning systems should be able to infer not only the nature of the
drift (e.g., virtual vs. real), but also estimate its strength in order to tune algorithm parameters such as
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learning rate or weight decay appropriately. It would be interesting to extend the framework towards
such methods, which often rely on the variability of surrogates, such as changes of the observed
classification error. The proposed analytical approach would enable us to obtain formal insight into
the behavior of the surrogate characteristics in concrete models.

Recently suggested strategies for continual learning include so-called Dedicated Memory Models
and the appropriate combination of off-line and on-line learning [21,65,66]. Suitable rejection
mechanisms for the mitigation of concept drift were recently considered in [67]. Extensions of our
modeling approach in these directions would be highly desirable.
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