
RESEARCH ARTICLE

BioSANS: A software package for symbolic

and numeric biological simulation

Erickson Fajiculay1,2,3, Chao-Ping HsuID
1,4,5*

1 Institute of Chemistry, Academia Sinica, Taipei, Taiwan, 2 Bioinformatics Program, Institute of Information

Science, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan, 3 Institute of

Bioinformatics and Structure Biology, National Tsinghua University, Hsinchu, Taiwan, 4 Physics Division,

National Center for Theoretical Sciences, Taipei, Hsinchu, Taiwan, 5 Genome and Systems Biology Degree

program, National Taiwan University, Taipei, Taiwan

* cherri@sinica.edu.tw

Abstract

Modeling biochemical systems can provide insights into behaviors that are difficult to

observe or understand. It requires software, programming, and understanding of the system

to build a model and study it. Softwares exist for systems biology modeling, but most support

only certain types of modeling tasks. Desirable features including ease in preparing input,

symbolic or analytical computation, parameter estimation, graphical user interface, and sys-

tems biology markup language (SBML) support are not seen concurrently in one software

package. In this study, we developed a python-based software that supports these features,

with both deterministic and stochastic propagations. The software can be used by graphical

user interface, command line, or as a python import. We also developed a semi-programma-

ble and intuitively easy topology input method for the biochemical reactions. We tested the

software with semantic and stochastic SBML test cases. Tests on symbolic solution and

parameter estimation were also included. The software we developed is reliable, well per-

forming, convenient to use, and compliant with most of the SBML tests. So far it is the only

systems biology software that supports symbolic, deterministic, and stochastic modeling in

one package that also features parameter estimation and SBML support. This work offers a

comprehensive set of tools and allows for better availability and accessibility for studying

kinetics and dynamics in biochemical systems.

1. Introduction

The complex nature of biological systems often hinders a full understanding of behavior, an

area in which mathematical models and simulation can help [1]. Clues from experiments are

limited to the details of the sub-systems considered and can be difficult to interpret. Computer

simulation allows for formulating a working model that can help explain experimental obser-

vations [2,3]. It can provide links between observations and unknowns in terms of a mathe-

matical expression or numerical values, offering qualitative or quantitative insights. Good

models can give testable predictions that can be used to evaluate the applicability, scope, and

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0256409 April 18, 2022 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Fajiculay E, Hsu C-P (2022) BioSANS: A

software package for symbolic and numeric

biological simulation. PLoS ONE 17(4): e0256409.

https://doi.org/10.1371/journal.pone.0256409

Editor: Bashar Ibrahim, Gulf University for Science

and Technology, GERMANY

Received: August 1, 2021

Accepted: March 15, 2022

Published: April 18, 2022

Copyright: © 2022 Fajiculay, Hsu. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All codes are

available in https://github.com/efajiculay/

SysBioSoft/tree/BioSANS_updated/BioSANS/src/

BioSANS2020 All installer are available in https://

github.com/efajiculay/BioSANS_installers, and

https://github.com/efajiculay/SysBioSoft/tree/

BioSANS_updated/BioSANS_installer All relevant

data are within the paper and its Supporting

information files. The software is also available in

our gihub page at https://pypi.org/project/

BioSANS2020/, pypi repository at https://pypi.org/

project/BioSANS2020/#files, and test.pypi

repository at https://test.pypi.org/project/

BioSANS2020/#files.

https://orcid.org/0000-0002-7187-427X
https://doi.org/10.1371/journal.pone.0256409
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0256409&domain=pdf&date_stamp=2022-04-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0256409&domain=pdf&date_stamp=2022-04-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0256409&domain=pdf&date_stamp=2022-04-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0256409&domain=pdf&date_stamp=2022-04-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0256409&domain=pdf&date_stamp=2022-04-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0256409&domain=pdf&date_stamp=2022-04-18
https://doi.org/10.1371/journal.pone.0256409
http://creativecommons.org/licenses/by/4.0/
https://github.com/efajiculay/SysBioSoft/tree/BioSANS_updated/BioSANS/src/BioSANS2020
https://github.com/efajiculay/SysBioSoft/tree/BioSANS_updated/BioSANS/src/BioSANS2020
https://github.com/efajiculay/SysBioSoft/tree/BioSANS_updated/BioSANS/src/BioSANS2020
https://github.com/efajiculay/BioSANS_installers
https://github.com/efajiculay/BioSANS_installers
https://github.com/efajiculay/SysBioSoft/tree/BioSANS_updated/BioSANS_installer
https://github.com/efajiculay/SysBioSoft/tree/BioSANS_updated/BioSANS_installer
https://pypi.org/project/BioSANS2020/
https://pypi.org/project/BioSANS2020/
https://pypi.org/project/BioSANS2020/#files
https://pypi.org/project/BioSANS2020/#files
https://test.pypi.org/project/BioSANS2020/#files
https://test.pypi.org/project/BioSANS2020/#files


limitation of the model [4,5]. No model can fully account for every detail of a system, but some

can provide important aspects of the system within its scope [6].

Interest in modeling biological processes has been increasing [7]. Models of processes that

constitute a network of interacting molecules are of particular interest [8–12]. Algorithms and

theories dedicated to modeling gene expressions have been developed [13–15]. Modeling and

experimental studies related to gene expression, biological clock, and diseases are now com-

mon [16–20]. The study of infectious diseases and host pathogen interactions have also been

heavily involved with various modeling approaches [21–23]. Recently, works on the applica-

tion of a variety of mathematical modeling techniques for COVID-19 have also been reported

in the literature [24–27].

Another popular approach of modeling biological system is known as rule-based models. In

these models, the interaction of molecules of a system is represented by a pattern or graph, with

rules that described molecular processes and events. The description of system is usually simpli-

fied with the rules, with great potential in studying the combinatorial complexity in many bio-

logical problems. Several works have been reported following this modeling regime [10,28–31].

Simulating a model is not difficult, but for a complicated model or for elaborated analyses

and tests with models, scripting or programming skills are necessary. To simulate a model,

high-level programming tools such as Matlab or Python are often used. Complicated models

may require advance programming skills and deep understanding of the domain concepts

involved. Software exists for modeling biological systems; most require basic scripting [32–39].

Some do not require coding for basic simulations but have limited power in the graphical user

interface (GUI) [40]. For most software, the propensity expression needs to be manually typed

by the user. This is sometimes time-consuming and a hindrance to usability. Most systems-

biology software packages support only certain types of modeling tasks. As far as we know, no

systems biology software provides symbolic computation capability without the need to

declare variables and write ordinary differential equation (ODE) expressions. Most are not

user friendly, do not allow for easy-to-prepare input, do not support parameter estimation and

do not provide a GUI. Some do not provide systems biology markup language (SBML) support

and others have limited or minimal SBML supported features. Therefore, a software package

addressing the above limitations is highly desirable because it allows access to mathematical

modeling by a much broader range of users.

In this study, we took advantage of Python libraries for both numeric and symbolic compu-

tation and developed a program that can make systems biology analysis available to non-

domain experts. In doing so, we provide a platform that can support a wide variety of model-

ing tasks. Currently, the software supports model construction, symbolic computation, propa-

gation, analysis, and parameter estimation and also supports SBML. A semi-programmable

topological model input was developed, for easy construction and understanding. We also pro-

vide a GUI. The algorithms are available in Python import format for expert users and also via

a command line using our novel structured simulation language (SSL), which is very similar to

MySQL commands in terms of readability. We tested the software in simulating systems of

various sizes, and it was found reliable, practical, and easy to use. We provide an invaluable

research tool for model simulations by domain experts from systems biology or chemistry.

2. Modeling scheme supported in BioSANS

The process of a typical modeling task generally involves model construction, propagation and

analysis. Fig 1 lists these processes with functionalities provided in the developed software,

BioSANS. The first step is to build a topological model and to establish the set of differential

equations based on the topology of the model. For the initial model, temporary parameter

PLOS ONE BioSANS for symbolic and numeric biological simulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0256409 April 18, 2022 2 / 22

Funding: Both EF and CPH acknowledges the

support from project AS-IA-106-M01 from

Academia Sinica and project 109-2113-M-001-

022-MY4 and 110-2123-M-001-005 from Ministry

of Science and Technology of Taiwan. The funders

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0256409


Fig 1. Schematic diagram showing some of the modeling tasks available in BioSANS. The basic modeling scheme includes model construction,

propagation, and analysis. Except for blue colors, the same color in different branches indicates similar types of analysis under a common category. Green

shaded boxes are for analytical expressions, and orange shaded boxes are for numerical results.

https://doi.org/10.1371/journal.pone.0256409.g001

PLOS ONE BioSANS for symbolic and numeric biological simulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0256409 April 18, 2022 3 / 22

https://doi.org/10.1371/journal.pone.0256409.g001
https://doi.org/10.1371/journal.pone.0256409


values are required. These values can be based on databases, experimental design, physical

intuition, and known ground truth. If sufficient data are available, parameter estimation may

help tune the parameters. If the ODE is analytically solvable, species analytical expression as a

function of time, initial conditions, and rate constants can be computed. If not, numerical inte-

gration techniques can be used to propagate the trajectories. Propagation can be deterministic

or stochastic and compared to experimental data to gain some physical insights.

Linear noise approximation (LNA) is a convenient way to study noise in the system [41–

43]. Derivation of analytical expression utilizing the LNA is supported in BioSANS and can be

compared to the stochastic results. This allows for gaining physical insights into the noise

effects in the system as a function of physical variables.

Once the simulation is performed and the analytical expressions are calculated, further

analyses such as plotting, calculation of statistics, etc. can be performed to judge the result and

to check consistencies with known ground truth. If the model has inconsistencies and/or fails

to account for experimental observations, some of the hypotheses put forth may be proved

wrong, and the model may need some modification. A cycle from gathering experimental

data, model construction and simulation is needed to ensure consistency between the model

and observations. A full list of modeling tasks and workflow to be followed in using BioSANS

on a case-to-case basis is included in supporting information.

3. Description of algorithms and implementation

The codes in BioSANS are written in Python [44], which only needs a user-defined topology

file that is intuitive to construct based on basic chemistry knowledge. The software algorithm

grabs data from the topology file and calculates the stoichiometric matrix and propensity vec-

tor. It then sets up the ordinary differential equation for most typical types of simulations. This

process is handled by building a dictionary of species, concentrations, reactants, products, rate

constants, and lambda functions. Access to dictionary contents allows for automatic declara-

tion of symbolic parameters for symbolic computation and easy establishment of inputs for

numeric computations. Most numeric computations are handled by NumPy/SciPy [45,46]

and symbolic computations by SymPy [47]. We have developed the necessary codes that pre-

pare the inputs for solving ordinary differential equations for integration with SymPy and

NumPy modules. We have also implemented functionalities such as tau-adaptive Euler, tau-

adaptive Runge-Kutta (RK), fixed interval RK, stochastic simulation algorithm (SSA), tau-

leaping algorithm, tau-adaptive chemical Langevin algorithm, fixed interval chemical Langevin

algorithm, numerical and symbolic linear noise approximation, and Monte-Carlo expectation

maximization, etc. that NumPy/SciPy and SymPy do not have built-in functions.

A relatively new method, network localization [48], allows for studying the qualitative effect

of parameter perturbation from structural topology alone. This can be used to obtain physical

insights even without propagating the ODE of the system. In BioSANS, both symbolic and

numeric network localization is supported.

A list of the codes in BioSANS with a description of its role is provided in sections 7.1 to 7.2

of the supplementary material. BioSANS documentation, installer and the actual codes can be

downloaded from the following GitHub repositories; https://github.com/efajiculay/BioSANS_

installers, https://github.com/efajiculay/SysBioSoft/tree/BioSANS_updated/BioSANS, and the

following GitHub pages; https://efajiculay.github.io/SysBioSoft/.

3.1 Model construction

To overcome the potential barriers in constructing a model, we have designed a new model

input form, the topology file, which is a text file that follows how elementary chemical

PLOS ONE BioSANS for symbolic and numeric biological simulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0256409 April 18, 2022 4 / 22

https://github.com/efajiculay/BioSANS_installers
https://github.com/efajiculay/BioSANS_installers
https://github.com/efajiculay/SysBioSoft/tree/BioSANS_updated/BioSANS
https://efajiculay.github.io/SysBioSoft/
https://doi.org/10.1371/journal.pone.0256409


equations [49] are written. With an example shown in Fig 2, such a file is intuitive to construct

and contains only a list of reactions, rate constants, initial conditions, and additional parame-

ter settings. The users do not necessarily need to provide expressions for fluxes or propensity,

which is definitely needed when writing a regular code for simulation. BioSANS can automati-

cally infer the propensity from the chemical reaction listed. Algebraic expressions for concen-

tration and propensity modification are supported in case the needed expression differs from

mass action kinetics, such as the commonly used Mechaelis-Mention kinetics or the Hill func-

tion. Time-dependent propensity and complicated conditional logic (i.e., events, events with

delay, etc.) is supported in the algebraic expression. Models can also be written as differential

equations in the topology file.

The BioSANS topology file has three main tags: Function_Definitions:, #REACTIONS, and

@CONCENTRATION. Fig 2 shows the last 2 tags, which is the minimal requirement. The sin-

gle-headed arrow represented as “=>” is used for forward reaction and the double headed

arrow “<=>” is for reversible reaction. This setting allows a user to easily identify reactions,

one way or reversible, in a topology file. The numbers after the comma in each row after the

reactions are the rate constants. The number of rate constants listed should match the arrow

used: 1 entry for one-way and 2 entries for reversible reactions. The initial concentration is

defined after the comma in each corresponding species under the @CONCENTRATION tag.

Propensity and concentration modifications can be written as a lambda expression in each

row after some delimiter. If algebraic modifications are provided, the rate constant and or ini-

tial concentration will be ignored and the propensity expression is evaluated. The full details of

how to construct a topology file including algebraic modifications is in section 4 of the supple-

mentary material.

Most available models in the literature are provided as a Matlab or Python script or are

available in SBML format. BioSANS can run a Python file directly, and ODE models written in

Python will be easy to simulate in BioSANS. Shown in Fig 3 is an alternative input file called

an ODE file. It can also be used to create models that require only the ODE expression, a set of

initial conditions, and a rate constant.

An ODE file can be constructed with minor modification from an existing ODE model and

is suitable to use if we have an idea of the underlying mathematics that the system obeys. The

ODE_DECLARATIONS: tag is simply the set of species in the left-hand side and the corre-

sponding differential expression in the right- hand side. This file needs to be converted to a

topology file with BioSANS before we can propagate the model in the usual way. The con-

verted file will contain the corresponding chemical reaction that satisfies the ODE expressions.

Fig 2. An example of a topology file that can be used to perform simulations in BioSANS.

https://doi.org/10.1371/journal.pone.0256409.g002

PLOS ONE BioSANS for symbolic and numeric biological simulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0256409 April 18, 2022 5 / 22

https://doi.org/10.1371/journal.pone.0256409.g002
https://doi.org/10.1371/journal.pone.0256409


Unlike the topology file, the ODE file does not support a lambda expression, and if a user

wants to introduce events, such events have to be incorporated in the converted file. SBML

files to topology file conversion is also supported in BioSANS for models that are available

only in SBML format.

BioSANS also takes line commands with highly human readable formats, similar to SQL

commands. Fig 4 shows a model using such commands, which we call SSL. This function

allows for automations by saving many SSL scripts in one file and loading them via the Bio-

SANS console. The model in the script is also converted by BioSANS to topology format and

executes the remaining statements, which tell BioSANS how to process the model from propa-

gation to analysis.

BioSANS can also be used as a python library which only requires minimal coding skills to

perform complex simulation task. Fig 5 shows an example code that declares a topology model

inside a string that is directly feed into BioSANS2020.biosans_lib model class. This minimal

set of codes can be used to perform propagation of deterministic and stochastic trajectory,

symbolic computation, and parameter estimation by just changing the method and modifying

Fig 3. An example of an ODE file with 2 chemical species.

https://doi.org/10.1371/journal.pone.0256409.g003

Fig 4. An example of BioSANS structured simulation language (SSL) scripts.

https://doi.org/10.1371/journal.pone.0256409.g004

PLOS ONE BioSANS for symbolic and numeric biological simulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0256409 April 18, 2022 6 / 22

https://doi.org/10.1371/journal.pone.0256409.g003
https://doi.org/10.1371/journal.pone.0256409.g004
https://doi.org/10.1371/journal.pone.0256409


few more parameters inside the model and run functions. A detailed list of methods key words

that can be used inside the run function can be found in section 6.2.1 of the supplementary

material.

As part of the general model construction, BioSANS can also perform parameter estimation

for a given topology file and experimental data, a feature not available in many similar software

packages. A tutorial is included in supplementary material for a detailed description of the dif-

ferent BioSANS input files (section 4). Topology files for parameter estimation with examples

are discussed in sections 8.5 to 8.7.

3.2 Propagation

The trajectory of the state variables can be computed via deterministic and stochastic settings.

For deterministic computation, symbolic analytical expression and numerical integration are

supported. The stochastic calculation may be carried out with the SSA [50], chemical Langevin

equation [51], tau-leaping algorithm [52], and LNA [41,43].

Symbolic computation is currently limited to mostly linear differential equations and a few

nonlinear differential equations. The symbolic test performed in this work involves only up to

10 interacting chemical species; beyond that, the software may take a very long time for an

answer. Topology files with a modified functional form of propensity with nonlinear functions

are likely to fail in symbolic computation. Such capabilities can be further improved if the sym-

bolic ODE solving is improved with SymPy in the future. Nevertheless, our work allows for a

quick input in topology and a symbolic answer for solvable systems without the need to declare

variables and write ODE expressions. To the best of our knowledge, this is a novel functionality

among current systems-biology packages and a feature that is very convenient to use.

In propagating deterministic trajectories, we took advantage of the LSODA [53] algorithm

in the SciPy module of python, which allows for fast and efficient numerical integration. We

also provide 2 different Euler propagations [54], both with an adaptive time-step setting.

Fig 5. An example of the use of BioSANS as a python import or library.

https://doi.org/10.1371/journal.pone.0256409.g005

PLOS ONE BioSANS for symbolic and numeric biological simulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0256409 April 18, 2022 7 / 22

https://doi.org/10.1371/journal.pone.0256409.g005
https://doi.org/10.1371/journal.pone.0256409


Runge-Kutta fourth (RK4) is also offered in 2 version, one is time adaptive and and the other

is fixed time-interval [55].

Euler and RK4 were manually coded to support certain SBML features that do not fit the

standard use of the LSODA library. The critical SBML features that require coding new inte-

grators are events with delay, events triggered by time, events triggered by other events, use of

infinity symbols, and use of SBML keywords such as csymbol delay, csymbol time, rateof, etc.

For sophisticated events, it is necessary to keep track of the previous trajectories, so the stan-

dard built-in integrator in Python was inapplicable.

Euler propagation is simple and can provide a well-grounded side-by-side comparison with

the Euler-Maruyama propagation for stochastic simulation. In our implementation, 2 different

adaptive time-step Euler schemes are offered. The first scheme, labelled “Euler (tau-adaptive-

1),” was inspired by the tau-leaping scheme [52], with the step size determined by limiting the

largest change among the reactions. The second scheme is labelled “Euler (tau-adaptive-2),”

which involved choosing a step size that maintains the error as compared with a second-order

RK estimate.

RK4 is one of the most popular and widely used integrator. It is simple, accurate in most

cases, and easy to implement. Further details about our Euler and RK4 implementation are

provided in supplementary material, section 10.2.1.

Stochastic trajectories can be propagated by using our implementation of SSA, 2 different

implementations of tau-leaping, and 2 different versions of chemical Langevin algorithms. The

SSA, or the Gillespie’s algorithm [50], is an exact realization of the chemical master equation,

with probabilistic reactions taking place at the microscopic level. Tau-leaping and chemical

Langevin algorithms are inexact stochastic algorithms that accelerate propagation by using a

large time step. They allow for many incidents of chemical reactions by using a random vari-

able to account for the number fluctuation.

Our first implementation of tau-leaping, labelled “tau-leaping-1,” includes a regular Poisson

random variable describing the number of times a reaction channel fires. In this implementa-

tion, the step size was determined by requiring a small change in the reaction propensity fol-

lowing the new tau-selection procedure [52]. Treatment of critical reactions, which are

reactions that are close to exhausting some of its reactants after several fires, is not considered

in “tau-leaping-1”. We simply draw another random variable when the species concentration

becomes negative because this is a very rare event under the new tau-selection procedure. The

second version, labelled “tau-leaping-2,” adopts the “modified Poisson tau-leaping,” which sep-

arates the treatment of critical and non-critical reactions and also uses the new tau-selection

procedure [52]. Critical reactions are monitored and treated as discussed in section C of [52].

The two different versions of Chemical Langevin equations (CLEs) [51] we implemented in

BioSANS are the tau-adapted version, labelled “CLE-tau-adaptive,” and a regular fixed-interval

version, labelled “CLE-fixed-intvl”. CLE-tau-adaptive employs a simple tau selection we devel-

oped, which is fast for non-stiff to moderately stiff problems. (A detailed description of this

algorithm is in section 10.2.4 of supplementary material). CLE-fixed-intvl is a typical Euler-

Maruyama [56] propagation with a fixed time step.

It is important to estimate the variation in stochastic simulations. In addition to simply ana-

lyzing variances and covariances via stochastic trajectories, LNA [41,43] is a convenient way to

estimate these quantities of a system. For LNA, we provide both symbolic and numeric ways of

solving the covariance matrix. Steady-state LNA and time-dependent LNA computation are

supported. Propagation of covariance and Fano-factor is possible in the time-dependent LNA.

BioSANS can directly run python scripts. The script may contain symbolic and numeric

models taking advantage of SymPy and NumPy libraries. All functions in BioSANS itself can

be used inside a code for customized propagation of trajectories as needed.

PLOS ONE BioSANS for symbolic and numeric biological simulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0256409 April 18, 2022 8 / 22

https://doi.org/10.1371/journal.pone.0256409


3.3 Analysis

The analysis part of modeling involves analysis based on topology and post-processing of tra-

jectories. The results of analysis can be used for interpretation and comparison with a known

ground truth. BioSANS supports covariance, Fano-Factor, cross-correlation, overall trajectory

density plot, density plot binned with time, histogram slice at selected time range, average of

trajectory plot, phase portrait, and custom plots. Network localization [48] is also available as

an analysis method and can be directly applied to a topology file. Export of a trajectory to a file

and plotting is by default enabled after every simulation but can be disabled when needed.

Customized analysis is also possible because BioSANS can run Python files.

3.4 Testing BioSANS algorithms

The BioSANS algorithms presented above were tested for systems of various complexities and

sizes. Performance was qualitatively assessed based on ease of use and features supported.

Here we also report 4 quantitative tests of various features of BioSANS: 1) the semantic test for

correctly interpreting SBML, 2) the stochastic SBML test suite for the stochastic simulations,

3) tests for symbolic solutions, and 4) tests for parameter estimation.

Scripts for automated evaluation against all tests are used except for symbolic LNA, for

which each test is performed manually. The details of the tests are discussed in the following

subsection.

3.4.1 SBML sematic test. For the SBML sematic test, we used the fourth-order RK (RK4;

implicit output) algorithm, and the test cases are as in [57], consisting of 1780 cases. Those test

cases measure the ability of a software to interpret SBML files. We adopt the criteria provided

with the sematic test as follows:

RjCi;j � Ui;jj � Ta þ TrjCi;jj ð1Þ

Where Ci,j and Ui,j are the expected and estimated value for observable i, at time index j, Tα is

the absolute tolerance for a test case, and Tr is the relative tolerance for a test case. The details

of these tolerance values are included in each test case settings file together with the semantic

test cases.

In the semantic test, we added a tau-scaler (step size modifier) in RK4 and reduce this scale

sequentially from 0.1, 0.01, 0.001, and 0.0001. If it passes the test, the loop is halted and

reported as passed.

3.4.2 The stochastic SBML test. For the stochastic SBML test, stochastic algorithms such

as SSA, tau-leaping, and CLE are tested by using the SBML discrete stochastic test suite, con-

taining 39 cases [58]. The suite measures the ability to perform stochastic simulation with less

emphasis on interpreting SBML. We adopt the criteria for the mean and standard deviation

provided with the test cases.

In the mean test, a scaled z-score is represented as follows:

Zt ¼
ffiffiffi
n
p �Xt � mt

st

� �

ð2Þ

Where Zt is the z-score at time t, �Xt is the mean of trajectories at t, μt is the true or accepted

mean at t, σt is the true or accepted standard deviation at t, and n is the number of trajectories.

If Zt is in the range (-3,3), the test passes at time t; otherwise it fails.

PLOS ONE BioSANS for symbolic and numeric biological simulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0256409 April 18, 2022 9 / 22

https://doi.org/10.1371/journal.pone.0256409


The standard deviation test makes use of a scaled ratio of the variance, which can be sum-

marized as follows:

Yt ¼

ffiffiffi
n
2

r
St

2

st
2
� 1

� �

ð3Þ

Ŝt
2 ¼

1

n

Xn

i¼1

Xt
ðiÞ � mt

� �2
ð4Þ

Where Yt is the scaled ratio of the variance, Ŝt 2 is the variance, and Xt
ðiÞ is the value of species

X at time t for trajectory i. If Yt is in the range (-5,5), then the test passes at time t; otherwise it

fails.

For the inexact tests, we adopt the mean ratio and standard deviation ratio as suggested in

the SBML stochastic test suite for the inexact simulator. We used the 0.95 to 1.05 cutoff for the

mean ratio and standard deviation ratio for an acceptable test.

In the stochastic (except CLE) tests, our script reruns the test at most 3 times and it needs to

pass at least once to be considered passed. For CLE, we use up to 7 repeats with decreasing

tau-scaler. This tau-scaler modifies τ in both fixed and tau-adaptive CLE. If CLE passes one of

the settings, it is considered passed. This is because a randomly chosen tau for CLE may not

satisfy the requirement that τ be small enough for no appreciable change in propensity to

occur and large enough that the expected number of occurrences of each reaction channel in

the interval is> 1.

3.4.3 Tests for symbolic solution. To test performance on symbolic computation, we cre-

ated 40 analytical expression test cases and 20 symbolic LNA tests. We used relative absolute

deviation (RAD) at each time point from the numerically propagated trajectory as a criterion,

defined as follows:

RAD ¼
T � E
T

ð5Þ

where T is the true value of the observable, and E is the estimated value of the observable.

RAD, T and E can be time-dependent (i.e., if the observable is a species trajectory). If RAD

is> 0.05, we consider that it failed the test; otherwise it passed.

For symbolic LNA (covariance) and steady-state concentration, we use numerical results as

the true value and RAD to decide a passed or failed test.

3.4.4 Tests for parameter estimation. To test performance on parameter estimation, 45

parameter-estimation test cases were created. The first 40 cases are the same test cases from

the symbolic test and the additional 5 cases are for extremely different orders of rate-constant

magnitudes. The same RAD as defined in Eq (5) was used for comparing the rate constants to

the true values.

For the parameter tests, failed test cases are manually rerun using different settings for at

most 3 times before we finally label the performance on that test case.

4. Results and discussion

4.1 Ease of use

BioSANS can be used via a GUI, command line interface, and as a Python import, which we

believe is a great improvement over other software because many software packages for sys-

tems biology require basic programming and commands [32–38]. Some can be used without

coding but have limited functionality and computation power if only using the GUI [40].

PLOS ONE BioSANS for symbolic and numeric biological simulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0256409 April 18, 2022 10 / 22

https://doi.org/10.1371/journal.pone.0256409


In handling reactions with their mathematical expressions (as fluxes and propensity), unlike

many previous programs, BioSANS takes an intuitive, simple-to-construct topology represen-

tation. In most, this topology file, as introduced in section 3.1, does not require declaration of

variables and typing propensity expression. Once a topology file is prepared, most of the fea-

tures available in BioSANS can be used. BioSANS also offers interconversions of topological

files and SBML.

The input files for most existing systems biology software requires declaration of the full

propensity expression. Some software packages require transforming reversible reactions into

2 forward reactions [32]. Others only accept SBML files as input, which is difficult to construct

manually [59]. Software packages for preparing SBML files [60,61] do exist, but newcomers to

the field will have to study several before starting to work on the problem they want to

simulate.

4.2 Features supported as compared to some selected software

In Table 1, we list features supported by BioSANS and some selected software with similar pur-

poses: Copasi [40], Cerena [39], Stochpy [32], Stochkit2 [38], Gillespy2 [62], and Pysb [63]. In

this list, only BioSANS supports symbolic computations. As far as we know, no existing soft-

ware supports symbolic computation without the need to declare variables and write ODE

expressions. Currently, this new feature is available for time trajectories for the species, LNA

covariance matrices, steady-state concentration, and network localization.

Table 1 also shows that BioSANS features a GUI, an easy input format; parameter estima-

tion; network localization; and LNA. Some software packages provide limited SBML support

(unquantified) and others do not claim support at all. BioSANS supports all features listed

except for histogram distance, propensities, moments, and waiting times in the output. Those

exceptions can be calculated from trajectory data, and because BioSANS can run Python script,

an advance user can also calculate those unsupported features.

As an important implementation, the topological input of BioSANS supports coupled prop-

agation of dependent and independent systems in one file. This can help mimic a mixture of

unrelated chemical reactions that coexist. This feature works for both deterministic and sto-

chastic settings except for SSA and tau-leaping2.

COPASI is a popular and powerful software in systems biology that supports many types of

computations. It is widely used in various fields and constantly maintained by a group of

developers. It is relatively easy to use with a GUI, console interface, and bindings to other

scripting languages. As compared with BioSANS, it does not support symbolic or analytical

expression. The GUI in COPASI does not support multiple trajectory sampling (ensemble of

trajectory sampling) for stochastic simulations. Model creation in the GUI requires typing the

rate law if it is not present in the list of functions or not previously saved. It supports models

imported from SBML, but how much support it provides to the SBML stochastic test suite is

not clear. The console interface and bindings it provides can be used together or called in

other programming languages such as Python, c/c++, etc. but is usually critical with versions.

Together with some non-trivial programming skills, COPASI is a powerful software for sys-

tems biology.

Stochpy is a Python-based software that is dedicated to stochastic simulation. It can make

use of Python libraries, which can be very powerful to use. It can interface with other software

like Cain, Stochkit2, etc. which gives it speed for problems that do not involved fancy SBML

features. It is the only software that passed the SBML stochastic test suite when it was pub-

lished. Model creation is easy and follows the PySCeS model description language, but it

requires typing the rate law expression. It can import SBML files, but the SBML semantic test

PLOS ONE BioSANS for symbolic and numeric biological simulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0256409 April 18, 2022 11 / 22

https://doi.org/10.1371/journal.pone.0256409


results are not seen on the SBML website. It provides support for fixed-interval output and

actual-time output. However, as a Python module, it can only be used via command line and

as a library import. Moreover, as compared with BioSANS, Stochpy does not provide support

for symbolic computation, parameter estimation, LNA, and deterministic calculation.

Stochkit2 is a software for discrete stochastic simulation, its main advantage being speed

and parallelization. Models can be created in an xml-like format using certain tags and also

allowing for defining arbitrary function. Its latest version released support events (conditional

Table 1. Feature comparison between BioSANS and selected software with a similar purpose.

Feature Copasi Stochkit2 Stochpy Cerena GillesPy2 pysb BioSANS

Numerical analysis

Exact SSA � � � � � � �

Inexact SSA � � � � � � �

LNA � � �

Parameter estimation � b � b b �

Network localization �

Symbolic analysis (Analytical expression derivation)

Species analytical expression b b b �

Steady state concentration b b b �

LNA �

Network localization �

Simulation options

SBML (stochastic) � ? � � ? ? �

SBML (semantic) � ? ? ? ? �

Easy to prepare inputa � � �

Actual interval output � ? � � � �

Fixed-interval output � � � � � �

Output analysis

Auto-correlation � �

Histogram distance �

Propensities � �

Moments �

Waiting times �

Probability density with time �

time-slice of densities �

Average of trajectory �

Bootstrapped covariance �

Software characteristics

Plotting � ? � � � �

Data exportation � � � � � �

GUI � �

console � � � � � �

Flexible environment � � � � �

a—do not necessarily need to type rate law expression, no coding.
b—can be supported with minor to complex coding since the software is based on python.
?—feature not fully supported, with limited capability.

SSA, stochastic simulation algorithm; SBML, systems biology markup language;

GUI, graphical user interface; LNA—linear noise approximation.

https://doi.org/10.1371/journal.pone.0256409.t001

PLOS ONE BioSANS for symbolic and numeric biological simulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0256409 April 18, 2022 12 / 22

https://doi.org/10.1371/journal.pone.0256409.t001
https://doi.org/10.1371/journal.pone.0256409


statements) as well. However, Stochkit2 does not quantify how much SBML support it pro-

vides. As compared with BioSANS, the rate law expression is not automatically inferred and

requires typing under the rate tag. It does not provide support for GUI, parameter estimation,

and symbolic computation nor theoretical computation such as LNA.

CERENA is a MATLAB-based software that provides many functions. It supports time-

dependent propensity, parameter estimation, LNA, and other high-level mathematical analy-

sis. Models can be created using a model definition file, which uses MATLAB-like declara-

tions. It supports importing SBML files, which allows for producing the model definition file

automatically. Nevertheless, CERENA does not provide support for symbolic computation,

does not provide a GUI and can only be used by MATLAB programmers. The model defini-

tion file it provides is not as intuitive as chemical elementary equations.

Gillespy2 is a python-based software for model building and stochastic simulation. It also

supports deterministic integration. Models can be build using an object-oriented approach

and would only requires few lines of codes to build a model. Its main advantage is speed of

computation due to its interface with Stockhit2. It also supports SBML but currently does not

support events, function definitions, propensity modification, etc. Parameter estimation and

symbolic computations are not specifically supported. It did not provide a graphical user inter-

face and did not provide support to theory-based noise analysis such as LNA. Gillespy2 syntax

is not as easy as that in using BioSANS as a library. In general, BioSANS is much easier to use

and have more supported features.

Pysb is a general-purpose software for systems biology that supports a wide variety of fea-

tures including deterministic and stochastic simulation. It provides interfaces for many other

softwares including BioNetGen which provides its computing power in stochastic simulations.

It has a similar model building strategy as that of Gillespy2 but with more details and clarity in

model description. However, it also did not specifically provide support to symbolic computa-

tion and parameter estimation. The SBML support it provides is also not quantified and did

not provide a graphical user interface. The use of BioSANS as a library is much simpler and

easier compared to Pysb model building syntax.

BioSANS supports a wide variety of features as mentioned above and in the previous sec-

tion. The GUI and console interface (structure simulation language) allow for multiple trajec-

tory simulation and support parallel runs by taking advantage of a multiprocessing library [64]

in Python. It supports time-dependent propensities and complex logic in the topology but

requires some experience to properly set up complicated logic if necessary. Because it is

Python-based, it can also make use of powerful libraries from Python, which will be very useful

in automation (i.e., model selection if used as a Python library). It did not specifically provide

an interface with fast solvers such as Stochkit2 but it won’t be too much of a problem to make

them interoperate in a python environment. Hence, BioSANS is a software that makes systems

biology modeling available even to nonexperts and is well suited for newcomers in the field. It

can be used for teaching systems biology and for performing simple to complex modeling

tasks.

4.3 Performance and testing of the software

The following sub-section summarizes the performance of BioSANS against various tests. The

detailed results in each test are provided in section 11 of the supplementary material.

4.3.1 Semantic test. In Table 2, we list the results of SBML sematic tests comparing Bio-

SANS and other software that submit results to the SBML database website. BioSANS passed

most of the test cases, with about 70% correct test results. This is already above the average

level for SBML support among all the software packages that submit their results.

PLOS ONE BioSANS for symbolic and numeric biological simulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0256409 April 18, 2022 13 / 22

https://doi.org/10.1371/journal.pone.0256409


Currently only BioUML (Kolpakov et al., 2019) provides 100% support for all semantic

standards set by SBML. BioUML is a general package of programs for systems biology that

provides a lot of functionality (300+ different types of analysis if connected to Galaxy), includ-

ing deterministic and stochastic simulation. Its major advantage is being a web-based software,

so it is accessible to users who have a BioStore account. It supports analysis of biomedical data

from omics experiments, parameter estimation, databased links, etc. It can generate codes in

Java from models created via its diagram editor in a drag-and-drop manner. Conversely,

BioUML does not provide support for symbolic computation, LNA, network localization and

does not mention performance on stochastic SBML tests.

Morpheus is a modeling software that focuses on the study of multi-scale and multicellular

systems using ordinary and partial differential equations [65]. Models can be created by

describing them in the GUI instead of in a code and the inputs can be symbolic expression. It

can plot cellular processes and dynamics in an image, depicting actual cells, tissues, etc.

involved in the process. However, even with the GUI, a user still needs to define the global var-

iables, the system of differential equation and other constraints. The creators did not claim to

give output in a form of symbolic/analytical expression. The support for parameter estimation

is limited to parameter sweeping.

Currently, the SBML support BioSANS offers has some limitations. Features such as over-

lapping delays, CSymbolDelay, use of infinity symbols, and latest features available only in

level 3.1 and above are not fully supported. To interpret SBML files, BioSANS converts the

SBML file to a topology file. If BioSANS fails to convert the file properly, there will be an error

at run time and no output will be returned. Manual inspection and basic editing of the con-

verted file may help correct the conversion error. Still, this will require understanding the sys-

tem to properly correct the file or reading the SBML manually to check for inconsistencies.

4.3.2 Performance on stochastic test. BioSANS exact stochastic algorithms are tested by

using the SBML discrete stochastic model test suite (SBML DSMTS). In the DSMTS test, a

good number (10,000 in our case) of stochastic trajectories was collected for each of the 39 test

models, with the standard deviation for the mean and the variance calculated at 50 time points.

Table 3 lists the algorithms and the number of test cases with their corresponding percentage

of time points passed in the DSMTS tests as columns. Following the suggested routine, owing

Table 2. Comparison of performance of several software packages for the SBML semantic test case.

Softwarea Date submitted Passed

BioUML 2018.2 18-Jun-18 100%

Morpheus 2.1 18-Jan-19 81%

Biostoch/BioSANS1.0 7-Dec-20 71%

BioUML 0.9.5 4-Jun-13 67%

COPASI Build 4.23.189 12-Jun-18 67%

iBioSim 2.4.2 4-Feb-13 67%

Simulation Core Library 1.2 28-Mar-13 63%

libRoadRunner 1.3 29-Dec-14 60%

RoadRunner 2.10.0 16-Jan-13 60%

WinBEST-KIT 2.0.0 20-Dec-18 60%

LibSBMLSim 1.1.0 31-Jan-13 55%

AMICI 0.11.8 1-Sep-19 20%

FluxBalance 1.9 21-Jul-14 1%

a -The software included here are those that submit their results to an SBML website.

https://doi.org/10.1371/journal.pone.0256409.t002

PLOS ONE BioSANS for symbolic and numeric biological simulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0256409 April 18, 2022 14 / 22

https://doi.org/10.1371/journal.pone.0256409.t002
https://doi.org/10.1371/journal.pone.0256409


to the probabilistic nature of such simulations, 2 to 3 error cases in the mean test and 4 to 6

errors in the variance test are expected for a perfectly working stochastic algorithm under the

exact SSA test [58]. The performance of our SSA implementation falls within the criteria, with

few cases suffering considerable discrepancy mostly in the timed trigger cases, possibly because

of the treatment of exact timing and the subsequent error from such an uncertainty. The time-

triggered cases are still within the 90% to 99% window if tested under the inexact test. To the

best of our knowledge, we cannot find software comparisons reported for stochastic test cases.

We have also performed tests with StochPy, which is claimed to have passed SBML DSMTS

tests. StochPy and BioSANS show comparable performance for SSA as listed in Table 3. Thus,

BioSANS SSA implementation is reliable.

The approximate algorithms in BioSANS were also tested by using SBML DSMTS. For

approximate simulators, SBML DSMTS suggested observing the ratio of the mean and vari-

ance obtained from reasonable sampling trajectories (10,000 in our case) with their corre-

sponding standard values (provided in the test). The inexact tests in Table 3 show the number

of cases for a certain percentage with estimated mean or variance within 0.95 to 1.05 of the

standard value. Tau-leaping2 has 2 errors in the mean test and 5 errors in the standard devia-

tion test. This is still within the allowed range of error suggested in SBML DSMTS. The data in

Table 3 are the best outcome for 3 repeats of 10,000 trajectory simulations. The detailed results

of the tests and explanation for the failed results are included in supporting information. A

failed result does not necessarily mean it is too far from analytically derived trajectories, and

we believe that it is still useful for qualitative purposes. From the inexact test, the BioSANS tau-

leaping-2 is comparable to StochPy tau-leaping implementation. CLE1, CLE2, and tau-leap-

ing-1 have slightly more errors than the allowable number, but they are generally faster algo-

rithms. Therefore, these methods are suitable for systems that require a large amount of

computation, but they should be used cautiously.

BioSANS SSA solver computing speed where also tested using SBML DSMTS and com-

pared with solvers from other softwares such as; SSACSolver and NumPySSASolver from Gil-

lespy2, SSA solver in Stochpy, and SSA solver from Pysb. We picked the test cases where most

Table 3. Comparison between StochPy and BioSANS in passing tests in the SBML discrete stochastic model test suite (DSMTS).

Algorithm Mean test Standard deviation test

100% 95–99% 90–95% <90% 100% 95–99% 90–95% <90%

BioSANS

SSAa 36 0 1 2 36 1 1 1

SSA 36 2 1 0 36 1 1 1

Tau-leaping-1 35 3 0 1 36 1 0 2

Tau-leaping-2 37 0 0 2 34 2b 2 1

CLE1 31 4 1 3 23 1 0 15

CLE2 31 5 0 3 21 0 0 18

Stochpy

SSAa 37 0 0 2 36 1 0 2

SSA 36 1 0 2 37 0 0 2

Tau-leaping 37 0 0 2 34 0 1 4

a—Shown are number of test cases with their corresponding number of cases passed for a percentage range among 39 cases using the exact test. All others were tested by

using the inexact test.
b—Very close to 100% and sometimes correct for more than 3 trials.

SSA, stochastic simulation algorithm.

https://doi.org/10.1371/journal.pone.0256409.t003

PLOS ONE BioSANS for symbolic and numeric biological simulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0256409 April 18, 2022 15 / 22

https://doi.org/10.1371/journal.pone.0256409.t003
https://doi.org/10.1371/journal.pone.0256409


of this software can parse the SBML correctly. Table 4 summarized the speed of each solver at

10, 100, 1000, and 10000 trajectories for stiff and non-stiff problems. The simulation was per-

formed on machines equipped with 48 CPU cores based on Intel(R) Xeon(R) Silver 4214 @

2.20GHz with x86_64 architectures, 211 GB of available memory, 37 GB RAM, and 7 GB swap

memory.

When it comes to speed, in stiff problems SSACSolver is the fastest, followed by Pysb SSA,

BioSANS SSA, NumPySSASolver, and by Stochpy SSA. For non-stiff cases, SSACSolver is still

the fastest but now followed by BioSANS SSA, NumPySSASolver, Stochpy SSA and by Pysb

SSA. BioSANS SSA solver is comparable to SSACSolver for non-stiff problems from 10 to 1000

trajectories but is slower at 10000 trajectories. Currently, BioSANS SSA have problems on

speed for stiff problems since the stiffness of ODE cannot be parallelized. However, BioSANS

can simulate multi-trajectory problems quite well with the help of multiprocessing specially

for non-stiff problems.

From Table 4, we can see that as the number of trajectories increases, the computing time

linearly follows for NumPySSASolver and Stochpy SSA. For SSACSolver, Pysb SSA, and Bio-

SANS SSA, they have less computing time compared to what have been predicted linearly.

However, at above 1000 trajectories, the computing time of BioSANS SSA, and Pysb SSA

becomes linearly dependent to the number of trajectories. On the other hand, SSACSolver is

still way faster than what we would expect from a massive number of trajectory increase.

4.3.3 Performance in symbolic tests. The following table summarizes the performance of

BioSANS in symbolic computation. Typically, all species in symbolic solution should be a

function of time t. It would be desirable for general solutions, with symbolic dependence on

the initial concentration x0, and parameters such as rate constant k. In BioSANS, we provide

a way to report analytical expressions in 4 different categories of functions such as f(t), f(t,x0),

Table 4. Performance based on simulation time at 10, 100, 1000, and 10000 trajectories.

casesa SSACSolver NumPySSASolver BioSANS SSA Stochpy SSA Pysb SSA

10 100 1000 10000 10 100 1000 10000 10 100 1000 10000 10 100 1000 10000 10 100 1000 10000

Stiff problems

5 2.5 3.1 8.1 59.7 8.5 85.2 843 8902 4.6 28.7 276 2673 13.6 131 1292 13466 0.7 3.6 31.2 327.3

23 2.6 3.2 8.3 65.8 8.6 85.9 897 9173 5.0 31.2 299 2966 14.0 145 1357 14730 0.8 3.5 31.5 322.9

non-Stiff problems

1 2.5 2.5 2.8 9.7 0.1 1.0 8.7 90.4 0.1 0.4 2.9 27.3 0.2 1.5 15.1 157.4 0.5 2.0 17.4 187.5

2 2.5 2.5 2.8 7.6 0.1 0.9 8.6 88.9 0.1 0.4 3.0 27.3 0.2 1.7 15.1 159.0 0.5 2.1 17.5 187.4

7 2.5 2.6 2.8 7.9 0.1 0.9 9.1 95.9 0.1 0.4 2.9 27.9 0.2 1.8 16.5 167.3 0.5 2.1 17.7 188.0

8 2.5 2.5 2.8 7.6 0.1 0.9 8.8 90.9 0.1 0.4 3.0 27.1 0.2 1.6 15.0 159.1 0.5 2.1 17.5 185.9

9 2.5 2.5 2.8 7.6 0.1 0.9 8.4 90.0 0.1 0.4 2.9 27.4 0.2 1.6 15.3 159.9 0.5 2.0 17.3 187.2

10 2.5 2.5 2.8 7.8 0.1 0.8 8.6 90.6 0.1 0.4 2.9 27.4 0.2 1.6 15.4 159.2 0.5 2.0 17.5 187.5

12 2.6 2.6 2.8 7.5 0.1 0.9 9.0 95.4 0.1 0.4 2.9 27.8 0.2 1.6 14.5 162.5 0.5 1.9 17.4 188.6

13 2.5 2.5 2.8 7.6 0.1 0.9 8.6 92.0 0.1 0.4 2.9 27.6 0.2 1.6 15.0 170.7 0.5 2.0 17.5 187.0

14 2.5 2.5 2.8 7.8 0.1 0.9 9.0 95.3 0.1 0.4 2.9 27.6 0.2 1.6 14.8 161.3 0.5 2.1 18.1 193.7

15 2.5 2.5 2.8 7.9 0.1 0.9 9.3 94.9 0.1 0.5 3.0 27.6 0.2 1.6 15.0 161.6 0.6 2.1 18.3 195.2

16 2.5 2.5 2.8 7.5 0.1 0.9 8.7 92.7 0.1 0.4 2.9 27.6 0.2 1.6 14.7 160.5 0.5 2.1 17.8 188.6

17 2.5 2.5 2.7 7.7 0.1 1.1 8.8 92.5 0.1 0.4 3.3 27.1 0.2 1.6 14.9 159.6 0.5 2.1 17.5 186.9

31 2.5 2.6 2.8 7.9 0.1 0.7 6.4 68.2 0.1 0.3 2.2 20.0 0.2 1.4 13.5 131.3 0.6 2.3 19.3 207.8

a—DSMTS test cases with SBML syntax that gillespy2 fully supports out of 39 tests cases.

DSMTS—Discrete Stochastic Method Test Suite.

https://doi.org/10.1371/journal.pone.0256409.t004

PLOS ONE BioSANS for symbolic and numeric biological simulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0256409 April 18, 2022 16 / 22

https://doi.org/10.1371/journal.pone.0256409.t004
https://doi.org/10.1371/journal.pone.0256409


f(t,k), and f(t,k,x0). This notation corresponds to functions of the remaining variables (after

substitution) before symbolic computation is attempted. We refer to f(t,k,x0) as a pure sym-

bolic expression and others are called semi-analytical expressions. The semi-analytical expres-

sions are easier to solve by using SymPy, which has the majority of test cases passed, as seen in

Table 5. The pure symbolic expression is not easy to handle and often generates large analytical

expressions. Sometimes it also takes a lot of time to finish computation.

For the analytical expression, BioSANS supports only linear differential equations and few

nonlinear differential equations. There were some linear ODEs that BioSANS could not fully

support, such as overlapping reversible reaction, overlapping cyclic and reversible reaction,

cyclic structure inside cyclic structure, and overlapping cyclic structure. Some of these not-

fully-supported linear ODEs can still work using the f(t) mode. Our test cases consist of reac-

tions with fewer than 10 chemical species. It is possible to solve systems with greater than 10

species especially using f(t) and f(t,x0), mode. Other modes will take longer, and the expression

might be larger, so not usable for physical interpretation. The f(t,x0) mode describes the effect

of initial concentration on the species analytical expression and is easier to solve than the pure

symbolic mode. Dependence on the rate constant can be inspected by using the f(t,k) mode,

but it is almost as difficult to calculate as with a pure symbolic solution. The f(t) mode is useful

if we only want to know the trajectory with respect to time and do not intend to discover the

relevance of the initial concentration and rate constant in the final trajectory.

Symbolic expression with the steady-state LNA for the covariance matrices can be reported

in the same 4 modes as well. The steady-state concentration expression is included when com-

puting symbolic LNA. Table 6 summarizes the performance in symbolic computation for the

covariance matrix analytical expression and steady-state analytical expression. The None entry

in the variables column pertains to a numeric answer but is symbolically derived.

The symbolic computation functions in BioSANS are currently useful for small- and mod-

erate-sized systems. We think it necessary to have symbolic capability because analytical

expression can give more physical insights than can simulations. Whenever a system can be

Table 5. Performance of BioSANS in generating analytical expression for species concentration with different symbolic computation modes.

Schemes Variables Correct expression No expression

Pure symbolic t, x0, k 50% 50%

Semi-symbolic t, k 50% 50%a

t, x0 93% 7%

t 97% 3%

a—Some of the expressions obtained were correct, but not all of the expressions needed were obtained.

https://doi.org/10.1371/journal.pone.0256409.t005

Table 6. Performance of BioSANS in generating LNA and a steady-state analytical expression.

Variables Correct expression Takes too long

Steady state Cov/Var

LNA-symbolic-f(x0, k) 95% 55% 45%

LNA-symbolic-f(x0) 95% 90% 10%

LNA-symbolic-f(k) 95% 55% 45%

Nonea 95% 90% 10%b

a—Numeric answer but symbolically derived.
b—Some returns wrong expression.

https://doi.org/10.1371/journal.pone.0256409.t006

PLOS ONE BioSANS for symbolic and numeric biological simulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0256409 April 18, 2022 17 / 22

https://doi.org/10.1371/journal.pone.0256409.t005
https://doi.org/10.1371/journal.pone.0256409.t006
https://doi.org/10.1371/journal.pone.0256409


simplified to a size whereby we can generate an analytical expression, our BioSANS symbolic

computation can help generate a reasonable expression.

Symbolic solving ODEs with programs has become more available in recent years. As the

development of SymPy progresses, BioSANS symbolic solving could be further improved.

4.3.5 Performance in parameter estimation. The test for parameter estimation is

assessed (using RAD) by the ability to reproduce the trajectory and rate constant values. Simu-

lated trajectories are generated for 45 models with given rate constants. Most of the simulated

trajectories contain 201 data points, except for test cases 15, 19, and 43, with 1000 data points.

Test cases 15 and 19 include reversible reactions, and test case 43 is a stiff problem. The algo-

rithms in Table 7 are used to estimate the rate constants given all species concentrations as a

function of time. Even though this is an ideal case because most biological experiments allow

for measuring only a few numbers of species and with limited time points, our test for Bio-

SANS aimed to provide the minimal requirement for estimating parameters for mathematical

modeling.

Table 7 summarizes the performance of BioSANS parameter-estimation algorithms given

all the species trajectory. Most of the algorithms can capture the true rate constant and trajec-

tory except for the Newton-based algorithm, L-BFGS-B. See section 11.5 of the supplementary

material for a detailed classification of test results. There is always a chance of being insensitive

to some of the parameters in the dynamics of a system, and parameter estimation based on the

trajectories is subject to this natural constraint. Therefore, even if some rate constants are not

close to the true value, the trajectories can still be reproduced.

Insights into parameter perturbation is easier to interpret visually. BioSANS offers a param-

eter slider, which is a GUI element that allows for visually inspecting perturbation effects.

With this feature, a user can modify parameters and see the effect of the modification in the

results shown as plots. Given some plotted experimental data, we can slide the parameter such

that the results of the ODE are similar to those of the experimental data. This will allow for

some insights into the parameter in a qualitative sense. However, this is only useful for small

systems; as we can see in Table 7, it is the least performant.

4.4 Other functionalities

The law of localization in chemical reaction networks, known as network localization, men-

tioned in section 3.0, is a useful way to investigate perturbation effects of a network based on

only topological information [48]. BioSANS supports symbolic and numeric computation of

network localization in the form of network sensitivity. This is a qualitative alternative to

Table 7. Performance of different algorithms in BioSANS for parameter estimation.

Algorithms Speeda Rate constant Trajectory

Percent passed

Nelder-Mead (NM) Fast 93% 98%

Monte Carlo EM Slow 93% 93%

Differential evolution (DE) Slow 93% 93%

NM-DE-NM combined Slow 98% 98%

Powell Fast 91% 91%

L-BFGS-B Fast 80% 87%

Parameter sliderb N/A 44% 64%

a—A rough estimate of the time required. Usually “fast,” within 5 min, with a typical desktop computer. (slow� 30 min).
b—A graphical user interface element for sliding values of parameter.

https://doi.org/10.1371/journal.pone.0256409.t007

PLOS ONE BioSANS for symbolic and numeric biological simulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0256409 April 18, 2022 18 / 22

https://doi.org/10.1371/journal.pone.0256409.t007
https://doi.org/10.1371/journal.pone.0256409


symbolic solution of species concentration and covariance when SymPy fails to give an answer.

From network localization, one can infer the effect of perturbation of a rate constant to species

steady-state concentration and covariance. However, we did not provide a test case for these

functionalities.

5. Conclusion

BioSANS is a software for both experts and nonexperts that supports most of the tasks needed

in systems biology modeling including useful features left out by other software. The symbolic

computation capability in BioSANS provides analytical expression of solvable cases without

the need to type the ODE expression and declaring variables. From model creation, propaga-

tion, and analysis, BioSANS provides reliable algorithms that can facilitate the modeling

process.

BioSANS can be extended to other fields that make use of ordinary differential equations.

For example, ODE is heavily used in pharmacokinetics, pharmacodynamics, Epidemiology,

environmental models, economic models etc. ODE is also used in studying reaction mecha-

nisms in chemistry. As long as we can represent the state of the systems as symbols that follow

ODE, BioSANS may be used to model such systems.

Supporting information

S1 File. BioSANS manual/tutorial/supplementary.

(PDF)

Acknowledgments

We express our gratitude to Mr. Yu-Chuan Chen and Dr. Yi-chen Chen for testing BioSANS

and providing suggestions for improvements.

Author Contributions

Conceptualization: Erickson Fajiculay.

Funding acquisition: Chao-Ping Hsu.

Methodology: Erickson Fajiculay.

Project administration: Chao-Ping Hsu.

Software: Erickson Fajiculay.

Supervision: Chao-Ping Hsu.

Validation: Erickson Fajiculay, Chao-Ping Hsu.

Visualization: Erickson Fajiculay.

Writing – original draft: Erickson Fajiculay, Chao-Ping Hsu.

Writing – review & editing: Erickson Fajiculay, Chao-Ping Hsu.

References

1. Weng G, Bhalla US, Iyengar R. Complexity in Biological Signaling Systems. Science. 1999; 284: 92–

96. https://doi.org/10.1126/science.284.5411.92 PMID: 10102825

2. Kaizer JS, Heller AK, Oberkampf WL. Scientific computer simulation review. Reliability Engineering &

System Safety. 2015; 138: 210–218. https://doi.org/10.1016/j.ress.2015.01.020

PLOS ONE BioSANS for symbolic and numeric biological simulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0256409 April 18, 2022 19 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0256409.s001
https://doi.org/10.1126/science.284.5411.92
http://www.ncbi.nlm.nih.gov/pubmed/10102825
https://doi.org/10.1016/j.ress.2015.01.020
https://doi.org/10.1371/journal.pone.0256409


3. Lumb JR. Computer simulation of biological systems. Mol Cell Biochem. 1987; 73: 91–98. https://doi.

org/10.1007/BF00219423 PMID: 3561387

4. Richards D, Berry S, Howard M. Illustrations of Mathematical Modeling in Biology: Epigenetics, Meiosis,

and an Outlook. Cold Spring Harbor Symposia on Quantitative Biology. 2012; 77: 175–181. https://doi.

org/10.1101/sqb.2013.77.015941 PMID: 23339832

5. Servedio MR, Brandvain Y, Dhole S, Fitzpatrick CL, Goldberg EE, Stern CA, et al. Not Just a Theory—

The Utility of Mathematical Models in Evolutionary Biology. PLOS Biology. 2014; 12: e1002017. https://

doi.org/10.1371/journal.pbio.1002017 PMID: 25489940

6. Mead BE, Karp JM. All models are wrong, but some organoids may be useful. Genome Biology. 2019;

20: 66. https://doi.org/10.1186/s13059-019-1677-4 PMID: 30917855

7. Palaniappan SK, Yachie-Kinoshita A, Ghosh S. Computational Systems Biology. In: Ranganathan S,

Gribskov M, Nakai K, Schönbach C, editors. Encyclopedia of Bioinformatics and Computational Biol-

ogy. Oxford: Academic Press; 2019. pp. 789–795.

8. Rozenberg G, Bäck T, Kok JN, editors. Handbook of Natural Computing. Berlin Heidelberg: Springer-

Verlag; 2012. https://www.springer.com/gp/book/9783540929093.

9. Bersani AM, Bersani E, Mastroeni L. Deterministic and stochastic models of enzymatic networks—

applications to pharmaceutical research. Computers & Mathematics with Applications. 2008; 55: 879–

888. https://doi.org/10.1016/j.camwa.2006.12.092

10. Faeder JR, Blinov ML, Goldstein B, Hlavacek WS. Rule-based modeling of biochemical networks. Com-

plexity. 2005; 10: 22–41. https://doi.org/10.1002/cplx.20074

11. van Riel NAW. Dynamic modelling and analysis of biochemical networks: mechanism-based models

and model-based experiments. Briefings in Bioinformatics. 2006; 7: 364–374. https://doi.org/10.1093/

bib/bbl040 PMID: 17107967

12. Shen Yan-Yan W S-Q. Analyzing the Evolution of Biochemical Reaction System with a Complex Net-

work Based Approach. Enz Eng. 2013; 02. https://doi.org/10.4172/2329-6674.1000113

13. Yan C-CS, Chepyala SR, Yen C-M, Hsu C-P. Efficient and flexible implementation of Langevin simula-

tion for gene burst production. Scientific Reports. 2017; 7: 16851. https://doi.org/10.1038/s41598-017-

16835-y PMID: 29203832

14. Sharan R, Shamir R. CLICK: a clustering algorithm with applications to gene expression analysis. Proc

Int Conf Intell Syst Mol Biol. 2000; 8: 307–316. PMID: 10977092

15. Yan C-CS, Hsu C-P. The fluctuation-dissipation theorem for stochastic kinetics—Implications on

genetic regulations. The Journal of Chemical Physics. 2013; 139: 224109. https://doi.org/10.1063/1.

4837235 PMID: 24329058

16. Frontiers | Gene Expression Noise Produces Cell-to-Cell Heterogeneity in Eukaryotic Homologous

Recombination Rate | Genetics. [cited 27 Jul 2020]. https://www.frontiersin.org/articles/10.3389/fgene.

2019.00475/full.

17. Dar RD, Hosmane NN, Arkin MR, Siliciano RF, Weinberger LS. Screening for noise in gene expression

identifies drug synergies. Science. 2014; 344: 1392–1396. https://doi.org/10.1126/science.1250220

PMID: 24903562

18. Locke JCW, Southern MM, Kozma-Bognár L, Hibberd V, Brown PE, Turner MS, et al. Extension of a

genetic network model by iterative experimentation and mathematical analysis. Mol Syst Biol. 2005; 1:

2005.0013. https://doi.org/10.1038/msb4100018 PMID: 16729048

19. Sun X, Zhang J, Zhao Q, Chen X, Zhu W, Yan G, et al. Stochastic modeling suggests that noise reduces

differentiation efficiency by inducing a heterogeneous drug response in glioma differentiation therapy.

BMC Systems Biology. 2016; 10: 73. https://doi.org/10.1186/s12918-016-0316-x PMID: 27515956

20. Wu J-F, Tsai H-L, Joanito I, Wu Y-C, Chang C-W, Li Y-H, et al. LWD-TCP complex activates the morn-

ing gene CCA1 in Arabidopsis. Nat Commun. 2016; 7: 13181. https://doi.org/10.1038/ncomms13181

PMID: 27734958

21. Ewald J, Sieber P, Garde R, Lang SN, Schuster S, Ibrahim B. Trends in mathematical modeling of

host–pathogen interactions. Cell Mol Life Sci. 2020; 77: 467–480. https://doi.org/10.1007/s00018-019-

03382-0 PMID: 31776589

22. Barrila J, Crabbé A, Yang J, Franco K, Nydam SD, Forsyth RJ, et al. Modeling Host-Pathogen Interac-

tions in the Context of the Microenvironment: Three-Dimensional Cell Culture Comes of Age. Infect

Immun. 2018; 86: e00282–18. https://doi.org/10.1128/IAI.00282-18 PMID: 30181350

23. Casadevall A, Pirofski L. Host-Pathogen Interactions: Basic Concepts of Microbial Commensalism, Col-

onization, Infection, and Disease. Infect Immun. 2000; 68: 6511–6518. https://doi.org/10.1128/IAI.68.

12.6511-6518.2000 PMID: 11083759

PLOS ONE BioSANS for symbolic and numeric biological simulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0256409 April 18, 2022 20 / 22

https://doi.org/10.1007/BF00219423
https://doi.org/10.1007/BF00219423
http://www.ncbi.nlm.nih.gov/pubmed/3561387
https://doi.org/10.1101/sqb.2013.77.015941
https://doi.org/10.1101/sqb.2013.77.015941
http://www.ncbi.nlm.nih.gov/pubmed/23339832
https://doi.org/10.1371/journal.pbio.1002017
https://doi.org/10.1371/journal.pbio.1002017
http://www.ncbi.nlm.nih.gov/pubmed/25489940
https://doi.org/10.1186/s13059-019-1677-4
http://www.ncbi.nlm.nih.gov/pubmed/30917855
https://www.springer.com/gp/book/9783540929093
https://doi.org/10.1016/j.camwa.2006.12.092
https://doi.org/10.1002/cplx.20074
https://doi.org/10.1093/bib/bbl040
https://doi.org/10.1093/bib/bbl040
http://www.ncbi.nlm.nih.gov/pubmed/17107967
https://doi.org/10.4172/2329-6674.1000113
https://doi.org/10.1038/s41598-017-16835-y
https://doi.org/10.1038/s41598-017-16835-y
http://www.ncbi.nlm.nih.gov/pubmed/29203832
http://www.ncbi.nlm.nih.gov/pubmed/10977092
https://doi.org/10.1063/1.4837235
https://doi.org/10.1063/1.4837235
http://www.ncbi.nlm.nih.gov/pubmed/24329058
https://www.frontiersin.org/articles/10.3389/fgene.2019.00475/full
https://www.frontiersin.org/articles/10.3389/fgene.2019.00475/full
https://doi.org/10.1126/science.1250220
http://www.ncbi.nlm.nih.gov/pubmed/24903562
https://doi.org/10.1038/msb4100018
http://www.ncbi.nlm.nih.gov/pubmed/16729048
https://doi.org/10.1186/s12918-016-0316-x
http://www.ncbi.nlm.nih.gov/pubmed/27515956
https://doi.org/10.1038/ncomms13181
http://www.ncbi.nlm.nih.gov/pubmed/27734958
https://doi.org/10.1007/s00018-019-03382-0
https://doi.org/10.1007/s00018-019-03382-0
http://www.ncbi.nlm.nih.gov/pubmed/31776589
https://doi.org/10.1128/IAI.00282-18
http://www.ncbi.nlm.nih.gov/pubmed/30181350
https://doi.org/10.1128/IAI.68.12.6511-6518.2000
https://doi.org/10.1128/IAI.68.12.6511-6518.2000
http://www.ncbi.nlm.nih.gov/pubmed/11083759
https://doi.org/10.1371/journal.pone.0256409


24. Hufsky F, Lamkiewicz K, Almeida A, Aouacheria A, Arighi C, Bateman A, et al. Computational strategies

to combat COVID-19: useful tools to accelerate SARS-CoV-2 and coronavirus research. Briefings in

Bioinformatics. 2021; 22: 642–663. https://doi.org/10.1093/bib/bbaa232 PMID: 33147627

25. Cava C, Bertoli G, Castiglioni I. In Silico Discovery of Candidate Drugs against Covid-19. Viruses. 2020;

12: 404. https://doi.org/10.3390/v12040404 PMID: 32268515

26. Nashiry A, Sumi SS, Islam S, Quinn JMW, Moni MA. Bioinformatics and system biology approach to

identify the influences of COVID-19 on cardiovascular and hypertensive comorbidities.: 15.

27. Zoabi Y, Deri-Rozov S, Shomron N. Machine learning-based prediction of COVID-19 diagnosis based

on symptoms. npj Digital Medicine. 2021; 4: 1–5. https://doi.org/10.1038/s41746-020-00373-5 PMID:

33398041

28. Maus C, Rybacki S, Uhrmacher AM. Rule-based multi-level modeling of cell biological systems. BMC

Systems Biology. 2011; 5: 166. https://doi.org/10.1186/1752-0509-5-166 PMID: 22005019

29. Blinov ML, Faeder JR, Goldstein B, Hlavacek WS. BioNetGen: software for rule-based modeling of sig-

nal transduction based on the interactions of molecular domains. Bioinformatics. 2004; 20: 3289–3291.

https://doi.org/10.1093/bioinformatics/bth378 PMID: 15217809

30. Hwang M, Garbey M, Berceli SA, Tran-Son-Tay R. Rule-Based Simulation of Multi-Cellular Biological

Systems—A Review of Modeling Techniques. Cel Mol Bioeng. 2009; 2: 285–294. https://doi.org/10.

1007/s12195-009-0078-2 PMID: 21369345

31. Gruenert G, Ibrahim B, Lenser T, Lohel M, Hinze T, Dittrich P. Rule-based spatial modeling with diffus-

ing, geometrically constrained molecules. BMC Bioinformatics. 2010; 11: 307. https://doi.org/10.1186/

1471-2105-11-307 PMID: 20529264

32. Maarleveld TR, Olivier BG, Bruggeman FJ. StochPy: A Comprehensive, User-Friendly Tool for Simulat-

ing Stochastic Biological Processes. PLOS ONE. 2013; 8: e79345. https://doi.org/10.1371/journal.

pone.0079345 PMID: 24260203

33. Siso-Nadal F, Ollivier JF, Swain PS. Facile: a command-line network compiler for systems biology.

BMC Systems Biology. 2007; 1: 36. https://doi.org/10.1186/1752-0509-1-36 PMID: 17683566

34. Landeros A, Stutz T, Keys K, Alekseyenko A, Sinsheimer JS, Lange K, et al. BioSimulator.jl: Stochastic

simulation in Julia. Comput Methods Programs Biomed. 2018; 167: 23–35. https://doi.org/10.1016/j.

cmpb.2018.09.009 PMID: 30501857

35. Erhard F, Friedel CC, Zimmer R. FERN–a Java framework for stochastic simulation and evaluation of

reaction networks. BMC Bioinformatics. 2008; 9: 356. https://doi.org/10.1186/1471-2105-9-356 PMID:

18755046

36. Sheppard PW, Rathinam M, Khammash M. SPSens: a software package for stochastic parameter sen-

sitivity analysis of biochemical reaction networks. Bioinformatics. 2013; 29: 140–142. https://doi.org/10.

1093/bioinformatics/bts642 PMID: 23104889

37. Ostrenko O, Incardona P, Ramaswamy R, Brusch L, Sbalzarini IF. pSSAlib: The partial-propensity sto-

chastic chemical network simulator. PLOS Computational Biology. 2017; 13: e1005865. https://doi.org/

10.1371/journal.pcbi.1005865 PMID: 29206229

38. Sanft KR, Wu S, Roh M, Fu J, Lim RK, Petzold LR. StochKit2: software for discrete stochastic simula-

tion of biochemical systems with events. Bioinformatics. 2011; 27: 2457–2458. https://doi.org/10.1093/

bioinformatics/btr401 PMID: 21727139

39. Kazeroonian A, Fröhlich F, Raue A, Theis FJ, Hasenauer J. CERENA: ChEmical REaction Network

Analyzer—A Toolbox for the Simulation and Analysis of Stochastic Chemical Kinetics. PLOS ONE.

2016; 11: e0146732. https://doi.org/10.1371/journal.pone.0146732 PMID: 26807911

40. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, et al. COPASI—a COmplex PAthway SImula-

tor. Bioinformatics. 2006; 22: 3067–3074. https://doi.org/10.1093/bioinformatics/btl485 PMID:

17032683

41. Elf J, Ehrenberg M. Fast Evaluation of Fluctuations in Biochemical Networks With the Linear Noise

Approximation. Genome Res. 2003; 13: 2475–2484. https://doi.org/10.1101/gr.1196503 PMID:

14597656

42. Stochastic Processes in Physics and Chemistry—3rd Edition. [cited 2 Jul 2021]. https://www.elsevier.

com/books/stochastic-processes-in-physics-and-chemistry/van-kampen/978-0-444-52965-7.

43. Kampen NGV. Stochastic Processes in Physics and Chemistry. 3 edition. Amsterdam; Boston: North

Holland; 2007.

44. Rossum GV, Drake FL. Python 3 Reference Manual: Hampton, NH: CreateSpace Independent Publish-

ing Platform; 2009.

45. van der Walt S, Colbert SC, Varoquaux G. The NumPy Array: A Structure for Efficient Numerical Com-

putation. Computing in Science Engineering. 2011; 13: 22–30. https://doi.org/10.1109/MCSE.2011.37

PLOS ONE BioSANS for symbolic and numeric biological simulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0256409 April 18, 2022 21 / 22

https://doi.org/10.1093/bib/bbaa232
http://www.ncbi.nlm.nih.gov/pubmed/33147627
https://doi.org/10.3390/v12040404
http://www.ncbi.nlm.nih.gov/pubmed/32268515
https://doi.org/10.1038/s41746-020-00373-5
http://www.ncbi.nlm.nih.gov/pubmed/33398041
https://doi.org/10.1186/1752-0509-5-166
http://www.ncbi.nlm.nih.gov/pubmed/22005019
https://doi.org/10.1093/bioinformatics/bth378
http://www.ncbi.nlm.nih.gov/pubmed/15217809
https://doi.org/10.1007/s12195-009-0078-2
https://doi.org/10.1007/s12195-009-0078-2
http://www.ncbi.nlm.nih.gov/pubmed/21369345
https://doi.org/10.1186/1471-2105-11-307
https://doi.org/10.1186/1471-2105-11-307
http://www.ncbi.nlm.nih.gov/pubmed/20529264
https://doi.org/10.1371/journal.pone.0079345
https://doi.org/10.1371/journal.pone.0079345
http://www.ncbi.nlm.nih.gov/pubmed/24260203
https://doi.org/10.1186/1752-0509-1-36
http://www.ncbi.nlm.nih.gov/pubmed/17683566
https://doi.org/10.1016/j.cmpb.2018.09.009
https://doi.org/10.1016/j.cmpb.2018.09.009
http://www.ncbi.nlm.nih.gov/pubmed/30501857
https://doi.org/10.1186/1471-2105-9-356
http://www.ncbi.nlm.nih.gov/pubmed/18755046
https://doi.org/10.1093/bioinformatics/bts642
https://doi.org/10.1093/bioinformatics/bts642
http://www.ncbi.nlm.nih.gov/pubmed/23104889
https://doi.org/10.1371/journal.pcbi.1005865
https://doi.org/10.1371/journal.pcbi.1005865
http://www.ncbi.nlm.nih.gov/pubmed/29206229
https://doi.org/10.1093/bioinformatics/btr401
https://doi.org/10.1093/bioinformatics/btr401
http://www.ncbi.nlm.nih.gov/pubmed/21727139
https://doi.org/10.1371/journal.pone.0146732
http://www.ncbi.nlm.nih.gov/pubmed/26807911
https://doi.org/10.1093/bioinformatics/btl485
http://www.ncbi.nlm.nih.gov/pubmed/17032683
https://doi.org/10.1101/gr.1196503
http://www.ncbi.nlm.nih.gov/pubmed/14597656
https://www.elsevier.com/books/stochastic-processes-in-physics-and-chemistry/van-kampen/978-0-444-52965-7
https://www.elsevier.com/books/stochastic-processes-in-physics-and-chemistry/van-kampen/978-0-444-52965-7
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1371/journal.pone.0256409


46. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: funda-

mental algorithms for scientific computing in Python. Nature Methods. 2020; 17: 261–272. https://doi.

org/10.1038/s41592-019-0686-2 PMID: 32015543

47. Meurer A, Smith CP, Paprocki M,Čertı́k O, Kirpichev SB, Rocklin M, et al. SymPy: symbolic computing

in Python. PeerJ Computer Science. 2017; 3: e103. https://doi.org/10.7717/peerj-cs.103

48. Okada T, Mochizuki A. Law of Localization in Chemical Reaction Networks. Phys Rev Lett. 2016; 117:

048101. https://doi.org/10.1103/PhysRevLett.117.048101 PMID: 27494502

49. Chemistry (IUPAC) TIU of P and A. IUPAC—chemical reaction equation (C01034). [cited 9 Apr 2021].

50. Gillespie DT. Exact stochastic simulation of coupled chemical reactions. J Phys Chem. 1977; 81: 2340–

2361. https://doi.org/10.1021/j100540a008

51. Gillespie DT. The chemical Langevin equation. The Journal of Chemical Physics. 2000; 113: 297–306.

https://doi.org/10.1063/1.481811

52. Cao Y, Gillespie DT, Petzold LR. Efficient step size selection for the tau-leaping simulation method. The

Journal of Chemical Physics. 2006; 124: 044109. https://doi.org/10.1063/1.2159468 PMID: 16460151

53. Petzold L. Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of Ordinary Differential

Equations. SIAM J Sci and Stat Comput. 1983; 4: 136–148. https://doi.org/10.1137/0904010

54. Ascher UM, Petzold LR. Computer Methods for Ordinary Differential Equations and Differential-Alge-

braic Equations. SIAM; 1998.

55. Press WH, Teukolsky SA. Adaptive Stepsize Runge-Kutta Integration. Comput Phys. 1992; 6: 188.

https://doi.org/10.1063/1.4823060

56. Higham DJ. An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations.:

22.

57. Hucka M, Smith L, Bergmann F, Keating SM. SBML Test Suite release 3.3.0. Zenodo; 2017.

58. Evans TW, Gillespie CS, Wilkinson DJ. The SBML discrete stochastic models test suite. Bioinformatics.

2008; 24: 285–286. https://doi.org/10.1093/bioinformatics/btm566 PMID: 18025005

59. Zi Z, Klipp E. SBML-PET: a Systems Biology Markup Language-based parameter estimation tool. Bioin-

formatics. 2006; 22: 2704–2705. https://doi.org/10.1093/bioinformatics/btl443 PMID: 16926221

60. Cannistra C, Medley K, Sauro HM. SimpleSBML: A Python package for creating and editing SBML

models. Systems Biology; 2015 Oct. https://doi.org/10.1101/030312

61. Funahashi A, Matsuoka Y, Jouraku A, Morohashi M, Kikuchi N, Kitano H. CellDesigner 3.5: A Versatile

Modeling Tool for Biochemical Networks. Proceedings of the IEEE. 2008; 96: 1254–1265. https://doi.

org/10.1109/JPROC.2008.925458

62. Abel JH, Drawert B, Hellander A, Petzold LR. GillesPy: A Python Package for Stochastic Model Building

and Simulation. IEEE Life Sciences Letters. 2016; 2: 35–38. https://doi.org/10.1109/LLS.2017.2652448

PMID: 28630888

63. Programming biological models in Python using PySB. Molecular Systems Biology. 2013; 9: 646.

https://doi.org/10.1038/msb.2013.1 PMID: 23423320

64. Hunt J. Advanced Guide to Python 3 Programming. Springer International Publishing; 2019.

65. Starruß J, de Back W, Brusch L, Deutsch A. Morpheus: a user-friendly modeling environment for multi-

scale and multicellular systems biology. Bioinformatics. 2014; 30: 1331–1332. https://doi.org/10.1093/

bioinformatics/btt772 PMID: 24443380

PLOS ONE BioSANS for symbolic and numeric biological simulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0256409 April 18, 2022 22 / 22

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
http://www.ncbi.nlm.nih.gov/pubmed/32015543
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1103/PhysRevLett.117.048101
http://www.ncbi.nlm.nih.gov/pubmed/27494502
https://doi.org/10.1021/j100540a008
https://doi.org/10.1063/1.481811
https://doi.org/10.1063/1.2159468
http://www.ncbi.nlm.nih.gov/pubmed/16460151
https://doi.org/10.1137/0904010
https://doi.org/10.1063/1.4823060
https://doi.org/10.1093/bioinformatics/btm566
http://www.ncbi.nlm.nih.gov/pubmed/18025005
https://doi.org/10.1093/bioinformatics/btl443
http://www.ncbi.nlm.nih.gov/pubmed/16926221
https://doi.org/10.1101/030312
https://doi.org/10.1109/JPROC.2008.925458
https://doi.org/10.1109/JPROC.2008.925458
https://doi.org/10.1109/LLS.2017.2652448
http://www.ncbi.nlm.nih.gov/pubmed/28630888
https://doi.org/10.1038/msb.2013.1
http://www.ncbi.nlm.nih.gov/pubmed/23423320
https://doi.org/10.1093/bioinformatics/btt772
https://doi.org/10.1093/bioinformatics/btt772
http://www.ncbi.nlm.nih.gov/pubmed/24443380
https://doi.org/10.1371/journal.pone.0256409

