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Abstract: Plastics have become an important environmental concern due to their durability and
resistance to degradation. Out of all plastic materials, polyesters such as polyethylene terephthalate
(PET) are amenable to biological degradation due to the action of microbial polyester hydrolases.
The hydrolysis products obtained from PET can thereby be used for the synthesis of novel PET as
well as become a potential carbon source for microorganisms. In addition, microorganisms and
biomass can be used for the synthesis of the constituent monomers of PET from renewable sources.
The combination of both biodegradation and biosynthesis would enable a completely circular bio-PET
economy beyond the conventional recycling processes. Circular strategies like this could contribute
to significantly decreasing the environmental impact of our dependence on this polymer. Here we
review the efforts made towards turning PET into a viable feedstock for microbial transformations.
We highlight current bottlenecks in degradation of the polymer and metabolism of the monomers,
and we showcase fully biological or semisynthetic processes leading to the synthesis of PET from
sustainable substrates.

Keywords: plastics; biodegradation; sustainability; upcycling; biotransformations; polyethylene
terephthalate; terephthalate; ethylene glycol

1. Introduction

Thermoplastic polymers, some of which constitute the majority of the commonly known plastics,
are extremely useful materials endowed with properties that make them ideal for applications such
as insulation and packaging [1,2]. They are durable, water-proof and versatile materials that have
become almost essential in our lives. In fact, in 2017 the contribution of plastics to the European
economy reached a market size of EUR 355 billion while employing 1.5 million people [3]. Plastics are
light-weight and have significantly contributed to decreasing transportation costs and extending the
shelf life of food [4]. Their success as a material is only comparable to their detrimental environmental
impact. The accumulation of plastic waste in the environment has become an extremely serious
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concern [5,6]. Plastic pollution is present in every single niche of the planet, with dramatic effects on
ecosystems, especially in marine environments, affecting equally large and small fauna and flora [6,7].

Plastics possess two key features: they are barely degradable by environmental physical, chemical
and especially by biological processes [8], and they have low production costs, which make their
reuse not economically competitive. While these individual properties are desirable, when combined
they lead to the current problem we are facing: the accumulation of recalcitrant and polymers in
the environment that can degrade into microplastics with potential toxic effects [9]. The story of
plastic pollution is a story of mismanagement of an otherwise valuable resource. Numerous recent
studies have highlighted the poor recycling rates of plastics compared to other materials. For instance,
a recent report estimates the amount of virgin plastics produced from oil of over 8 billion metric tons,
out of which only 9% have been recycled [10]. This reflects a saturated traditional recycling industry
and emphasises the need for novel approaches to plastic management, including the possibility of
harnessing microbial activities to use plastic waste as a feedstock for biotransformations [11–14].

Out of all plastics, polyesters such as polyethylene terephthalate (PET) are in a good position
for becoming a sustainable polymer compared to other oil-derived counterparts. PET is obtained
from the polymerisation of the constituent monomers terephthalic acid (TPA) and ethylene glycol
(EG) (Figure 1). It is durable, relatively easy to mould by blowing, which results in an almost inert,
hard and stiff polymer that has been adopted by the beverage industry as the main material for the
production of bottles [15,16]. PET has, in addition, the highest collection rates of all plastics even
though reused PET is only a small fraction of the total PET consumed: The US National Association
for PET Container Resources (NAPCOR) reported that out of the approximately 3 million tons of new
PET bottles reaching the market in 2017, only 29% of them were made from collected and recycled PET,
a nearly 5% decrease compared to recycling rates of the previous year [17].

Figure 1. Enzymatic hydrolysis of polyethylene terephthalate (PET) results in a mixture of terephthalic
acid (TPA) and ethylene glycol (EG) and, to a lesser extent, the incomplete hydrolysis products
bis-(2-hydroxyethyl) terephthalate (BHET) and mono-(2-hydroxyethyl) terephthalate (MHET).

As a polyester, PET can be depolymerized as a more effective alternative to mechanical
recycling [18]. Methods of depolymerization include glycolysis, methanolysis, hydrolysis, aminolysis
and ammonolysis [19]. Among them, glycolysis has recently emerged as a key technology for recycling
PET waste. Glycolysis is the process of PET degradation by glycols at high temperatures and in the
presence of catalysts such as metal acetates [20]. Compared to other methods, glycolysis has the great
advantage of enabling the recycling of coloured and opaque PET that cannot be otherwise recycled
due to the presence of the pigments. The resulting monomers TPA and EG can be re-used to produce
PET, as well as other polymers of interest [21]. Glycolysis and related methods contribute to a more
sustainable PET economy, although they also have drawbacks such as the energy cost of the high
temperatures required and the long reaction times needed for effective depolymerization [21].

Biological activities capable of catalysing PET hydrolysis under mild reaction conditions are
emerging as an alternative to chemical PET depolymerization methods [22]. As a result, a number of
enzymes from different microorganisms have been characterised [23–25], facilitating the implementation
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of PET as a biotechnological feedstock [11,26]. We argue that this strategy is more versatile than
chemical methods because, if funnelled to the central microbial metabolism, the monomers obtained
can be transformed into a plethora of molecules by harnessing advances in synthetic biology and
metabolic engineering. This would contribute to creating a path for revenue from PET waste beyond
current recycling activities. It could thereby help to mitigate the impact of PET environmental release
and promote the competitive development of a next generation of environmentally friendly materials.

Given the interesting physicochemical properties of PET and its potential use as a substrate in
biotechnology, in this article we review the genes that are required for a sustainable and circular
PET economy. In our view, to accomplish this goal it is required to (i) improve the kinetics of PET
enzymatic hydrolysis; (ii) link the metabolism of the resulting monomers to relevant biosynthetic
pathways and (iii) engineer biological systems for the production of PET monomers TPA and EG from
renewable sources.

2. PET Metabolism

The enzymatic hydrolysis of PET involves the release of constituent monomers TPA and EG due
to the action of esterases. The resulting monomers can be degraded by microorganisms endowed with
the appropriate metabolic pathways for these compounds. TPA is converted into protocatechuate
(PCA) that will undergo dioxygenolytic cleavage and degradation through different routes prior to
reaching the central metabolism [27–30]. Similarly, EG is assimilated through different pathways
depending on the microorganism. For instance, it can be transformed into acetate via acetyl-CoA in
Acetobacterium woodii [31], whereas in some strains in Pseudomonas putida it is funnelled directly to the
Krebs cycle via isocitrate [32]. In this section we will focus on the genes responsible for these activities
and their (co)occurrence in different bacterial taxa.

2.1. Enzymatic Hydrolysis of PET

Different types of hydrolases have shown to be active against the PET polymer. These enzymes
are lipases, esterases, cutinases and carboxylesterases isolated from fungi and bacteria (see [14,25]
for recent reviews on this topic). They belong to the α/β hydrolase superfamily and have evolved in
a different context and for a different function [33]. For instance, the original role of the cutinases from
the genus Thermobifida is to hydrolyse the plant polyester cutin. Among the different variants of these
enzymes, the ones endowed with certain properties (e.g., a more accessible active site) display the
highest activity against PET [34]. A recent bioinformatic analysis has investigated the distribution
of genes encoding for homologs of these esterases in terrestrial and marine metagenomes and has
allowed to identify 504 new hydrolases [35]. The two main conclusions of this study are: (i) genes
potentially encoding polyester hydrolases are rare, and (ii) their taxonomic distribution seems to
be related to the niche studied, with Actinobacteria or Proteobacteria being more prominent hosts in
terrestrial environments, whereas Bacteroidetes are the most frequent hosts in marine metagenomes [35].

As a new-to-nature polymer, PET constitutes a challenge for any of the hydrolases that are active
against it. In this sense, it is worth highlighting that not all types of PET are equally susceptible
to microbial degradation. Depending on processing and thermal treatments, PET can occur in
an amorphous form or a semi-crystalline form [36]. It has been shown that the extent of enzymatic
polyester hydrolysis depends on the degree of its crystallinity and chain orientation [37]. In the
amorphous regions, the polymer chains are less densely packed and are more susceptible to hydrolytic
attack compared to the crystalline regions. The enzymatic degradation rate of the polyester correlates
with the temperature difference between the melting temperature of the polymer and the hydrolysis
temperature. The polymer chain can be considered to be more mobile and accessible to enzymatic
attack when close to the glass transition temperature (Tg) of amorphous PET [38]. Therefore, increased
enzymatic hydrolysis rates of PET are expected when performing the reaction at temperatures near
the Tg of the amorphous polyester (67–71 ◦C). This suggests that efficient PET hydrolysis needs to
be conducted by thermostable polyester hydrolases such as the cutinases TfCut2 and HiC isolated,
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respectively, from the thermophilic actinomycete Thermobifida fusca [23] or the fungus Thermomyces
insolens [37], both of which, especially the latter, have been reported to be active for long periods of time
at temperatures of up to 70 ◦C. Engineered post-translational modifications (e.g., glycosylation) can
then be used on these polyester hydrolases to improve thermal properties of the enzymes further [39].
Hydrolysis at those temperatures is obviously not compatible with most bioprocesses using whole-cell
catalysts, especially those involving engineered mesophilic organisms such as Escherichia coli which
can grow up to a maximum temperature of 48–50 ◦C only after evolutionary adaptation and at a fitness
cost [40,41]. The bacterium Ideonella sakaiensis has been reported to be capable of growing on PET
as a sole carbon source due to the secretion of a PET hydrolase [24]. When tested in vitro and in
mesophilic conditions (below the Tg of PET), this enzyme shows very low degradation rates of PET
and, even though this activity could be increased somewhat by directed evolution [42], potential
hydrolysis yields are far from being able to sustain industrial bioprocesses.

Another important factor affecting the performance of the enzymes hydrolysing PET is their
inhibition mediated by mono-(2-hydroxyethyl) terephthalate (MHET) and bis-(2-hydroxyethyl)
terephthalate (BHET), by-products of an incomplete hydrolysis [43]. These molecules are oligomers
of TPA and EG that act as competitive inhibitors of the enzymes [44]. Even though it is possible to
design reactors that allow for a continuous removal of MHET and BHET [45], this is likely to pose a
challenge for the biodegradation of PET using whole cells. Other solutions have been tested such as
the use of mixtures of hydrolases that act synergistically [46], or the selective modification of amino
acid residues of the polyester hydrolase involved in the interaction with the inhibitors [47]. These
factors emphasise the need for obtaining enzymes, either by direct screening or by modification of
existing ones, which are not susceptible to inhibition by MHET and BHET and can therefore be used to
develop efficient bioprocesses using PET as the substrate.

2.2. Metabolism of TPA

TPA is transformed into PCA by the pathway encoded by the tph genes. These genes encode
two sequential catabolic steps: the addition of two hydroxyl groups in positions 4 and 5 of
TPA by the activity of the TPA dioxygenase TphA1A2A3 producing 1,6-dihydroxycyclohexa-2,
4-diene-dicarboxylate (DCD), and the removal of the carboxyl group in position 6 by the action of
the 1,2-dihydroxy-3,5-cyclohexadiene-1,4-dicarboxylate dehydrogenase TphB (Figure 2A). The genes
responsible for those activities have been characterised in the actinomycete Rhodococcus sp. strain
DK17 [48], in the β-proteobacteria Comamonas testosteroni YZW-D [49], and in Comamonas sp. strain
E6 [50]. In addition to the catabolic tph genes, both organisms encode within this cluster the
transcriptional regulator TphR (Figure 2B). TphR has been described as an IclR-type activator
that responds to the inducer TPA [51]. Comamonas sp. strain E6 also contains the extra gene
tphC, which encodes a permease involved in the uptake of TPA using the tripartite aromatic acid
transporter [52].

We conducted a systematic analysis of the presence of the tph genes in the genomes available
in public databases. As a result, we identified genes sharing a significant identity (greater than 35%
for all the genes in the cluster with tphA2 greater than 65%) and similar genetic organisation in only
a limited number of organisms, which are representative of β-proteobacteria (Comamonas, Ideonella and
Ramlibacter) and γ-proteobacteria (Pseudomonas), as well as of actinomycetes (Rhodococcus). In the genus
Rhodococcus the tph genes are associated with plasmids with the exception of Rhodococcus opacus 1CP in
which the cluster of genes was identified in the chromosome. In all the genomes investigated, the four
catabolic genes were conserved in the same order. All clusters contain a regulatory gene encoding
an IclR-type transcriptional regulator upstream the catabolic genes and in a divergent orientation.
More diversity was observed in the putative transport of TPA inside the cell: all the β-proteobacteria
utilized the transporter tphC, whereas the rest of the organisms contained a previously unidentified
MFS transporter of the AAHS family (aromatic acid:H+ symporter; named tphK) homologous to the
p-hydroxybenzoate transporter pcaK [53] (Figure 2B).
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2.3. Metabolism of PCA

The PCA resulting from the activity of the Tph enzymes follows different pathways depending on
the organism. This suggests that the tph genes can act as an independent metabolic module regardless
of the type of PCA metabolism present in the TPA degrading strain. In fact, two copies of this cluster
of genes are harboured by two different plasmids in Rhodococcus sp. strain DK17, indicating that this
pathway can be mobilised by horizontal gene transfer into species containing one of the widespread
PCA degradation pathways [48]. All PCA pathways share an initial dioxygenolytic step in which
the aromatic ring is cleaved. Until now, three different pathways have been reported depending on
the cleavage position in the aromatic ring. They are known as the ortho-, meta- and para-cleavage
pathways and their initial reaction is catalysed by a PCA-3,4-, 4,5- and 2,3-dioxygenase, respectively
(Figure 3) [27,29,54]. For simplicity, we will refer from now on to the nomenclature of the enzymes to
discriminate between the pathways.

Figure 2. (a) TPA metabolism reported in bacteria. The names of the molecules and abbreviations
are: terephthalic acid, TPA; 1,6-dihydroxycyclohexa-2,4-diene-dicarboxylate, DCD; protocatechuate,
PCA. (b) Genetic organisation of the tph genes identified in several genomes available in databases.
Numbers below arrows indicate the percentage of identity compared to the orthologous genes present in
Comamonas sp. E6 (accession: AB238679; [50]) with the exception of the tphK genes that were compared
to the ortholog present in the plasmid pDK3 of Rhodococcus sp. DK17 (accession: AY502076; [48]).
Plots were produced with SyntTax (http://archaea.u-psud.fr/SyntTax; [55]).

Figure 3. Types of dioxygenase-mediated reactions involved in PCA cleavage by bacteria.
DO: dioxygenase; CM: 3-carboxy-cis,cis-muconate; 4CHMS: 4-carboxy-2-hydroxymuconate
semialdehyde; 5CHMS: 5-carboxy-2-hydroxymuconate-6-semialdehyde.

Using the sequences of characterised PCA dioxygenases, we conducted a bioinformatics search of
the pathways likely involved in the metabolism of PCA that are present in the genomes in which we

http://archaea.u-psud.fr/SyntTax
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had previously identified the genes responsible for the conversion of TPA into PCA. Out of the three
pathways, the PCA-2,3-dioxygenase was not present in any of them. Among the β-proteobacteria,
C. testosteroni, C. thiooxydans and R. tataouinensis have homologs of the PCA-4,5-dioxygenase in
their genomes, whereas I. sakaiensis, the different species of Pseudomonas and R. opacus contain the
PCA-3,4-dioxygenase pathway. These results are consistent with previous observations showing that
a PCA-3,4-dioxygenase activity is present in cells of Rhodococcus sp. strain DK17 growing on TPA [48],
whereas a PCA-4,5-dioxygenase activity was identified in Comamonas sp. strain E6 [50]. Likewise,
I. sakaiensis has been reported to contain a tph cluster and PCA-3,4-pathway [24].

The diversity of PCA metabolic pathways is an important factor when considering developing
bioprocesses based on PET. Depending on the pathway used, a range of metabolites can be produced
with different applications in mind. Out of them, the PCA-3,4-dioxygenolytic pathway has been
thoroughly studied. This route is one of the branches of the β-ketoadipate pathway that connects the
metabolism of aromatics converging on either catechol (e.g., benzoate) or PCA (e.g., 4-hydrozybenzoate)
with the central metabolism of certain bacterial species [30]. Theβ-ketoadipate pathway has traditionally
been used as a way of incorporating toxic and recalcitrant aromatic molecules in the central metabolism
of bacteria, including nitrophenols and polychlorinated arenes. It is also an important path for funnelling
the degradation products of lignocellulosic waste that could be used for the synthesis of other molecules
of interest [56]. Strikingly, despite the metabolic diversity of the pathways involved which could allow
for the production of molecules with interesting properties (e.g., functionalised lactones), complete
mineralization of PCA continues to be the main application of the PCA metabolism. Only recently,
PCA obtained from lignin-derived aromatics has been used for synthesis of the industrially relevant
metabolite adipic acid [57]. This has not been achieved by the action of any of the described PCA
pathways, but by the conversion of PCA into catechol catalysed by a PCA decarboxylase. Catechol is
then transformed into cis,cis-muconate by the action of a catechol-1,2-dioxygenase, and the latter is
hydrogenated abiotically to adipic acid in the presence of a catalyst [58].

2.4. Metabolism of EG

The metabolism of EG is more diverse compared to TPA. In acetogens, EG is oxidised to ethanol
and acetaldehyde that is eventually converted to acetate via acetyl-CoA [31]. In other bacterial
species, however, EG is degraded via the formation of glyoxylate (GLA) (Figure 4A) [59,60]. Activities
responsible for the conversion of EG into GLA have been identified in multiple organisms. These initial
steps are catalysed by dehydrogenases with broad specificity involved in the metabolism of short-chain
alcohols and aldehydes such as the propanediol oxidoreductase of E. coli (also known as lactaldehyde
reductase AldA) [61]. In Pseudomonas aeruginosa and P. putida, the initial reaction is carried out by
periplasmic alcohol dehydrogenases that depend on pyrroloquinoline quinone for their activity [32,62].
Once GLA is produced, the pathway proceeds to intermediates of the central metabolism through
different routes depending on the organism. For instance, whereas in Escherichia coli the pathway
continues to acetyl-CoA via 3-phosphoglycerate—this is called the “canonical” pathway [63]—it has
been proposed that some strains of P. putida make use of the shunt that funnels GLA to the Krebs cycle
via isocitrate or malate [32,64]. The genetic determinants of the canonical GLA pathway have been
identified in different microorganisms. The reactions are catalysed by the enzymes GLA carboligase
(Gcl), tartronate semialdehyde reductase (GlxR) and glycerate-2-kinase (GlxK), all of which are encoded
in the same cluster of genes in E. coli K12 and Pseudonocardia dioxanivorans strain CB1190 [65,66].
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Figure 4. (a) EG metabolism via GLA. The GLA canonical pathway described in the text is shown.
The 3-phosphoglycerate (3PG) produced is later funnelled into the central metabolism via acetyl-CoA.
The names of the molecules and abbreviations are: ethylene glycol, EG; glycoladehyde, GA; glycolate,
GC; glyoxylate, GLA; tartronate semialdehyde, TS; glycerate, GL. (b) Genetic organisation of the genes
involved in GLA metabolism identified in several genomes available in databases. Numbers below
arrows indicate the percentage of identity compared to the orthologous genes present in E. coli K12
(accession: AP009048; [67]). Plots were produced with SyntTax (http://archaea.u-psud.fr/SyntTax; [55]).

Using the sequences of FucO and Gcl from E. coli as probes, we conducted an analysis of the
likelihood of the occurrence of activities for EG degradation in different bacteria. Homologs to fucO
are widespread and present in all organisms investigated (not shown). Added to the broad substrate
specificity of the enzymes active against EG, this suggests that EG degradation is a relatively common
feature in bacteria. Likewise, the canonical pathway for GLA degradation seems ubiquitous as gcl
is conserved in a very large number of bacterial species (not shown). As TPA degradation genes are
not as frequently present in bacterial genomes, next we investigated the presence of activities for
EG degradation in the strains that we had previously identified as carriers of the tph genes for TPA
mineralisation (Figure 4B). All of them contain homologs to fucO or alcohol dehydrogenases similar to
pedE described in Pseudomonas species. Moreover, all of them contain homologs to gcl, glxR and glxK,
although only the genetic organization of these genes in R. opacus resembles that of E. coli. Contrary to
the case of TPA, our synteny search did not identify conserved transporters involved in the uptake of
EG or GLA. Likewise, no regulatory elements controlling the expression of the genes responsible for
GLA degradation could be found.

Taken all together, these results indicate that most organisms capable of degrading TPA are also
likely able to degrade EG, thereby enabling a more efficient usage of the products resulting from PET
hydrolysis. In this sense, it has been recently demonstrated that EG can be readily transformed into
the bioplastic polyhydroxyalkanoate in an engineered strain of P. putida KT2440 [64], underlining the
usability of microorganisms for the conversion of oil-derived plastics into bioplastics.

3. Anabolism of Monomers Used for Bio-PET Synthesis

Bio-based PET, also known as bio-PET, is the common term used to refer to a PET polymer in
which at least a fraction of the constituent monomers is obtained from biological—and therefore
renewable—sources. In this section we will review recent efforts to produce TPA and EG involving

http://archaea.u-psud.fr/SyntTax
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microorganisms at any step (Figure 5). These methods can be fully or at least partially biotic and may
involve abiotic physico-chemical steps. Even if not completely green, these synthetic processes promise
to decrease the dependence on virgin PET derived from fossil feedstocks and may certainly contribute
to a fully circular and sustainable PET economy.

Figure 5. Selected pathways and processes used to produce TPA and EG from renewable
sources. The names of the molecules and abbreviations are: p-xylene, pX; p-toluate, pT; shikimate,
SH; phenylalanine, Phe; benzoate, BA; 5-(hydromethyl)furfural, HMF; ethylene, ET; ethylene oxide,
EP; xylose, XYL; xylulose, XLU; glycoaldehyde, GA; serine, Ser; ethanolamine, EA. If known, the names
of enzymes/processes responsible for the different conversions are shown next to the arrows.

3.1. Biosynthesis of TPA

The microbial biosynthesis of aromatic compounds has not been characterised with the same
level of detail as their degradation. Despite this, there are a number of pathways that render aromatic
compounds and generally involve the metabolism of aromatic amino acids and the shikimate pathway,
or the condensation of molecules such as cis,cis-muconate [68]. Unfortunately, none of the currently
known pathways are likely to allow for the direct production of TPA from central intermediates. It has
been proposed, however, that the shikimate pathway could be used to produce p-toluate that could later
be transformed into TPA, although the activities required for this pathway have not been identified [69].
Inspired by this, we have conducted a retrosynthesis analysis of plausible biochemical reactions that
could render TPA using as substrates molecules present in the metabolism of E. coli. This allows
for the formulations of reactions that are chemically plausible (e.g., because the mechanism involves
reactive groups following known mechanistic rules), even though this might be in the absence of any
biochemical evidence [70]. This method is particularly useful for guiding the screening of genomic
or metagenomic libraries in search of genes coding for enzymes capable of catalysing a proposed
reaction, as well as for the lab-directed evolution of known enzymes for the efficient catalysis of novel
reactions. Our analysis resulted in a number of pathways leading to benzoate that can be obtained
from phenylalanine, which itself is produced from shikimic acid [71]. The last step, however, will be
more difficult to take place biotically as it would involve the conversion of benzoate into TPA by
direct incorporation in the aromatic ring of a carboxylic group coming from bicarbonate, a step that is
typically conducted at high temperatures and in the presence of metal catalysts [72,73].

Another possibility for the sustainable production of TPA is to use aromatics obtained from
renewable sources such as lignin [74]. A recent work shows that TPA biosynthesis can be achieved
from p-xylene [75]. This process was successfully implemented in E. coli by the heterologous expression
of segments of two different pathways. In this process, p-xylene is first converted into toluic acid
by the action of the xylene monooxygenase (XylMA), benzyl alcohol dehydrogenase (XylB) and
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the benzaldehyde dehydrogenase (XylC) of the TOL pathway for the degradation of toluene and
xylene encoded in the pWW0 plasmid of P. putida mt-2 [76]. These enzymes oxidise, respectively,
one of the methyl groups of xylene to a carboxylic group via formation of the corresponding alcohol
and aldehyde [77]. Toluic acid is later transformed into TPA by the action of a toluene sulfate
monooxygenase (TsaMB), a 4-carboxybenzaldehyde dehydrogenase (TsaC) and a 4-carboxybenzalcohol
dehydrogenase (TsaD) present in C. testosteroni T2 [78].

This biosynthetic pathway poses a significant improvement in terms of sustainability compared
to conventional chemical methods [75], but obtaining p-xylene from renewable sources also poses
a considerable challenge. This has been solved by using isobutanol [79,80] or biomass as substrates for
different chemical transformations. Pyrolysis of biomass [81], as well as the Diels-Alders condensation
of ethylene with different types of biomass-derived molecules (e.g., furans) can be used to produce
p-xylene or TPA [82–85]. Ethylene itself can be produced by different biosynthetic pathways, some of
which have been harnessed to produce high levels of this molecule in engineered bacteria [86,87].

3.2. Biosynthesis of EG

Given the difficulties of obtaining TPA from sources other than fossil feedstocks, bio-PET typically
refers to a PET polymer in which only EG is obtained from renewable sources [88]. EG accounts for 30%
of the mass of the polymer and, therefore, this is usually the maximum percentage of bio components
encountered in bio-PET. As recently reviewed in [89], there are a number of artificial pathways that have
been engineered to obtain EG from renewable plant feedstocks using microorganisms. Among them,
biosynthesis of EG in bacteria can be achieved in high yields by a pentose pathway that uses xylose
as a substrate (Figure 5). Xylose is first transformed into xylonate by the action of a dehydrogenase.
After the subsequent action of a dehydratase and an aldolase, glycoaldehyde is obtained, which is
finally reduced to EG by a reductase [90–92]. This pathway has been extensively engineered to increase
production yields that currently reach a 98% of the theoretical maximum and constitute a promising
alternative for the synthesis of EG [93].

The engineered xylose pathway is not the only way of obtaining EG. It can also be produced
from glucose in Saccharomyces cerevisiae using glycolytic enzymes [94] and via the synthesis of serine
in an engineered pathway in E. coli [95]. Serine is transformed into ethanolamine by a plant serine
decarboxylase. Ethanolamine is later transformed into glycolaldehyde by an oxidase and the latter
reduced to EG by a reductase (Figure 5). The pathway has been artificially reconstituted in E. coli
and is also amenable to metabolic engineering efforts to improve production yields. More recent
work has shown the feasibility of using synthesis gas (syngas) for the production of EG harnessing
the Wood-Ljungdahl pathway of carbon fixation present in acetogenic bacterial species such as
Moorella thermoacetica and Clostridium ljungdahlii [96]. In another approach, EG was obtained from
gaseous alkenes by a strain of E. coli that expresses recombinantly a monooxygenase and an epoxide
hydrolase [97].

Similarly to TPA, EG can also be directly obtained from biomass. This can be achieved through
the dehydration of cellulosic ethanol [98], the hydrogenolysis of xylitol [99] and the hydrogenation of
corn stalk [100]. This reflects a wide diversity of options for the production of EG that could be used to
replace the chemical procedures relying on fossil feedstocks.

4. Future Prospects and Concluding Remarks

Here we have reviewed the potential use of PET as a feedstock for microbial biotransformations.
We have identified the challenges of large-scale PET enzymatic hydrolysis and proposed strategies for
the enhancement of this process using enzymes—and possibly organisms—capable of being stable and
active near the Tg of the polymer.

Similarly to the case of glycolytic procedures, TPA and EG resulting from hydrolysis could be
used for the synthesis of fresh PET, but we also advocate for their biotransformation into molecules
or processes with added value. An example of this could be their use in microbial fuel cells for the
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production of electricity that has been achieved using TPA as a carbon source [101]. TPA metabolism is
neither widespread nor diverse in the genomes currently available. This could constitute a bottleneck
for the development of future applications that currently have adipic acid as the main target of
molecules funnelled through the PCA pathways. EG metabolic genes, on the contrary, are found in
numerous organisms and encode a more diverse metabolism, likely enabling a variety of applications.

Hand in hand with an efficient degradation of PET, a circular economy of this polymer requires
a sustainable large-scale synthesis of TPA and EG. We have reviewed a number of efforts made for
the biosynthesis of bio-PET using renewable sources. On this front a milestone seems to have been
reached recently with the production of the first bottle that is completely made of monomers obtained
from biological sources [102]. Any method, including those reaching a maximum of 30% bio-PET,
have a significantly lower carbon footprint compared with the synthesis of oil-derived plastics and are
worth pursuing. By using plant biomass, it is possible to contribute to CO2 fixation, although a major
breakthrough would be to obtain TPA or EG with engineered microorganisms directly from CO2.

Overall, the prospects for a circular bio-based economy of PET are encouraging, and most of the
technological hurdles for either biodegradation or biosynthesis have already been overcome, or there
are alternatives or clear strategies to overcome them. Although bio-approaches to the PET economy
might not be as profitable as the current status quo in the short term, there is an undeniable pressure
from the general public to manage PET differently, and this is already producing changes in policies
and regulations. In our view, this will at least partially bridge the strict financial gap compared to
chemical processes, which will enable itself the diversification of applications of PET including its
upcycling in other molecules. In the long run, this will have a positive impact on recycling rates and
will also lower the environmental release of PET waste, therefore contributing to solving an imperative
environmental concern.
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