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Abstract

Burkholderia pathogenicity relies on protein virulence factors to control and promote bacteri-
al internalization, survival, and replication within eukaryotic host cells. We recently used
yeast two-hybrid (Y2H) screening to identify a small set of novel Burkholderia proteins that
were shown to attenuate disease progression in an aerosol infection animal model using the
virulent Burkholderia mallei ATCC 23344 strain. Here, we performed an extended analysis
of primarily nine B. mallei virulence factors and their interactions with human proteins to map
out how the bacteria can influence and alter host processes and pathways. Specifically, we
employed topological analyses to assess the connectivity patterns of targeted host proteins,
identify modules of pathogen-interacting host proteins linked to processes promoting infec-
tivity, and evaluate the effect of crosstalk among the identified host protein modules. Overall,
our analysis showed that the targeted host proteins generally had a large number of interact-
ing partners and interacted with other host proteins that were also targeted by B. mallei pro-
teins. We also introduced a novel Host-Pathogen Interaction Alignment (HPIA) algorithm
and used it to explore similarities between host-pathogen interactions of B. mallei, Yersinia
pestis, and Salmonella enterica. We inferred putative roles of B. mallei proteins based on the
roles of their aligned Y. pestis and S. enterica partners and showed that up to 73% of the pre-
dicted roles matched existing annotations. A key insight into Burkholderia pathogenicity de-
rived from these analyses of Y2H host-pathogen interactions is the identification of
eukaryotic-specific targeted cellular mechanisms, including the ubiquitination degradation
system and the use of the focal adhesion pathway as a fulcrum for transmitting mechanical
forces and regulatory signals. This provides the mechanisms to modulate and adapt the
host-cell environment for the successful establishment of host infections and

intracellular spread.
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Author Summary

Burkholderia species need to manipulate many host processes and pathways in order to es-
tablish a successful intracellular infection in eukaryotic host organisms. Burkholderia mal-
lei uses secreted virulence factor proteins as a means to execute host-pathogen interactions
and promote pathogenesis. While validated virulence factor proteins have been shown to
attenuate infection in animal models, their actual roles in modifying and influencing host
processes are not well understood. Here, we used host-pathogen protein-protein interac-
tions derived from yeast two-hybrid screens to study nine known B. mallei virulence fac-
tors and map out potential virulence mechanisms. From the data, we derived both general
and specific insights into Burkholderia host-pathogen infectivity pathways. We showed
that B. mallei virulence factors tended to target multifunctional host proteins, proteins
that interacted with each other, and host proteins with a large number of interacting part-
ners. We also identified similarities between host-pathogen interactions of B. mallei, Yersi-
nia pestis, and Salmonella enterica using a novel host-pathogen interactions alignment
algorithm. Importantly, our data are compatible with a framework in which multiple

B. mallei virulence factors broadly influence key host processes related to ubiquitin-medi-
ated proteolysis and focal adhesion. This provides B. mallei the means to modulate and
adapt the host-cell environment to advance infection.

Introduction

Burkholderia mallei is the causative agent of glanders, a highly contagious disease that pri-
marily affects horses, mules, and donkeys, but is also transmittable to other mammals
through direct contact with infected animals [1]. This host-adapted bacterium is equipped
with an extensive set of mechanisms for invasion and modulation of eukaryotic host-cell envi-
ronments. Key mechanisms of B. mallei pathogenicity are encoded in virulence factors (pro-
teins required for virulence) that control and promote pathogenic internalization, survival,
and replication within host cells [2, 3]. While a number of B. mallei proteins associated with
pathogenicity have been characterized and mapped to adhesion, endosomal escape and eva-
sion of host-cell autophagy, actin-based motility, multi-nucleated giant cell formation, repli-
cation, and cell-to-cell spread [3-7], the identities of their host targets are largely unknown,
and the underlying mechanisms by which the bacterial proteins affect these processes are
poorly understood.

In our previous study [8], we used a combined computational and experimental strategy to
systematically identify and characterize the interactions between B. mallei virulence factors and
their host targets. We employed several bioinformatics approaches to identify and select a
small number of putative and known virulence factors, and used yeast two-hybrid (Y2H) assays
to identify their interacting protein partners in human and murine hosts. The analysis of these
host-B. mallei protein-protein interactions (PPIs) allowed us to identify three novel B. mallei
ATCC 23344 virulence factors and show that they attenuated B. mallei virulence in mouse
aerosol challenge experiments. Although our PPI data contained extensive interactions be-
tween multiple host proteins and B. mallei proteins, we did not fully explore these data to more
generally characterize B. mallei virulence mechanisms. Here, we performed a systematic analy-
sis of these interactions to investigate the mechanisms by which B. mallei virulence factors in-
teract with host proteins to establish infection, evade host immune responses, and spread
within the host. We evaluated whether the virulence factors target specific (non-random) host
proteins and processes and whether they jointly affect entry into and survival within the host
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cells. Furthermore, we evaluated whether we could detect commonalities in Gram-negative
bacterial host-pathogen interactions among B. mallei, Yersinia pestis, and Salmonella enterica
virulence factors.

A number of studies have used small- or large-scale experiments to analyze Gram-negative
bacteria and their host interactions [9-13]. Although the identified interactions represent
only a fraction of all possible interactions between host and pathogen proteins (ranging from
less than 10 interactions to a few thousand PPIs), they have proved to be a valuable source of
information about bacterial pathogenicity mechanisms. Analyses of these host-pathogen PPI
datasets showed that virulence-associated pathogen proteins preferentially target host pro-
teins involved in biological processes essential for cell vitality, e.g., signaling, cell cycle, or im-
mune response [9-13]. Additionally, other studies demonstrated that similarities in host-
pathogen PPIs can be used to predict novel host proteins that are targeted by bacterial pro-
teins [14-16].

Our analysis showed that B. mallei virulence factors targeted host proteins that had a large
number of interacting partners and were closely connected to each other. In addition, the
analysis revealed specific host processes relevant to B. mallei virulence factors’ pathogenicity,
e.g., signaling and communication, protein modification and regulation, and cytoskeleton or-
ganization, and suggested that virulence factors preferentially targeted multifunctional host
proteins, thereby affecting multiple host cellular processes simultaneously. When we used all
of our interaction data, including host interactions with putative but not validated B. mallei
virulence factors, we identified additional host processes and molecular pathways that were
previously experimentally associated with B. mallei pathogenicity [2, 17-21]. Moreover, our
evaluation of the relationship between targeted host proteins involved in different processes
and pathways supported a previously observed mechanism for bacterial interference with eu-
karyotic hosts: virulence factors can focus interference by targeting key host proteins whose
effect can propagate through and influence multiple host processes and pathways [2, 17, 18].
Additionally, we introduced a novel Host-Pathogen Interaction Alignment (HPIA) algorithm
and used it to explore similarities between host-pathogen interactions of B. mallei, Y. pestis
[13], and Salmonella enterica subsp. enterica serovar Typhimurium [12]. Using the HPIA al-
gorithm, we identified a statistically significant number of functionally similar host-pathogen
interactions between these three PPI datasets. We inferred putative roles for B. mallei
proteins based on the role of their aligned Y. pestis and S. enterica partners and showed that
up to 73% of the putatively annotated B. mallei protein roles matched their existing
annotations.

Our findings show that host-pathogen interactions represent a rich source of information
about molecular mechanisms of pathogenicity. A key insight from these analyses into Burkhol-
deria pathogenicity is the concerted targeting of the ubiquitination degradation system and use
of the focal adhesion pathway as a fulcrum for signaling and changing cell morphology. These
mechanisms provide B. mallei with the ability to modulate and adapt the host-cell environment
to establish intracellular host infections.

Results/Discussion

We created an inclusive set of human-B. mallei PPIs by merging human-B. mallei and ortholo-
gous murine-B. mallei protein interaction data identified in our previous Y2H screens [8]. The
resulting dataset consisted of 1,235 unique interactions between 21 B. mallei and 828 human
proteins. Fig. 1 shows these interactions and their Y2H-library origins. It also shows that the
majority of the B. mallei proteins interacted with unique host proteins, i.e., 615 (74%) of host
proteins interacted with a single B. mallei protein. Importantly, the bulk of the host-B. mallei
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Fig 1. B. mallei-human host-pathogen protein interactions. The set of human-B. mallei protein-protein
interactions (PPIs) was created by merging human-B. mallei and orthologous murine-B. mallei interaction
data. The set consists of 1,235 unique interactions (gray and purple lines) between 21 B. mallei (green
hexagons) and 828 human proteins (pink, blue, and purple circles). Known virulence factors are also
indicated in the graph.

doi:10.1371/journal.pcbi.1004088.9001

interactions (72% or 890 interactions) involved nine known B. mallei virulence factors: PilA,
BimA, BopA, BipD, BipB, BsaU, BMAA1865, TssN, and BMAA0553 (Table 1) [22]. These
nine B. mallei virulence factors interacted with 663 human proteins (80% of all identified host
proteins), implying that the captured data were largely reflective of host-pathogen virulence
mechanisms. We start our analysis by assessing the characteristics of the host proteins targeted
by these virulence factors.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004088 March 4, 2015 4/28
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Table 1. Known B. mallei virulence factors that have been shown to attenuate the disease in animal models.

Protein Secretion
System
BMAO0278 (PilA) 2

BMAAQ749 (BimA)* 5

BMAA1521 (BopA)* 3
BMAA1528 (BipD)* 3

BMAA1531 (BipB)* 3
BMAA1538 (BsaU)* 3

BMAA1865 3
BMAAO728 (TssN) 6

BMAAO0553 2

Description Role in Virulence Animal model Ref.

Type IV pilin Bacterial adhesion BALB/c [62]

Trimeric autotransporter adhesin Actin-based motility and intracellular/ Murine [4]
intercellular spread

Secreted effector/translocon Intracellular survival BALB/c [63]

Transcriptional regulation; Needle tip  Invasion of non-phagocytic cells BALB/c, [64]

protein C57BL/6

Secreted effector/translocon Multi-nucleated giant cell formation BALB/c [65]

Secretion apparatus; Needle-length Bacterial escape from endocytic vesicles BALB/c [66]

control

N/A Modulation of host ubiquitination; Phagosome  BALB/c [8]
escape

N/A Interference with host actin cytoskeleton BALB/c [8]
rearrangement

Ser/Thr protein phosphatase Interference with host actin cytoskeleton BALB/c [8]
rearrangement

*Proteins that have been experimentally linked to a particular secretion system.

doi:10.1371/journal.pcbi.1004088.t001

Characteristics of host proteins interacting with known B. mallei
virulence factors

B. mallei virulence factors are associated with multiple pathogenic mechanisms of action
(Table 1) [3-7], but their direct molecular interactions are not well delineated. First, we applied
functional enrichment analyses based on Gene Ontology (GO) annotation data [23] to assess
the characteristics of the human proteins targeted by the nine virulence factors. Table 2 shows
that these virulence factors interacted with a statistically significant number of human proteins
that were associated with I) protein ubiquitination and ubiquitin ligase activity, 2) vesicle orga-
nization, and 3) protein complexes located in the cytoskeleton, in lysosomes, and in the nuclear
lumen. These results were consistent with the experimentally observed pathogen interference
with host cytoskeleton organization and ubiquitination levels [2, 3, 19-21, 24].

Next, we examined the gross topological properties of the network of interactions formed
by the B. mallei-targeted host proteins and their interacting host partners, regardless of wheth-
er these proteins did or did not interact with the B. mallei proteins. We mapped the identified
host proteins interacting with B. mallei onto a human PPI network [25] consisting of 76,043
physical PPIs among 11,688 proteins. Of the 663 human proteins interacting with the nine B.
mallei virulence factors, approximately 75% (498) were present in our human PPI network.
This set contained proteins that had, on average, a significantly larger number of interacting
partners per protein (19.5 vs. 13.0) than would be expected from a corresponding random se-
lection of proteins from the entire human PPI network (Table 3). Among the highest-interact-
ing host proteins targeted by the virulence factors, we found the adapter protein YWHAG (14-
3-3 protein gamma) with 376 interactions. This protein, an interacting partner of BimA, has
been implicated in the regulation of a large spectrum of signaling pathways [26]. Further topo-
logical measures associated with the set of 498 proteins, such as their clustering coefficient
(a measure of interactions among nearest neighbors), were not different from the random se-
lection (Table 3). We observed small effects on the length of the shortest path between any two
proteins in the set, but it was unclear how to associate these topological parameters with
B. mallei virulence.
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Table 2. Enrichment of Gene Ontology (GO) terms for human proteins interacting with B. mallei virulence factors.

Type Term Number of proteins
ID Description

GO Biological Processes GO0:0043161 Proteasomal ubiquitin-dependent protein catabolic process 21
G0:0006457 Protein folding 18
G0:0000209 Protein polyubiquitination 14
G0:0016050 Vesicle organization 11

GO Molecular Functions G0:0004842 Ubiquitin-protein ligase activity 18
GO0:0003729 mRNA binding 10
G0:0031072 Heat shock protein binding 10

GO Cellular Localizations G0:0000151 Ubiquitin ligase complex 13
G0:0015629 Actin cytoskeleton 24
G0:0030529 Ribonucleoprotein complex 30
G0:0043220 Schmidt-Lanterman incisure
G0:0034663 Endoplasmic reticulum chaperone complex 2
GO:0030135 Coated vesicle 19
G0:0031371 Ubiquitin conjugating enzyme complex 3
GO:0005764 Lysosome 19
G0:0032838 Cell projection cytoplasm
GO:0030131 Clathrin adaptor complex 5
GO:0000803 Sex chromosome
G0:0070971 Endoplasmic reticulum exit site 2
G0:0031981 Nuclear lumen 80
G0:0030128 Clathrin coat of endocytic vesicle 3

FDR: False discovery rate calculated using Benjamini and Hochberg multiple test correction [45].

doi:10.1371/journal.pcbi.1004088.t002

p-value
Original FDR
4.810° 0.00
1.2.10* 0.03
2.0-10* 0.04
2510 0.05
3.1.10" 0.03
5.1.10* 0.05
6.3-10* 0.05
3.7-10* 0.01
4.810* 0.01
7.8.10* 0.02
8.5-10* 0.02
1.3.10°° 0.03
1.6-103 0.03
2.3.10° 0.04
2.510° 0.04
2.710° 0.04
3.4.10° 0.05
3.410°® 0.05
3.8.10° 0.05
4310 0.05
46103 0.05

Table 3. Topological properties of human proteins interacting with B. mallei. We evaluated the following properties of the host proteins that
interacted with B. mallei proteins based on the human protein-protein interaction (PPI) network [25]: the number of these host proteins in the human PPI
network (N,,); the average number of interacting partners (in the human PPI network) of each host protein (D); the clustering coefficient, i.e., the number of

interactions among the nearest neighbors (C); the average shortest path between any two proteins in the set (SP); the average number of interacting
partners in the human PPI network where both partners interact with B. mallei proteins (D;); and the number of host proteins in the largest connected
component (N:CC). The top three rows show the results for the host proteins present in the PPI that interacted with the nine known virulence factors,
whereas the three lower rows correspond to host proteins that interacted with all 21 tested B. mallei proteins from the yeast two-hybrid screening (known
and putative virulence factors). The results for the randomly selected (498 or 619) human proteins from the entire human PPI network (All PPIs) were
generated through 10° random repetitions to create averages and standard deviations. The indicated p-values correspond to the probability of the
observed properties being different from the randomly selected set from all PPIs.

N, D (SD) C (SD) SP (SD) D; (SD) NEC€ (SD)

Known virulence factors PPls 498 19.5 0.15 3.41 0.65 202

All PPIs 498 13.0 (1) 0.17 (0.01) 3.70 (0.04) 0.28 (0.05) 80 (29)

p-value - 8.8.108 0.33 2.0-10™" 16107 3.3.10°
Known and putative virulence factors PPIs 619 19.5 0.15 3.40 0.85 284

All PPIs 619 13.0 (1) 0.17 (0.01) 3.70 (0.04) 0.35 (0.06) 136 (35)

p-value - 431071 0.27 1.0-10™ 1.9-10%* 2.2.10°
SD: standard deviation.
doi:10.1371/journal.pcbi.1004088.t003
PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004088 March 4, 2015 6/28
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Next, we examined human protein interactions where both proteins individually interacted
with one or more B. mallei proteins. For the 498-protein set, we found 202 unique proteins
that participated in 325 human protein-protein interactions. In comparison with randomly se-
lected proteins, the B. mallei-targeted proteins were engaged in a significantly larger number of
these interactions (0.65 vs. 0.28 on a per-protein basis). A further examination of sets of con-
nected human proteins that also interacted with the virulence factors, revealed the presence of
a single, large connected component, i.e., a sub-network in which a path connects any two pro-
teins to each other. This largest connected component was composed of 202 proteins and con-
tained the majority (95%) of the 325 interactions between the human proteins interacting with
B. mallei (Table 3). The other 11 connected components consisted of five or fewer proteins, an
observation that was not statistically significant from a random selection of proteins (data not
shown). We found a five-fold increase, from 0.28 to 1.53 (0.95*325/202), in the number of
human PPIs for each protein in the largest connected component that were all targeted by the
virulence factors, compared to a random selection of proteins. These results suggest that a
property of the B. mallei virulence phenotype is to target well-connected host proteins in a
unique set of interconnected host proteins. Next, we used this property to expand on our initial
set of GO annotations to better characterize B. mallei infectivity and pathogenesis.

B. mallei virulence factors target interactions among host proteins

The analysis of the interactions between the virulence factors and host proteins showed that
the targeted human proteins were highly likely to interact among themselves. We hypothesized
that interactions among these host proteins are equally important targets as the proteins them-
selves and could be used to shed light on how virulence factors exert their influence. As detailed
in Materials and Methods, we used the largest connected component identified above to detect
93 sets of human PPIs in which, in each set, all human proteins interacted with at least one of
the nine known B. mallei virulence factors and had the same GO biological process annota-
tions; we denoted these sets interaction modules.

Table 4 shows that these interaction modules were associated with biological processes related
to ligase activity, ubiquitination, protein modification, transcription and translation, immune re-
sponse, signaling, cytoskeleton organization, development, and mRNA processing. Overall, the
identified biological processes were similar to the ones identified when interactions among host
proteins were not taken into account; however, they provided an improved annotation granular-
ity. For example, the interaction modules allowed us to identify a biological process termed “pos-
itive regulation of protein ubiquitination” instead of just “protein ubiquitination.” Importantly,
the analysis provided evidence of a much larger effort to target intracellular host signaling pro-
cesses, in particular those related to the immune response. Fig. 2 shows the subset of 116 proteins
and 163 interactions from the largest connected component that were part of the 93 identified
interaction modules and the location of six interaction modules. Each of the interaction modules
constituting ubiquitination and ligase activity, transcriptional regulation, immune response, cy-
toskeleton organization, and mRNA processing, consisted of proteins and interactions that were
closely grouped together in the largest connected component (Fig. 2A-E). Fig. 2 also shows that
some human proteins are a part of multiple interaction modules, suggesting that B. mallei inter-
acts with multifunctional or “moonlighting” host proteins [27]. Multifunctional proteins have
been associated with such neurological disorders as Alzheimer’s and Parkinson’s diseases [28],
as well as with bacterial virulence in Helicobacter pylori, Mycobacterium tuberculosis, and
Streptococcus pneumonia [29]. Given the multifaceted role of these proteins in enzymatic cataly-
sis, signal transduction, transcriptional regulation, apoptosis, motility, and growth [30, 31],
interactions with them suggest an avenue for B. mallei to simultaneously interfere with multiple

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004088 March 4, 2015 7/28
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Table 4. Enrichment of Gene Ontology (GO) biological processes in host subnetworks. LCC represents the number of proteins in the largest
connected component annotated with a given term; LIM represents the number of proteins in the largest interaction module for a given term; pgo denotes
the probability of the same number of proteins as the LCC being annotated with a given GO term solely through a random selection; pg, denotes the
probability that a given number of proteins as the LIM are annotated with a given GO term solely through random selection; pr, represents the probability
that a given number of proteins as the LIM are annotated with a given GO term solely through random selection in a random network that has the same
degree distribution as our human network. All p-values were assessed using the Benjamini-Hochberg method to meet a maximum false discovery rate
threshold of 5% [45]. The table contains only the lowest-level GO terms; the complete data are available in S1 Table.

Category Term Size p-value
ID Description LCC LIM pgo Prp PRn
Protein modification G0:0051443 Positive regulation of ubiquitin-protein ligase activity 5 3 3610° 8.210° 4.5.10°
G0:0051351 Positive regulation of ligase activity 5 3 4.1.10° 8.210° 4.5.10°
GO:0000209 Protein polyubiquitination 10 8 0.0 0.0 0.0
GO:0016574 Histone ubiquitination 3 3 5810% 6.0.10% 3.7-107
G0:0051248 Negative regulation of protein metabolic process 15 10 7.0-10* 1.0.10* 2.0-10*
Cell cycle G0:0051320 S phase 6 3 1.010%2 1.0102 1.7-10*
G0:0051437 Positive regulation of ubiquitin-protein ligase activity involved in 4 3 1.0102 7.4.10° 24.10°
mitotic cell cycle
mRNA processing G0:0051028 mRNA transport 5 3 9510°% 3.210° 6.4.10°
G0:0000398 mRNA splicing, via spliceosome 8 6 7.310° 1.0.10* 1.0-10°
Transcription and G0:0006355 Regulation of transcription, DNA-dependent 45 15 7.410° 6.0.10* 4.3.10*
translation
GO0:0006413 Translational initiation 8 5 9.0-10* 0.0 0.0
Signaling and immune G0:0007154  Cell communication 71 44 5710° 0.0 4.410°
response
G0:0023052  Signaling 71 44 2710° 00 4.410°
G0:0035556 Intracellular signal transduction 34 17 7.310° 0.0 1.1.10™
GO0:0007167 Enzyme linked receptor protein signaling pathway 21 8 1.610° 16.10° 6.8.10
G0:0050852 T cell receptor signaling pathway 7 4 4010* 1.1.10° 3.3.10*
G0:0016032 Viral reproduction 13 4 2010° 5010° 2.1.102
GO:0050688 Regulation of defense response to virus 5 3 1.810° 7.010* 2.0-10*
G0:0019221 Cytokine-mediated signaling pathway 12 3 1.810°% 1.010% 6.3.10*
Development GO:0048731 System development 52 28 1.010% 00 6.1-10™
G0:0048812 Neuron projection morphogenesis 14 5 1.0102 1.4.10* 4.7-10*
Other GO0:0016311  Dephosphorylation 9 4 1610° 0.0 2.0-10°
G0:0006457 Protein folding 8 3 36.10% 3.710° 1.6.10°
GO0:0016192 Vesicle-mediated transport 20 5 1.0102 3.8.10° 3.0-10°
G0:0007010 Cytoskeleton organization 20 9 3.1.10° 0.0 4.810°

doi:10.1371/journal.pcbi.1004088.1004

host-cellular processes to facilitate invasion and survival. In particular, Fig. 2F shows the

largest interaction module associated with biological processes linked to multifunctional pro-
teins. This interaction module contained 54 interactions among 44 human proteins associated
with various types of regulation (regulation of gene expression, cytokinesis, or apoptosis), signal
transduction (GTPase mediated signal transduction and Janus kinase/signal transduction), and
response triggering (immune response and response to stress). Additionally, this module con-
tained host-interacting partners of eight out of the nine B. mallei virulence factors from our set,
lacking only BopA. These results suggest that B. mallei virulence factors target multifunctional
host proteins to simultaneously interfere with multiple host processes required for normal
cellular function.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004088 March 4, 2015 8/28



.@' PLOS COMPUTATIONAL
~Z7" BIOLOGY Mining Burkholderia mallei Host-Pathogen Protein Interactions

A B C
y 4 .
/ AL
Il ,;'q
AL ! 2
N[ B N
£ | % \Y s X
. 7\,:7 .\:‘/—r— S .
|
> [~ w ‘.
N
oy I.l'
o
Ubiquitination and ligase activity Transcriptional regulation Immune response
D E F
.'lIII
,‘I'-'
L s ‘
Cytoskeleton organization, mRNA processing Cell communication and

organelle organization, and signaling

cell morphogenesis

Fig 2. Clustering of human proteins targeted by B. mallei known virulence factors. The graphic shows 116 proteins of the largest connected
component of the human PPI network that belong to one or more statistically significant interaction modules. Note that each of these human proteins also
interacted with one or more known B. mallei virulence factors. As exemplified by the annotated interaction modules in A-F, the known virulence factors
targeted human proteins that were highly interacting among themselves and belonged to the same biological process. For a list of host proteins that compose
each interaction module, see S2 Table.

doi:10.1371/journal.pcbi.1004088.9002

Putative B. mallei virulence factors improve characterization of B. mallei
targets

Given that our host-B. mallei interaction dataset contained a number of putative virulence fac-
tors, we also evaluated the effect of adding these virulence factors into our analysis to character-
ize host targets. Similarly to the above analyses, we first evaluated the prevalent characteristics
of human proteins using GO annotation [23]. The identified molecular annotations largely
matched those identified for known virulence factors only, but also included additional GO
terms, such as terms related to RNA metabolic processes (S3 Table). Table 3 shows that the
analysis of topological properties of host proteins interacting with known and putative viru-
lence factors displayed the same trends observed in the analysis of the interacting partners of
known virulence factors. Next, we evaluated the extent to which known and putative virulence
factors also targeted connected subsets of host PPIs. We identified 75 statistically significant in-
teraction modules whose GO biological process annotations largely overlapped with the ones
identified for interacting partners of known virulence factors only. Although the number of sta-
tistically significant interaction modules was smaller than above (an increase in the number of
host proteins dilutes the enrichment), the addition of new host proteins increased the size (in
terms of proteins and interactions) of previously identified interaction modules (54 Table).
This suggests that with the increase of protein annotation or with the identification of addition-
al host-B. mallei PPIs, we will be able to identify larger and more complete host interaction
modules targeted by B. mallei virulence factors.
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Consequently, we used all the interactions shown in Fig. 1 to identify biological pathways
targeted by all tested B. mallei proteins using the Kyoto Encyclopedia of Genes and Genomes
(KEGQG) annotation database [32]. We identified two statistically significantly enriched host
pathways: bacterial invasion of epithelial cells and focal adhesion. Fig. 3 shows that the proteins
targeted in the focal adhesion pathway appeared to be coordinated for pathway activation and
largely interacted with each other (yellow boxes). The majority of these molecular interactions
belonged to a connected sub-pathway located at the beginning of the pathway (the probability
of observing such connectivity at random is < 10°), and they provided a link between mem-
brane receptors and signaling events that led to reorganization of the actin cytoskeleton.

Human-B. mallei interactions and their effect on the crosstalk between
different biological processes

One of the most prominently recurring results across all of our analyses was the link between
B. mallei pathogenicity and host cytoskeleton organization. It has been shown that a number of
bacterial pathogens, including Yersinia, Salmonella, Shigella, Listeria, and Burkholderia, inter-
fere with host signaling pathways to stimulate the host’s cytoskeleton rearrangement [2, 33].
These changes in signaling lead to changes in the host-cell shape and facilitate bacterial inter-
nalization and cell-to-cell spread [33]. Fig. 4 shows host proteins that interacted with known
and putative B. mallei virulence factors that can be directly associated with cytoskeleton organi-
zation. The largest statistically significant interaction module, represented by red stars,
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doi:10.1371/journal.pcbi.1004088.9003
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contained proteins previously identified as bacterial targets vital for host actin cytoskeleton re-
arrangement, e.g., membrane-associated small GTPases (CDC42 and RALA), Filamin-A
(FILA), and Rho GDP-dissociation inhibitor (ARHGDIB) [2, 33]. The remaining cytoskeleton-
related host proteins, represented as dark red circles, participated in smaller cytoskeleton orga-
nization interaction modules that were, on average, less than two proteins (three interactions
or edges) away from the largest module.

Given that connector proteins (represented as white and yellow circles in Fig. 4) between
the cytoskeleton organization interaction modules were annotated with biological processes
different from cytoskeleton organization, as well as the multifunctional nature of some cyto-
skeletal reorganization proteins, we examined the occurrence of shared proteins that interacted
with multiple pathways, i.e., pathway crosstalk. Initially, out of all human proteins interacting
with the examined B. mallei proteins, we evaluated the relationships among proteins involved
in the focal adhesion pathway that participated in or interacted with human proteins associated
with cytoskeleton organization. The shaded area in Fig. 4 shows that six of 12 proteins were
present in both systems. Fig. 5 shows an extension of this analysis that includes B. mallei inter-
acting host proteins that are components of eight other molecular pathways that shared pro-
teins with the focal adhesion pathway. Fig. 5A (left) shows that among these nine pathways,
the number of pathways that shared one or more proteins was low. However, the number of
PPIs connecting the proteins from one pathway with proteins from another pathway was
markedly higher [Fig. 5A (right)]. The large number of signaling pathways affected via the
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Fig 4. Actin cytoskeleton organization as a virulence factor target. Human proteins targeted by B. mallei
proteins formed an interaction module that was primarily linked to cytoskeleton organization and focal
adhesion. Twenty-five of these proteins were involved in cytoskeleton organization processes; 13 of them
(red stars) interacted with each other (forming an interaction module), and the remaining 12 proteins (dark red
circles) were on average < 2 nodes (< 3 edges) away from the interaction module. The figure also shows the
overlap between the cytoskeleton organization interaction module and the focal adhesion pathway (shaded
area), where connecting protein interactions from focal adhesion pathway proteins or other proteins appear
as smaller circles and dashed lines. Note that all human proteins shown interacted with one or more B.

mallei proteins.

doi:10.1371/journal.pcbi.1004088.9g004
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doi:10.1371/journal.pcbi.1004088.9005

focal adhesion pathway magnified the effects of these cross-pathway interactions. Fig. 5B illus-
trates the propagation and number of cross-pathway interactions that were mediated via the
focal adhesion pathway and shows the known virulence factors (Table 1) that can be associated
with each pathway. Thus, virulence factors affected biological processes and molecular path-
ways associated with multiple interconnecting host processes, providing an explanation of how
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interference with the function of a single protein propagated to and influenced multiple host
processes and pathways.

Using multiple host-pathogen interaction networks to predict the role of
pathogen proteins

Our statistical analyses show that the aggregated host-pathogen interaction data could identify
host molecular mechanisms targeted by B. mallei. However, detecting specific mechanisms of
action for each pathogen protein based on enrichment analysis of large-scale Y2H protein in-
teraction data is not trivial. This partly stems from experimental, biological, and statistical con-
siderations. For example, the Y2H methodology is biased for certain types of interactions in a
non-native environment [34], binding events may or may not be biologically relevant, and sta-
tistical testing is hampered by small effect sizes and small statistical power. Conversely, this
and previous studies have shown that multiple pathogens tend to target the same host proteins,
biological processes, and pathways [2, 9, 10, 18]. Hence, one could potentially use common
pathogenic mechanisms to more robustly characterize bacterial proteins and their host targets.

We explored a focused set of human-pathogen interactions derived from putative virulence
factor proteins from S. enterica and Y. pestis; the majority of these proteins are associated with
a Type 3 Secretion System (T3SS). These datasets contained 62 host-pathogen interactions for
21 S. enterica proteins [12] and 223 interactions for 69 Y. pestis proteins [13]. An initial orthol-
ogy-based approach to retrieve annotations proved too restrictive and did not generate any
novel insights into B. mallei virulence. Instead, we used an alternative network alignment-
based methodology optimized for inter-species alignment, i.e., we differentiated between host
and pathogen proteins and avoided mapping host proteins to pathogen proteins and vice
versa. As detailed in Materials and Methods, we introduced a novel alignment algorithm
(HPIA) designed specifically for the alignment of cross-species interactions. We used the
HPIA algorithm to identify similarities between host-pathogen interactions using the B. malle,
S. enterica, and Y. pestis PPI datasets, based on a combined similarity measure that included to-
pological similarity, sequence similarity, and functional similarity. Table 5 lists the B. mallei
proteins, their aligned protein partners, and inferred function(s) derived from the alignment.

Table 5 shows B. mallei proteins with a known/assumed function in pathogenicity and the
corresponding functionality, predicted based on the function of their aligned Y. pestis and
S. enterica partners. We identified similarities between T3SS proteins involved in bacterial in-
ternalization for all three pathogens, including the orthologs BipB-SipB and BipC-SipC. Addi-
tionally, the B. mallei PilA protein was aligned to Y. pestis fimbrial protein FimA6, another cell
adhesion protein. Furthermore, although the S. enterica and Y. pestis interaction datasets in-
cluded mainly T3SS proteins, the two B. mallei Vgr proteins associated with bacterial survival
and replication via Type 6 Secretion Systems (T6SS) were aligned to S. enterica and Y. pestis
proteins also known to promote bacterial survival and replication. Thus, while the aligned pro-
teins may have different roles within each pathogen, it is possible that they interact with a simi-
lar type of host proteins, causing the alignment algorithm to capture these similarities. Overall,
the alignment-based inferred roles for six out of the 11 (55%) annotated B. mallei proteins
matched their existing annotation and their corresponding secretion system assignment
(Table 5, fourth and second columns, respectively). If we only consider matching functionality
and ignore the Vgr association to T6SS, the inferred functions matched the existing annotation
in eight of 11 (73%) cases.

For the B. mallei virulence factors without known functions in pathogenicity, listed in the
lower part of Table 5, the functional mappings from S. enterica and Y. pestis provided an
indication of their mechanistic role in virulence. Of special importance were the three
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Table 5. Putative role of B. mallei proteins inferred from host-pathogen interaction network alignment results.

Locus tag
(name)

BMA0278
(PilA)T
BMAA0445
(VgrG)*, *
BMAA0446
(VgrG)*, *
BMAA0749
(BimA)*
BMAA1269
(VgrG)
BMAA1521
(BopA)T, *

BMAA1528
(BipD)", *
BMAA1530
(BipO)", *

BMAA1531
(BipB)T, *
BMAA1538
(BsaU)t, *

BMA0429
(Cmk)

BMAA1525
(BapB)*
BMAA1865

BMAAQ728
(TssN)

BMA0267
BMAAO0553

BMAA0679

BMA2469
(Tkt)

BMA3281
(FIiF)
BMAA0238

BMAA1619

Secretion
system
association

Type 2
Type 6
Type 6
Type 5
Type 6

Type 3

Type 3

Type 3

Type 3

Type 3

Type 3
Type 3
Type 3

Type 6

Type 2

Type 3
Type 3
Type 2

Type 3

B. mallei proteins

Description

Type IV pilin

Rhs element Vgr
protein

Rhs element Vgr
protein

Hemagglutinin
domain protein

Rhs element Vgr
protein

Effector protein

Translocator protein

Effector protein

Translocator protein

Type 3 secretion
protein (needle
assembly)

Cytidylate kinase

Type 3 secretion
protein

Hypothetical protein
Hypothetical protein

Pseudogene

Ser/Thr protein
phosphatase

Chemotaxis protein
CheC

Transketolase
Flagellar M-ring
protein

Hypothetical protein

Hypothetical protein

Known role

Cell adhesion
Promoting bacterial

survival and replication
Promoting bacterial
survival and replication
Actin based motility
Promoting bacterial
survival and replication

Bacterial internalization
and promoting bacterial
survival

Bacterial internalization

Bacterial internalization

Bacterial internalization

Bacterial internalization

Kinase activity; ATP
binding

N/A

N/A

N/A

N/A
N/A

N/A
N/A
N/A
N/A

N/A

For detailed information about the inferred roles, see S5 Table.

TProteins that matched their existing annotation and secretion system (if known).

*Proteins that matched their existing annotation but not the secretion system.

*Proteins that have been experimentally linked to a particular secretion system.

doi:10.1371/journal.pcbi.1004088.t005

Proteins aligned to a Putative (alignment-predicted) role of

given B. mallei

a given B. mallei protein

protein

S. Y. pestis
enterica
AvrA FimA6 - Cell adhesion

- Promotion of bacterial survival
SifA YPO2940 - Cell adhesion

- Promotion of bacterial survival
SseG PilF - Replication niche establishment
SopB OmpA - Promotion of bacterial survival

- Bacterial internalization
Ssed LerD - Regulation of T3SS secretion

- Promotion of bacterial survival
SptP YscK - Bacterial internalization
SipC YopT - Bacterial internalization

- Interference with host cytoskeleton
SipC Lerv - Regulation of T3SS activation

- Bacterial internalization

- Interference with host cytoskeleton
SipB YscS - Bacterial internalization
SopE YscL - Bacterial internalization

- Interference with host cytoskeleton
SpiC YscN - Regulation of T3SS secretion
SspH2  TyeA - Regulation of T3SS secretion

- Interference with host ubiquitination
SopE2  YopE - Bacterial internalization

- Interference with host cytoskeleton
SselL YpkA - Interference with host signaling

- Interference with host ubiquitination
SipA YPO4044 - Bacterial internalization
Ssel YPO2113 - Promotion of bacterial survival
SspH1 YscY - Bacterial internalization

- Interference with host ubiquitination
SipA YscX - Bacterial internalization

- Interference with host cytoskeleton
PipB2 YPMT1.42ac - Promotion of bacterial survival
SIrP YopN - Regulation of T3SS secretion

- Interference with host ubiquitination
SpvB HofG7 - Promotion of bacterial survival

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004088 March 4, 2015
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novel virulence factors we identified from the Y2H data and experimentally verified in a B.
mallei ATCC 23344 aerosol mouse infection model: BMAA1865, BMAAQ0728, and
BMAAO0553. The HPIA algorithm identified similarities between BMAA1865, S. enterica
protein SopE2, and Y. pestis protein YopE, based on their interactions with host proteins in-
volved in actin-cytoskeleton rearrangement processes. The alignment also identified similar-
ities between B. mallei protein BMAA0728 and S. enterica protein SseL based on their
interactions with host proteins involved in ubiquitination. Furthermore, the HPIA algorithm
identified similarities between B. mallei protein BMAAO0553 and S. enterica protein Ssel as-
sociated with regulation of the host cytoskeleton and inhibition of cell motility. These results
imply that the hypothetical protein BMAA1865 has a role in the host actin-cytoskeleton ma-
nipulation, that BMAA0728 has a role in (de)ubiquitination, and that serine/threonine phos-
phatase BMAAO0553 has a role in cytoskeleton regulation. These are the same roles we
previously proposed for these three proteins based on the literature review of pathogenic
mechanisms [8].

The alignment also identified a putative role of another protein of interest from our previous
study, cytidylate kinase BMA0429. The host-pathogen PPI data linked this protein to multiple
processes related to pathogenicity. We were not able to test its pathogenicity in an animal
model, because this protein appeared to be essential. However, the alignment results imply that
this protein had a role in the regulation of T3SS secretion, as it is mapped to two T3SS regula-
tors that are more likely to be localized in the bacterial cytoplasm than to be translocated into
the infected cell: SpiC in S. enterica and YscN in Y. pestis [35-38].

Multiple B. mallei virulence factors target eukaryotic-specific host-cell
processes

A key insight into the virulence mechanisms that we could derive from the Y2H interactions
was that B. mallei targeted eukaryotic-specific cellular mechanisms, such as ubiquitination and
focal adhesion. Thus, the specific virulence adaptations retained in the evolution of B. mallei as
an obligate mammalian pathogen include targeting the ubiquitination degradation/signaling
system and using the focal adhesion pathway as a fulcrum for transmitting mechanical forces
and regulatory signals. This provides the mechanisms to modulate and adapt the host-cell envi-
ronment for the successful establishment of host infections.

Based on our analysis of their host protein interactions and targeted pathways, the nine
known virulence factors shared many common points of attack on the host cell’s physiology.
Expanding on the cross-talk analysis shown in Fig. 5B, we created an interconnected host-
pathway map. We inferred the connection between two pathways from the number of inter-
pathway PPIs where both host proteins are interacting with at least one B. mallei protein. The
larger the number of such host protein pairs, the larger the potential influence B. mallei have
on the cross-talk between the involved pathways. Fig. 6 shows the extent of this influence be-
tween host pathways and the central role the focal adhesion pathway plays in propagating cell
signaling and affecting key host cellular processes relevant to B. mallei pathogenesis. The path-
ways implicated in Fig. 5B directly related to focal adhesion are marked with stars in Fig. 6.
These, in turn, are interconnected with a large number of signaling pathways (Fig. 6—grey
background) that ultimately control cell cycle, morphology, and growth. A number of known
disease processes, marked in red symbols, are also interconnected or directly connected to this
signaling network. We hypothesized that this virulence factor host-pathogen network is central
in controlling key cellular mechanisms that allow B. mallei to adapt the host cell environment
and ensure robust infection.
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.@' PLOS COMPUTATIONAL
~ZJ ' BIOLOGY Mining Burkholderia mallei Host-Pathogen Protein Interactions

T cell receptor -

signaling ‘

Osteoclast ‘ Drtualidilen
differentiation A\ 2] me\l‘u‘te\l

Bacterial F  Axon \
invasionof [ guidance '
epithelial cells o
q\\ =
Adherens ‘
junction egulatimn Focal |3
of actin ‘ adheﬂmn

crlmlw] <

P =\

P\VIA
::""*:a:'" \ \&7

PI3K-Akt """""’
signaling (

Oocyte

Focal adhesion

£ signaling
Hepatitis @ Cancer
C Tight Disease

Fig 6. Focal adhesion as a central hub for targeting host cells. The number of shared protein-protein interactions (PPIs) targeted by B. mallei virulence
factors is shown as lines proportional to the number of PPIs (only connections with 10 or more interactions are illustrated). Physiological, cancer, and disease
pathways were all interconnected via signaling pathways that could be affected through the focal adhesion pathway.

doi:10.1371/journal.pcbi.1004088.9006

Summary

Given the association of the selected pathogen proteins to secretion systems, the underlying
Y2H methodology, and our analysis methodology, our detection capabilities were geared to
finding host pathways and biological processes targeted by B. mallei via virulence factors. The
limitation of this approach is that while a host-pathogen protein interaction may occur, as de-
termined via Y2H experimentation, this type of data does not allow us to resolve when, where,
or why such interactions are important. Furthermore, even though the strict statistical thresh-
old at a false discovery rate (FDR) < 5% minimizes the chances of identifying random data cor-
relations, it does not test our hypothesis that the pathway is involved in B. mallei virulence.
Conversely, the strength of our analysis is that the identified host interactions are dominated
by known and validated virulence factors, allowing us to create new hypotheses around the bio-
logical interpretation of pathway interaction patterns.

Our results showed that host-pathogen PPIs represent a rich source of information about
molecular mechanisms of pathogenicity, and that these interactions can be used to identify and
characterize host molecular pathways and processes targeted by pathogens. Specifically, our
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topological analysis of human-B. mallei protein interactions showed that known and putative
B. mallei virulence factors tend to target multifunctional host proteins, host proteins that inter-
act with each other, and host proteins with a large number of interacting partners. Additional-
ly, the analysis identified a number of host processes and pathways relevant to B. mallei
pathogenicity, many of which have been linked to bacterial pathogenicity in previous experi-
mental studies, e.g., signaling and communication, protein modification and regulation, cyto-
skeleton organization, and focal adhesion. Furthermore, the topological analysis suggested that
B. mallei virulence factors target host molecular processes through interference with their di-
rect and indirect host-interacting partners, implying that the process of pathogenic internaliza-
tion and intracellular survival requires the modulation of multiple host cellular processes.

We further introduced the novel HPIA algorithm that can be used to identify common sets
of host-pathogen interactions by aligning (mapping) host-to-host and pathogen-to-pathogen
proteins from two interaction datasets. We used the HPIA algorithm to compare human-

B. mallei interactions to those of human-Y. pestis and human-S. enterica and identified a statis-
tically significant number of aligned interactions. We also showed that the resulting alignments
could be used to predict roles of B. mallei proteins based on the roles of their aligned Y. pestis
and S. enterica partners.

Finally, given that nine of 21 proteins in our dataset are known virulence factors, we could
hypothesize on why and how B. mallei uses these proteins to overcome multiple defense sys-
tems and orchestrate a robust infection process in mammalian hosts. Ultimately, the bacterial
host-virulence program is derived from a survival strategy developed in the rhizosphere, i.e., in
a generally competitive environment containing multiple, diverse species. Using multiple viru-
lence factors to target eukaryotic-specific mechanisms common to eukaryotic rhizosphere spe-
cies, B. mallei broadly influences key processes in ubiquitination and cell signaling to modulate
and adapt the host-cell environment for its benefit.

Materials and Methods
Human-B. mallei protein interaction set

To create a comprehensive set of human-B. mallei PPIs, we merged human-B. mallei and mu-
rine-B. mallei PPI datasets identified in [8]. These datasets contained 586 interactions between
409 human and 21 B. mallei proteins, and 797 interactions between 574 murine and 25 B. mallei
proteins; 19 B. mallei proteins appeared in both sets, including nine known B. mallei virulence
factors (Table 1). When creating the merged set, we considered only a subset of murine-B. mal-
lei PPIs in which the B. mallei proteins also interacted with human proteins and, thus, had
shown the ability to bind to human proteins. The merging procedure consisted of four steps. In
the first step, we identified B. mallei proteins that interacted with both hosts (19 B. mallei pro-
teins). Then, we found human orthologs for each of the 419 (73%) murine proteins that inter-
acted with the B. mallei proteins identified in step 1. In the third step, we assessed whether the
human orthologs constituted unique proteins, i.e., whether they were not a part of the experi-
mentally detected human-B. mallei interactions. If not, we added this interaction into the ortho-
logous human-B. mallei dataset. The resulting orthologous dataset consisted of 649 interactions
between 419 human proteins and 19 B. mallei proteins, corresponding to 82% of the murine-

B. mallei PPIs. Finally, we merged the experimental human-B. mallei dataset with the ortholo-
gous human-B. mallei dataset to create a merged set of human-B. mallei PPIs. The resulting
merged dataset consisted of 1,235 unique interactions between 21 B. mallei and 828 human pro-
teins (S1 Data and S6 Table). Approximately 72% (890) of these represent interactions among
the nine B. mallei known virulence factors (Table 1) and 663 unique human proteins. All
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proteins were annotated by their official gene symbols as defined in the HUGO Gene Nomen-
clature Committee database [39].

We used the National Center for Biotechnology Information HomoloGene database of ho-
mologs (http://www.ncbi.nlm.nih.gov/homologene) to identify human-murine orthologs [40].

Topological properties of human proteins interacting with B. mallei in the
human PPI network

We calculated the following topological properties for a set of human proteins interacting with
B. mallei: 1) the number of human proteins interacting with B. mallei proteins (N,,); 2) the aver-
age number of their interacting partners in the human PPI network (D); 3) the clustering coef-
ficient, i.e., the number of interactions among the nearest neighbors (C); the average shortest
path between any two proteins in the set (SP); the average number of interacting partners in
the human PPI network where both partners interact with B. mallei proteins (D;); and the
number of host proteins in the largest connected component (N; ). All calculations were per-

formed in R using the igraph package [41]. We evaluated whether the observed values for each
of the five properties were statistically significant as follows. From the human interactome, we
randomly selected the same number of proteins as the number of proteins interacting with

B. mallei virulence factors. Next, we calculated each of the five topological properties for this
random set of proteins, repeating the procedure 10* times. This procedure yielded 10° values
for each property, which followed a Normal distribution (Normality was evaluated using the
quantile-quantile plots and the Kolmogorov-Smirnov test [42], where we found that there was
not enough evidence in the data to suggest that the distributions were not Normal). Then, for
each property, we evaluated a relationship between the observed value for proteins interacting
with B. mallei and the values obtained for random protein sets using a Z-score. Finally, we
computed the p-values corresponding to the resulting Z-scores.

Gene set functional enrichment analyses

We performed GO and KEGG enrichment analyses in R using the Bioconductor packages Bio-
Mart and KEGGgraph, respectively [43, 44]. As the universe of human proteins, we used all
constituent proteins from the human PPI network. As GO terms are specified at multiple levels
of detail, we used a complete GO tree annotation, excluding the root and the top two levels of
GO terms. GO annotation was obtained from BioMart [43]. For the KEGG enrichment analy-
sis, as the universe of human proteins, we used the human proteins available in KEGGgraph
that participated in at least one KEGG pathway [44]. All obtained p-values were assessed using
the Benjamini and Hochberg multiple test correction [45]. We retained only annotations that
were enriched at an FDR control level of 0.05, i.e., there is a less than 5% chance that the ob-
tained p-values are not statistically significant.

We performed two types of enrichment analysis: standard enrichment analysis and network-
based enrichment analysis. In the standard enrichment analysis, we computed the probability of
observing the number of proteins annotated with a given term using the hypergeometric distri-
bution. In the network-based enrichment analysis, we first identified the largest connected com-
ponent in the human interactome that consisted of human proteins interacting with at least one
B. mallei virulence factor (denoted as LCC). Then, we counted the number of proteins #, in the
LCC that were annotated with a GO biological process term t. Additionally, for each term ¢, we
identified connected (sub)networks of LCC in which all proteins were annotated with t; these we
termed interaction modules. We denoted such interaction modules as IM, and the number of
proteins in these modules as m,.
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We evaluated whether the observed IM, interaction modules were statistically significant as
follows. First, we evaluated whether the observed interacting proteins and their corresponding
biological processes in the LCC were statistically significant compared to an equal number of
random proteins. For each GO term ¢, we counted the number of proteins in the random set
that were annotated with ¢ (denoted as r,). Additionally, for each ¢, we identified interaction
modules in which all proteins from the random set were annotated with . We denoted the num-
ber of proteins in such interaction modules as s,. We repeated this procedure 10* times. Given
the obtained values, we defined the probability p, of observing #; proteins annotated with t as

1 10" 1 lf (rl)i Z nt
== E k;, where k, = , (1)
107 £ 0 otherwise

and the probability p,, of observing an interaction module IM,, given a random set of host pro-
teins, as

=— k;, where k; = . 2
Pry 10* — 0 otherwise @

Second, we evaluated whether the observed interacting proteins and their corresponding bi-
ological processes were statistically significant compared to random interactions. We randomly
rewired the human protein interaction network, while preserving the same degree distribution
as observed in the original network. Next, we mapped human proteins from the LCC on the re-
wired network and, for each term ¢, identified interaction modules in which all proteins were
annotated with t. We denoted the number of proteins in such modules as w,. We repeated this
procedure 10* times. Finally, we calculated the probability p,,, of observing an interaction mod-
ule, IM;,, given a random set of host interactions, as

1 10% 1 if(Wr)i > m,
prw = vy : ki? Where ki = . (3)
10 ZH 0 otherwise

IM, interaction modules with p, < 0.01, p,, < 0.01, and p,,, < 0.01 contain a statistically signifi-
cant number of human proteins and interactions among them, and are statistically significantly
enriched in a biological process ¢.

Human-S. enterica and human-Y. pestis protein interactions set

The human-S. enterica subsp. enterica serovar Typhimurium dataset consisted of 62 interactions
between 21 S. enterica virulence-associated proteins and 51 human proteins identified in several
small-scale experiments [12]. The majority of S. enterica proteins from this set were associated
with the bacterial T3SS. The human-Y. pestis PPI dataset consisted of a union of 204 interactions
identified by Y2H screens and 23 interactions identified in several small-scale experiments [13].
The combined human-Y. pestis PPI dataset contained 223 unique interactions between 69 Y. pes-
tis virulence-associated proteins and 125 human proteins. The majority of Y. pestis proteins
were also associated with the bacterial T3SS. For the basic comparison of the human-B. mallei,
human-S. enterica, and human-Y. pestis PPI networks’ characteristics, see S7 Table.
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The HPIA algorithm

Network alignment algorithms [46-49] have been used previously to successfully identify both
conserved PPIs [50-55] and phylogenetic relationships between species [51-53]. Although the
existing network alignment algorithms can be applied to host-pathogen PPIs, these algorithms
are not optimized for inter-species alignment, i.e., they cannot differentiate between different
types of proteins, such as host and pathogen proteins, and consequently may map host proteins
to pathogen proteins and vice versa. The primary motivation for designing a network align-
ment algorithm was to be able to use previous data and insights from other host-pathogen in-
teraction studies for interpreting our B. mallei host interaction data. If conserved network
motifs and interaction exist, we can use this information to infer/predict more complex roles
for proteins than just transferring sequence-based annotation information [47, 56]. Thus, we
designed the HPIA algorithm specifically for the alignment of host-pathogen interactions to
augment the sparsely annotated B. mallei protein data.

We have taken a number of considerations into account in designing the algorithm based
on the nature of the biological problem at hand. First, due to the non-exhaustive nature of Y2H
experimentation, the underlying interaction data are not complete [8]. Second, the selected
pathogen species are not identical to each other, i.e., proteins and biological processes have
evolved differently between the species. Because of this sparse and diverse nature of the patho-
gen data at hand, we cannot a priori expect to obtain satisfactory alignments based on simply
mapping human proteins to each other. In this sense, a “perfect” alignment is never attainable,
and instead we must rely on approximate alignments with desirable properties, such as biologi-
cal consistency and sequence similarity. Hence, we developed an alternate approach for align-
ing bipartite graphs for which one set of nodes (pathogen) are less-well characterized than the
other nodes (human).

For the limited number of host-pathogen interactions we have available for comparisons,
our algorithm attempts to identify interactions “conserved” on the functional level rather than
at the exact protein level. Thus, we can exploit the fact that all three host-pathogen PPI net-
works contained interactions with human proteins that participated in similar biological pro-
cesses. In effect, this allowed us to extend the known annotations from the other networks to
the previously uncharacterized B. mallei virulence factors.

Furthermore, the algorithm guarantees that host proteins will be aligned only to host pro-
teins and that pathogen proteins will be aligned only to pathogen proteins.

Notation. Let G;(U;, V, E;) and G(U,, V,, E,) be two bipartite graphs (networks), where
U, and V; are two disjoint sets of nodes in G;, U, and V, are two disjoint sets of nodes in G,
and E; and E, are sets of edges of G; and G, such that every edge in G; connects a node in U;
to one node in V;, and every edge in G, connects a node in U, to one node in V, (i.e., no two
nodes within the same set are adjacent). Without loss of generality, we can assume that |Uj|
<|U,| and |V;| <|V,| (hence, G; < G;). The HPIA algorithm is a global network alignment al-
gorithm that uniquely matches each node from U to exactly one node in U,, and each node
from V to exactly one node in V. Formally, the alignment of G; to G, can be represented as a
set of two ordered pairs {(u;, u,), (v;, v2)}, where u; € Uj, uy € Uy, vy € Vi, and v, € V), and no
two ordered pairs share a node.

For the host-pathogen interaction networks (G; and G,), sets U; and U, correspond to path-
ogen proteins, sets V; and V, correspond to host proteins, and sets E; and E, correspond to in-
teractions between host and pathogen proteins. Thus, our host-pathogen interaction set
corresponds to the host-pathogen network, nodes correspond to proteins, and edges corre-
spond to host-pathogen interactions.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004088 March 4, 2015 20/28



®PLOS

COMPUTATIONAL

BIOLOGY

Mining Burkholderia mallei Host-Pathogen Protein Interactions

Algorithm description. The HPIA algorithm is a seed-and-extend algorithm that consists
of the following three steps: 1) pre-processing, 2) identification of local alignment, and 3) iden-
tification of global alignment. In this context, we referred to “local alignment” as a smaller area
of local network similarity between two networks where not all nodes need to be included, and
“global” where all nodes from the smaller network must be aligned to nodes from the larger
network [28]. Both mappings are 1-to-1, i.e., one node from one network can be aligned to
only one node of the other network. In the first step, the algorithm reads in host-pathogen net-
works and node annotations, and it calculates similarities between nodes based on either the
provided annotation (for node sets with available annotation) or the default topological simi-
larity (for node sets without available annotation). This step also includes handling user-
specified seed nodes (nodes that should be mapped to each other). The HPIA algorithm allows
a user to provide a set of node pairs (seeds) and/or to employ the algorithm’s feature to auto-
matically search for seed pairs (this search is based on the sequence similarity or equivalent
protein names). The HPIA algorithm can treat seed pairs in two ways: 1) as a suggestion for
node alignment, i.e., nodes that should be aligned to each other if other alignment constraints
are satisfied (see below), or 2) as a requirement for the alignment, i.e., seed pairs that have to be
aligned to each other. The first step also includes initialization of the aligned pairs list as empty.

In the second step, the HPIA algorithm first identifies a pair of seed nodes (s, s,), where
s; € Gy and s, € Gy, based on the node similarity measures from one of the following three sets (in
order of preference): 1) a set of aligned protein pairs in which both proteins are adjacent to at
least one unaligned protein, 2) a set of user-suggested seed pairs, and 3) a set of unaligned pro-
teins. All three of these sets contain proteins from the host and pathogen sets and, thus, a pair of
seed nodes can come from either the host or pathogen sets of proteins. However, if there are seed
node candidates from both sets, the HPIA algorithm preferentially selects a pathogen set. Once
selected, the seed pair (s, s,) is added to the list of aligned pairs. Next, the HPIA algorithm ex-
pands around the seed nodes by greedily aligning their direct neighbors s;; and s5(s;; € N[s;] and
s,j € N[s;]), based on the given node similarity measure (see below). The HPIA algorithm repeats
step two while there exists at least one unaligned pair of host proteins or pathogen proteins adja-
cent to at least one other unaligned protein. When there are no such pairs left, HPIA proceeds to
the third step.

In the third step, the HPIA algorithm greedily aligns all of the remaining unaligned patho-
gen nodes in G; to unaligned pathogen nodes G, and all of the remaining unaligned host nodes
in G, to unaligned host nodes G, solely based on node similarity measure. Each pair of nodes
is aligned one at a time based on the given node similarity (see below); network connectivity in-
formation is not taken into account explicitly (only as a part of the node similarity measure).
The results of the alignment are lists of aligned nodes and edges and the following alignment
statistics: the total number and percentage of aligned nodes, the number and percentage of
aligned pathogen and host nodes, and the number and percentage of aligned edges.

The HPIA algorithm allows a user to provide a set of node pairs (seeds) and to use an auto-
matic search for seed pairs (this search is based on the sequence similarity or equivalent protein
names) by specifying an optional parameter, “additionalSeeds.” The HPIA algorithm can treat
these seed pairs in two ways. If the “relaxSeeds” option is given, the nodes will be aligned to
each other only if other alignment constraints are satisfied as detailed below. If the “relaxSeeds”
option is not given, the seed pairs are forced to be aligned to each other. We recommend that
the “relaxSeeds” parameter be turned on if the “additionalSeeds” parameter is used.

All ties in the algorithm are broken randomly. The implementation of the HPIA algorithm
is also presented as pseudocode in S1 Text. Fig. 7 shows a high-level description of the HPTA
alignment algorithm.
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Fig 7. Host-Pathogen Interactions Alignment (HPIA) algorithm. The HPIA algorithm is a seed-and extend algorithm that aligns two bipartite graphs, e.g.,
two different host-pathogen protein interaction networks. A) Given an initial pair of seed nodes (red nodes U, and uy) from two graphs G (left) and G (right),
the algorithm first aligns seed nodes to each other. Then, it aligns the neighbors of the seed nodes from the first graph (green nodes V4-Vg) to the neighbors
of the seed nodes in the second graph (green nodes v4-v5) based on the node similarity measure (as defined in Equations 6, 8, and 9). This procedure results
in six aligned nodes and five aligned edges. B) The algorithm iteratively selects new seeds and extends around them, e.g., it selects nodes Vg from Gy and vs
from G, as new seed nodes and, based on the node similarity measure, aligns their unaligned neighbors U, to uy, creating an additional aligned edge (U»-Vg
to uz-vs). C) When the algorithm cannot find any seed nodes of the same type that have unaligned neighbors, it greedily aligns all of the remaining unaligned
nodes based on their type and the node similarity measure. Some nodes may remain unaligned if the graphs’ sizes vary, e.g., when there is no match for vg
from G, in G1. The HPIA algorithm generates a list of aligned nodes and a list of aligned edges inferred from the aligned nodes.

doi:10.1371/journal.pcbi.1004088.9007

Node similarity measures. The HPIA algorithm uses one or more topologically and biolog-
ically based protein similarity measures to identify conserved interactions. Similarity between
two proteins can always be calculated based on at least one of the metrics and, thus, the algo-
rithm always has a metric to match one protein to another. If no node annotation is provided,
the HPIA algorithm uses the default topological similarity measure, Sp(n;, 1,), to calculate
the similarity between nodes n; € G; and n, € G5

min|deg(n,), deg(n,)]

| ~min[nd(n,), nd(n,)]
max[deg(n,), deg(n,)]

max([nd(n,),nd(n,)]

+(1-0a) (4)

Spr(ny,n,) = o

where deg(n) denotes the degree of node n and nd(n) denotes the neighborhood density of #,
defined as

nd(n) = ) deg(n,) (5)

ngEN[n]
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where N[n] = N(n)U{n} represents the closed neighborhood of node #, i.e., the node n and the
set of its adjacent nodes (for a PPI network, this corresponds to a protein and all of its interact-
ing partners). a is a parameter in [0, 1] that controls the contribution of the degree of a node to
its similarity function. We empirically selected o = 0.7, as we wanted to weight the number of
direct host-pathogen interactions higher than the number of host-pathogen-host or pathogen-
host-pathogen interactions.

If node annotation is provided, the HPIA algorithm defines a similarity between pathogen
proteins u; € U; and u, € U, as

S(uys14y) = Sepy_p(ty, Uy) + Sgp(uay, ) + Seo (1, 1) (6)
and a similarity between host proteins v, € V; and v, € V, as
S(v17 VZ) = SGDV—P(V17 V,Q) + SGDV—H(V]’ VZ) + SEB(VU VZ) + SGO(VI’ VZ)’ (7)

where Sgpv.p and Sgpy.y denote the graphlet degree vector similarity [57] derived from the
host-pathogen interaction network and the host-PPI network, respectively; Sgp represents the
BLAST expected value (E-value) similarity [58], defined as 1- E-value for E-values < 1 and 0
otherwise; and Sgo denotes the GO term annotation similarity calculated using the Jaccard
similarity measure [59]. If a specific type of annotation is not provided, the HPIA algorithm as-
signs the similarity value 0 to the corresponding similarity parameters, e.g., if BLAST E-values
are not provided, the value of Sgp for all pairs of nodes is set to 0. We did not add the graphlet
degree vector similarity for the pathogen networks because only a few pathogen-PPI networks
are available, none of which are for B. mallei.

Data. For the topological node annotation, we used graphlet degree vectors [57] of all host
and pathogen proteins from the host-pathogen PPI networks. Host proteins found in the host
PPI network [25] were additionally annotated with another set of graphlet degree vectors cal-
culated based on the host PPI network topology. We used GO annotation [23] downloaded
from UNIPROT [60] [the lowest (leaf) level] as the biological node annotation. Additionally,
we used BLAST E-values of < 0.01 to define similarities between proteins [58]. Protein se-
quences were downloaded from UNIPROT and aligned using BLAST pairwise sequence
alignment.

Alignment quality. To assess the topological quality of the alignment, we used edge correct-
ness (EC), defined as the percentage of edges in G; that were aligned to edges in G, [51]. To as-
sess the biological quality of the alignment, we evaluated whether the number of aligned
protein pairs that share one or more GO term(s) was statistically significant compared to the
number we could expect at random using the standard model of sampling without replace-
ment, as described in previous studies [51-53]. We used the same approach to assess the statis-
tical significance of the alignment of two bipartite networks, G;(U;, V;, E;) and Gx(U,, V., E,),
with the EC of x% (similar to the implementation described above [51-53]). We aligned each
pair of host-pathogen interaction networks 30 times and reported the average and standard de-
viations of the alignment scores over all runs, as well as the best score (S8 Table). We ascer-
tained the robustness of the alignments with respect to the E-value cutoff and observed no
significant differences in the results when lowering the cutoff value from 10 to 10™>. To assess
the biological quality of the alignment, we evaluated whether the number of aligned protein
pairs that share one or more GO term(s) was statistically significant compared to the number
we could expect from a random alignment. Given that all obtained alignments were of similar
biological quality, we further refined our prediction by using the alignments that had the
highest EC score, i.e., we used the alignment with the highest EC score to infer the role of
B. mallei proteins.
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Implementation and availability

All statistical analyses were performed in R. All networks were plotted using Cytoscape [61].
The cross-species network alignment algorithm was developed in C++. Executable files and ex-
amples for the HPIA algorithm are provided at http://www.bhsai.org/downloads/hpia/.

Supporting Information

S1 Data. This file contains a set of human-B. mallei PPIs and a set of human PPIs used in
this study.
(XLSX)

S1 Text. This file contains the HPIA algorithm pseudo code and supplementary tables.
(DOCX)

S1 Table. A list of interaction modules statistically significantly enriched in Gene Ontology
(GO) biological processes for human proteins interacting with known B. mallei virulence
factors.

(DOCX)

S2 Table. Host proteins associated with distinct biological processes that interacted with
known B. mallei virulence factors.
(DOCX)

S3 Table. Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways statistically significantly enriched in human proteins interacting with
known and/or putative B. mallei virulence factors.
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$4 Table. Subnetworks statistically significantly enriched in Gene Ontology (GO) biologi-
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lence factors.

(DOCX)

S§5 Table. Functional annotation of B. mallei proteins inferred from the host-pathogen in-
teraction network alignment.
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