
Brain network topology early after stroke
relates to recovery
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Analyses of alterations of brain networks have gained an increasing interest in stroke rehabilitation research. Compared with func-
tional networks derived from resting-state analyses, there is limited knowledge of how structural network topology might undergo
changes after stroke and, more importantly, if structural network information obtained early after stroke could enhance recovery
models to infer later outcomes. The present work re-analysed cross-sectional structural imaging data, obtained within the first 2
weeks, of 45 acute stroke patients (22 females, 24 right-sided strokes, age 68+13 years). Whole-brain tractography was performed
to reconstruct structural connectomes and graph-theoretical analyses were employed to quantify global network organization with a
focus on parameters of network integration and modular processing. Graph measures were compared between stroke patients and 34
healthy controls (15 females, aged 69+10 years) and theywere integratedwith four clinical scores of the late subacute stage, covering
neurological symptom burden (National Institutes of Health Stroke Scale), global disability (modified Rankin Scale), activity-related
disability (Barthel Index) and motor functions (Upper-Extremity Score of the Fugl-Meyer Assessment). The analyses were employed
across the complete cohort and, based on clustering analysis, separately within subgroups stratified in mild to moderate (n=21)
and severe (n=24) initial deficits. The main findings were (i) a significant reduction of network’s global efficiency, specifically in
patients with severe deficits compared with controls (P= 0.010) and (ii) a significant negative correlation of network efficiency
with the extent of persistent functional deficits at follow-up after 3–6 months (P≤0.032). Specifically, regression models revealed
that this measure was capable to increase the explained variance in future deficits by 18% for the modified Rankin Scale, up to
24% for National Institutes of Health Stroke Scale, and 16% for Barthel Index when compared with models including the initial def-
icits and the lesion volume. Patients with mild to moderate deficits did not exhibit a similar impact of network efficiency on outcome
inference. Clustering coefficient and modularity, measures of segregation and modular processing, did not exhibit comparable struc-
ture–outcome relationships, neither in severely nor in mildly affected patients. This study provides empirical evidence that structural
network efficiency as a graph-theoretical marker of large-scale network topology, quantified early after stroke, relates to recovery.
Notably, this contribution was only evident in severely but not mildly affected stroke patients. This suggests that the initial clinical
deficit might shape the dependency of recovery on global network topology after stroke.
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Graphical Abstract

Introduction
Over the past decade, analyses of complex brain networks
have gained an increasing interest in imaging-based stroke
and neurorehabilitation research.1–4 For instance, in motor
stroke research, previous structural investigations have pri-
marily focused mostly on selected brain regions such as the
primary motor cortex, important white matter pathways
such as the corticospinal tract and, evenmore recently, on se-
lected long-range corticocortical motor connections that
connect frontal and parietal key areas of the human motor
network.5

There is growing evidence that stroke-related deficits are
unlikely to result only from focal brain injury, but that
inter-subject variability in persistent deficits and recovery
processes are likely to be consequences of direct and indirect
effects of lesions onto functioning of distributed brain
networks including multiple regions and interconnecting
pathways as well.2,6 Fundamental concepts of brain network
topology7,8 emphasize the importance of functional or struc-
tural integration across and segregation between brain areas
with aspects of modular processing. In the healthy brain,
these properties are well-tuned to ensure proper information
processingwithin localmodules and to optimize communica-
tions across spatially segregated subnetworks via large-scale
interactions. Frameworks for network analyses, such as
graph theory, have been developed and widely employed to
capture network topology in health and disease.9–14

Various electrophysiological and imaging studies have ex-
plored the interrelationship between alterations of network
topology and deficits after stroke.4,15–21 Despite the meth-
odological discrepancy between structural and functional
connectivity analyses in brain networks, such studies have
convergingly evidenced that acute stroke lesions lead to re-
duced graph measures of network integration, such as global
efficiency (GE). In contrast, network segregation and para-
meters of modular processing are reported to increase after
stroke [e.g. measured by clustering coefficient (CC) and net-
work modularity (MOD), respectively]. Resting-state func-
tional MRI has revealed that the gradual re-instatement of
normal MOD associates with the functional improvement
of language, spatial memory and attention deficits over
time.19 Insights into structural brain networks topology are
remarkably limited.17,22 One recent study has demonstrated
that, like functional networks over time, also structural brain
networks became less integrated and more segregated with
decreasing GE and increasing MOD. Herein, greater change
in topology was associated with larger residual symptom
burden and greater motor impairment over 1 year of
follow-up.17

Despite these valuable insights into the interrelationship
between stroke-related alterations of whole-brain networks
and clinical phenotypes, there is only very limited data sup-
porting the view that the consideration of such network
data, obtained already early after stroke, might help to en-
hance predictive models of the subsequent outcomes. In
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one study, structural topology in the acute stage did not im-
prove correlative models to infer future deficits in 30 stroke
patients after 1, 3 or 12months.17 As one limitation, patients
included were relatively well recovered in the acute stage
with a median National Institutes of Health Stroke Scale
(NIHSS) score of only 3.17 One resting-state functional
MRI study found that network efficiency, obtained acutely
after stroke, was positively related to the amount of motor
recovery within 3months. However, limitations of this study
included the small sample size (12 patients) and the inclusion
of patients with ischaemic infarctions and intracranial hae-
morrhages.23 More recently, other resting-state studies
have reported that lower lesion load to strategic network
areas was related to improved recovery of overall symptom
burden24 or of cognitive deficits after stroke.25 Also these co-
horts consisted of patients with rather mild to moderate
symptom load with averaged NIHSS scores between 225

and 5.24 Other observational resting-state studies have not
investigated the additive value of their network configur-
ation data in outcome inference analyses in detail.19,20

Finally, one important limitation of such functional network
analyses is, at least in part, its dependency on arousal states26

or psychoactive medications,27,28 which are often altered or
used in acute or early subacute stroke patients. Hence, struc-
tural network data might exhibit their particular potential in
the clinical setting as imaging biomarkers unbiased by pa-
tient alertness or acute stroke medication.

In summary, there is still limited data, which suggest that
information regarding individual network topology after
stroke might help to infer recovery. The evidence that, e.g.
structural network information obtained early after stroke
by means of individual whole-brain tractography can actual-
ly enhancemodels to infer later outcome is scarce.Moreover,
previous studies have mostly included patients with rather
mild deficits. The impact of an altered network topology
for outcome inference in severely impaired patients remains
largely unknown. The detection of a categorically differen-
tial importance of early network characteristics for outcome
models might have important consequences for future study
designs, including clinically relevant prediction models in
larger cohorts. The aim of the present study was to investi-
gate whether graph-theoretical markers of large-scale net-
work topology early after first-ever ischaemic stroke might
enhance correlative models to infer subsequent persistent
deficits in the late subacute stage of recovery. Specifically,
we sought to address this research question in a large cohort
of stroke patients with variable deficits and subgroups with
mild and severe initial deficits.

Materials and methods
Participants and clinical assessment
The present study is based on patient data from previously
published cohorts of acute stroke patients of two independ-
ent studies. Cohort 1 (C1) comprised a total of 61 acute

ischaemic stroke patients admitted to the University
Medical Center Hamburg-Eppendorf which were recruited
from June 2012 to September 2017 in the framework of
the Collaborative Research Centre 936. This cohort has al-
ready been introduced in detail by our previous reports.17,29

In Cohort 2 (C2), 30 initially more severely impaired acute
stroke patients, admitted to the same medical centre from
October 2017 to February 2020, were included. Detailed in-
clusion and exclusion criteria are given in our recent report
on parietofrontal functional connectivity.30 In brief, inclu-
sion criteria for both studies were: first-ever unilateral is-
chaemic stroke, upper extremity motor deficit involving
hand function, no history of previous neurological or psychi-
atric illness, age ≥18 years. In both cohorts, acute stroke pa-
tients underwent T1-, T2- and diffusion-weightedMRI in the
first days after the event as time point T1 (C1: Days 3–5, C2:
Days 3–14). The follow-up time point T2 was defined in the
late subacute stage of recovery31 after 3 months, or, as in se-
ven cases of cohort C2 in which clinical data for this time
point was not available, after 6 months.30 Across both co-
horts, clinical assessments included scores of neurological
symptom burden (NIHSS, range 0–42), global disability
(modified Rankin Scale, mRS, range 0–6), activity-related
disability [Barthel Index (BI), range 0–100] and motor func-
tions (Upper-Extremity Score of the Fugl-MeyerAssessment,
UEFM, range 0–66). Data of healthy participants, similar in
age and gender, were also re-analysed from both cohorts.
All participants provided informed written consent them-
selves or via a legal guardian, following the ethical
Declaration of Helsinki. The original studies were approved
by the local ethics committees. For this secondary explora-
tory analysis, available imaging and clinical data of both co-
horts were included according to the following inclusion
criteria: supratentorial stroke lesion, availability of MRI
data obtained at T1 and at least one clinical assessment mea-
sured at T2.

Imaging acquisition
For both datasets, brain imaging was performed with a 3 T
Skyra MRI scanner (Siemens, Erlangen, Germany). A
32-channel head coil was used to obtain high-resolution
T1- and T2-weighted and diffusion-weighted images
(DWIs). For the T1-weighted sequence, a three-dimensional
magnetization-prepared rapid gradient echo sequence was
used. Parameters were: repetition time (TR)= 2500 ms,
echo time (TE)= 2.12 ms, flip angle 9°, 256 coronal slices
with a voxel size of 0.8 mm× 0.8 mm× 0.9 mm, field of
view (FOV)= 240 mm. T2-weighted images were acquired
by using a fluid attenuated inversion recovery sequence
with the following parameters: TR= 9000 ms, TE= 86 ms,
TI= 2500 ms, flip angle 150°, 43 transversal slices with a
voxel size of 0.7 mm× 0.7 mm× 3.0 mm, FOV= 230 mm.
T2-weighted images were acquired in order to help delineat-
ing stroke lesions. For DWI, an echo planar imaging se-
quence was used and the whole brain was covered with
gradients (b= 1500 s/mm2) applied along 64 non-collinear
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directions with the following parameters: TR= 10 000 ms,
TE= 82 ms, flip angle 90°, 75 axial slices with a voxel size
of 2 mm× 2 mm× 2 mm, FOV= 256 mm. One b0 image
was also collected.

Image processing and analysis
Individual stroke lesions were delineated using a semi-
automatic algorithm in ITK-SNAP version 3.8.032 based
on visual inspection of the T1-weighted and the DWIs.
T2-weighted images were also inspected to support the iden-
tification of lesioned areas. Pre-processing and reconstruc-
tion of raw MRI data were performed with q-space
imaging QSIprep, version 0.9.0.33 This pipeline performs
standardized and reproducible pre-processing of diffusion
MRI. First, brain extraction (ANTs’ antsBrainExtraction)
and tissue segmentation (FSL’s fast) of the T1-weighted
images were performed. Then, DWIs were pre-processed
by de-noising the DWI volumes, performing bias field correc-
tion and creating a brain mask from the b0 image.
Subsequent steps included corrections of head-motion,
eddy currents (FSL’s eddy) and susceptibility distortions
(FSL’s topup). Finally, the b0 image is co-registered rigidly
to the T1-weighted image (ANTs’ antsRegistration). The pre-
processing outputs are the starting point for reconstruction
of white matter fibre tracts by using a preconfigured recon-
struction workflow offered by QSIprep (mrtrix_single-
shell_ss3t). In brief, this workflow first creates a template
consisting of five tissues (white matter, cortical grey matter,
subcortical grey matter, pathological tissue and cerebro-
spinal fluid) based on the segmented T1-weighted image.
Importantly, lesion segmentations were not included in this
workflow, but used to determine lesion volumes (LVs).
This template serves as the prerequisite for identifying ana-
tomical constraints to improve biological plausibility of the
streamlines that are created by tractography, e.g. by termin-
ating streamlines before entering cerebrospinal fluid or initi-
ating streamline creation at the boundary between white and
grey matter. This leads to an anatomically constrained trac-
tography.34 The workflow uses a constrained spherical-
deconvolution (CSD) algorithm, a version of a multi-shell
multi-tissue CSD algorithm35 adjusted for single-shell DWI
data for estimation of fibre orientation distribution in the
white matter, which is subsequently used for tractography
of 10 million streamlines. After that, the streamline weights
of the resulting tractogram, which are determined by the
count of connecting streamlines, are calculated by applying
the spherical deconvolution informed filtering of tracto-
grams 2 method to enhance biological plausibility of tracto-
grams.36 To construct structural networks, those modified
weights were further included in a structural connectivity
matrix derived from the cortical parcellation of the
T1-weighted image according to the automated anatomical
labelling (AAL) atlas.37 This atlas segments the brain into
41 cortical, 4 subcortical and 13 cerebellar regions per
hemisphere resulting in a total of 116 regions. Hence, the
structural connectivity matrix used in this study had the

dimension of 116× 116. Structural connectomes remained
un-thresholded, in line with recent suggestions.38

Graph-theoretical network analysis
The Brain Connectivity Toolbox for MATLAB14 (brain-
connectivity-toolbox.net) was used to compute different
graph-theoretical measures of network topology based on
un-thresholded, weighted, undirected and normalized (range
of connection weights 0–1 according to minimum and max-
imum) connectivity matrices with self-connections set to
zero. Based on clear a priori hypotheses derived from our
previous study,17 we primarily focused on GE and MOD,
measures of network integration andmodular processing, re-
spectively. GE is a measure of network integration and is de-
fined as the inverse of the average shortest path length across
all nodes of the network39 with lower shortest path lengths
corresponding to higher global efficiencies of the network
and thus more efficient information transfer between distrib-
uted brain regions. In contrast, MOD describes the preva-
lence of distinct modules with a maximally possible
number of within-module links and a minimally possible
number of between-module links within the network.40

MOD values were further processed by computing the
means across all 116 nodes of the AAL atlas. In order to pro-
vide a comprehensive picture of network topology after
stroke, secondary measures included characteristic path
length (CPL) and also CC, a surrogate of network segrega-
tion. Moreover, as un-thresholded dense weighted undirect-
ed structural networks were constructed, also network
density (D) was included to provide information regarding
network sparsity. All graph-theoretical measures did not
undergo further modifications before incorporation into
the regression models.

Statistical analysis
Statistical analyses were carried out in R version 4.0.3
(r-project.org). To discriminate the patient cohort into two
subgroups of patients with mild to moderate and severe ini-
tial impairment, a k-means cluster analysis based on NIHSS
andUEFM scores at T1was computed (R’s k-means). The ra-
tional for this approach was to guide the group discrimin-
ation by direct measures of the neurological state after
stroke which are robust to potential confounders such as
dehydration or infections which may critically impact early
disability scales. Between-group comparisons (complete
stroke cohort, STROKE; mild to moderate impairment,
MILD; severe impairment, SEVR; healthy controls, HCs)
of network measures were performed by estimating linear
models with the respectivemeasure as the dependent variable
(DV), GROUP as the factor of interest and AGE as a nuis-
ance variable. LV and age were also compared between
groups by additional models, group-wise with GROUP as
the factor of interest. To examine potential associations of
early structural network measures with LV in stroke pa-
tients, linear models were fit to STROKE, SEVR and
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MILD with the structural network measures serving as the
DV. Log-transformed LV and AGE were treated as
covariates.

To describe functional improvement over time from T1 to
T2, linear mixed-effects models with repeated measures (R’s
lmer) were fit with the four respective outcome scores as the
DV, TIME (T1, T2) as factor of interest and participant as
random effect.

To investigate the associations between early network
topology at T1 with clinical scores at T2, we first employed
linear models (R’s lm) in the complete cohort of stroke pa-
tients with NIHSS, mRS, BI and UEFM at T2 as DVs in sep-
arate models. Network topology measures obtained at T1

were tested as the predictors of interest. To address the
subgroup-specific importance (MILD/SEVR) of network
measures, the interaction term with GROUP was included
in extendedmodels. Baseline models also included the specif-
ic clinical score at T1 and LV (log10-transformed) to adjust
the target effects. As AGE was not correlated with the initial
deficit in STROKE, this factor was not included in the base-
line outcome regressionmodels to preventmodel inflation, in
line with our previous report.17 Given significant interac-
tions, subgroup-specific models were fit for MILD and
SEVR for the different network and outcome measures. To
improve data distribution, NIHSS, BI and UEFM values at
T1 were transformed by taking the square root in
STROKE, but not in SEVR and MILD. Final models were
simplified based on the Akaike Information Criterion using
R’s step function. Initial clinical assessments at T1 were al-
ways kept in the models. To account for the variability in
the precise time point of clinical evaluation (3 or 6 months)
used for the follow-up T2, SEVR models were tested for
the significance of this factor. Model results are given includ-
ing numbers of patients in the model, estimated coefficients
of z-standardized predictors with their P-values andmultiple
R2 of the final model. Statistical significance was assumed at
P, 0.05. P-values of post hoc group comparisons between
SEVR, MILD and HC were corrected for multiple testing
using Tukey tests, otherwise P-values are presented uncor-
rected for multiple comparisons.

Data availability
Clinical data, imaging data and code used for the analyses
are available upon reasonable request from the correspond-
ing author.

Results
Demographic and clinical data
The combination of cohorts C1 and C2 resulted in an initial
cohort of 91 stroke patients. Supplementary Fig. 1 gives a
flow diagram of data evaluation and analysis. The final ana-
lysis contained data of 45 acute stroke patients (22 females,
24 right-sided strokes, age 68.4+ 12.6 years, mean+ SD).

Clustering analysis revealed two sufficiently distinctive sub-
groups (between sum of squares/total sum of squares ratio
= 0.764): one group of 24 severely affected patients
(SEVR, 13 females, 14 right-sided strokes, aged 71.2+
11.9 years, median NIHSS= 11, median UEFM= 5) and
one group of 21 rathermildly tomoderately affected patients
(MILD, 9 females, 10 right-sided strokes, aged 65.2+12.9
years, median NIHSS= 3, median UEFM= 57). A visualiza-
tion of the distribution of the NIHSS and UEFM scores used
for group allocation is given in Supplementary Fig. 2.

Tables 1 and 2 give the clinical characteristics of SEVR
andMILD.Moreover, for HC, data from 34 healthy partici-
pants from both initial studies (19 fromC1, 15 fromC2, aged
69.3+9.9 years, 15 females) were also analysed. Age did
not differ significantly between the groups, neither between
STROKE and HC (P= 0.730), nor between SEVR, MILD
and HC (all P≥ 0.184, Table 3).

Fig. 1 depicts the topography of stroke lesions in the
STROKE group and both subgroups, respectively. The dis-
tribution of LVs across both groups was rather heteroge-
neous. LVs were larger in SEVR compared with MILD
[estimated mean (95% confidence interval), SEVR: 71.8 ml
(45.9–97.7), median= 46.1 ml; MILD: 16.4 (0–44.1) ml,
median= 2.8 ml; P= 0.005, Table 3].

Linear mixed-effects models evidenced significant func-
tional improvement over time from T1 to T2 regarding all
four scores in the complete cohort STROKE (all P, 0.001)
and also within SEVR (mRS P= 0.002, all other P,

0.001) and in MILD (NIHSS P= 0.015, mRS P,0.001,
BI/UEFM P= 0.003). Fig. 2 illustrates the evolution of func-
tional scores over time.

Group comparisons of early
structural network topology after
stroke
GE at T1 was significantly reduced in STROKE compared
withHC (P= 0.004, Table 3). Also, the comparison between
SEVR, MILD and HC revealed a significant main effect for
GROUP (P= 0.011), with SEVR showing a significant re-
duction in GE compared with HC (P= 0.010) in post hoc
testing. In contrast, the numerical reduction of GE in
MILD did not reach statistical significance when compared
with HC (P= 0.153). For MOD, we did not find any signifi-
cant GROUP effect at T1, neither between STROKE and HC
(P= 0.710) nor between SEVR, MILD and HC (main effect
GROUP P= 0.933, Table 3). For the latter comparison, post
hoc pair-wise tests did not yield any group differences for
MOD at T1 (all P≥ 0.948, Table 3 and Fig. 3). LV did not
correlate with MOD and GE, neither in STROKE (all P≥
0.373) nor in the subgroups SEVR (all P≥ 0.607) or MILD
when analysed separately (all P≥0.242, Supplementary
Fig. 3). Secondary analyses of CC and CPL did not uncover
any significant group differences between STROKE, HC,
MILD and SEVR. Only for D, we found significantly re-
duced values for STROKE when compared with HC (P=
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0.004) and for SEVR when compared with HC or MILD
(both P, 0.001). Data distribution of D for the different
subgroups is illustrated in Supplementary Fig. 4. In fact,
GE andD showed a significant positive correlation in all sub-
groups (P, 0.05, not shown), a finding already known from
the literature.41 Results for CC, CPL andD are summarized
in Supplementary Table 1.

Early structural network efficiency
and subsequent recovery after stroke
For the entire cohort of stroke patients (STROKE), regres-
sion analyses revealed significant associations between GE

at T1 and both NIHSS (n= 38, P= 0.013) and BI (n= 40,
P= 0.023, Fig. 4) at T2, after adjustment for the initial func-
tional scores at T1. Specifically, higher GE values were asso-
ciated with lower NIHSS and higher BI values, i.e. lower
degrees of impairment. For mRS, we found a similar trend
for significance (n= 44, P= 0.055). For UEFM at the T2

follow-up, we did not detect any significant influence of
GE. LV did not significantly contribute to these models
and was omitted during model simplification.

Next, we explored extended models which included the
interaction GE×GROUP to assess any group-specific influ-
ence of GE onto functional recovery after stroke. This inter-
action was significant for NIHSS (P= 0.020), mRS (P=

Table 3 Group comparison of age, LV and structural network parameters

STROKE (1) SEVR (2) MILD (3) HC (4) 1–4 2–4 3–4 2–3
Mean (95% CI) Mean (95% CI) Mean (95% CI) Mean (95% CI) P P P P

N 45 24 21 34 — — — —

Age 68.4 (65.0–71.8) 71.2 (66.6–75.8) 65.2 (60.3–70.1) 69.3 (65.4–73.2) 0.725 0.808 0.392 0.184
LV 45.9 (26.5–65.4) 71.8 (45.9–97.7) 16.4 (0–44.1) — — — — 0.005**
GE 0.0404 (0.0379–0.0429) 0.0393 (0.0358–0.0428) 0.0417(0.0379–0.0454) 0.0461 (0.0431–0.0491) 0.004** 0.010* 0.153 0.637
MOD 3.52 (3.33–3.71) 3.52 (3.25–3.79) 3.52 (3.23–3.81) 3.46(3.24–3.69) 0.710 0.948 0.950 1.000

Estimated means with 95% confidence intervals are given for each group. X–Y indicates the pair of groups for comparison. P-values of post hoc group comparisons between SEVR, MILD
and HC were corrected for multiple testing using Tukey tests. Comparisons of network measures were adjusted for age. LV in ml, MOD, modularity; GE, global efficiency.
*P, 0.05.
**P, 0.01.

Figure 1 Lesion topography. Individual patient lesions are superimposed onto the left hemisphere of the MNI brain (neurological convention).
Colour bars indicate thenumberof patients having their lesions in the respective area. z-coordinatesof the slices inMNI space aredisplayed at thebottom.
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0.008) and BI (P,0.001) but not for UEFM. Subsequently,
for the former three models, we repeated the regression ana-
lyses separately for SEVR and MILD and found that GE
exclusively exerted a significant influence on NIHSS (n=
17, P= 0.032), mRS (n= 23, P= 0.019) and BI (n= 20, P
= 0.002) in the SEVR but not in the MILD cohort (n= 21
for NIHSS and mRS, n= 20 for BI, Table 4 and Fig. 4). In
the MILD cohort, GE estimates at T1 (all P≥ 0.249) did
not improve the correlative outcome models, which were
dominated by the initial clinical scores. LV did not exert
any significant contribution to the final models and was
omitted during model simplification. In the MILD cohort,
GE was also not correlated with the clinical scores at T2

when omitting the initial deficit from the models to enhance
residual unexplained variance (all P≥ 0.129, not shown). In
other words, the effect in the entire STROKE cohort was dri-
ven by the severely affected patients (SEVR). In the SEVR co-
hort, additionally explained variances of the final models
increased by 24.7% for NIHSS, 18.1% for mRS and
19.8% for BI when compared with models, which only in-
cluded the initial deficit and the LV (not shown). Taking
NIHSS at T1 into account for mRS and BI models for
STROKE and SEVR did not alter the overall findings
(Supplementary Table 2). Given significant group differences
for D, regression models were also estimated for this net-
work parameter. Results were largely in line with the

Figure 2 Functional improvement over time in STROKE, SEVR andMILD. Boxplots depicting the evolution of NIHSS (A), mRS (B), BI
(C) and UEFM (D) from T1 to T2. Linear mixed-effects modelling was used to compare clinical measures within the respective groups. Based on
these models, least-squares were subsequently computed with Tukey’s test as the post hoc analysis method.
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Figure 3 Structural network topology after stroke. Boxplots depicting early MOD (A) and GE (B) for STROKE, SEVR, MILD and HC.
Group comparisons were conducted by computing least-squares from linear models including GROUP and AGE with Tukey’s test as the post hoc
analysis method. *P, 0.05, **P, 0.01.

Figure 4 Early structural network efficiency and subsequent recovery after stroke. Effect plots showing associations between early
GE at T1 and the estimated outcome at T2 for all stroke patients (STROKE models without GROUP and interaction term). Based on significant
GE–GROUP interactions, effect plots are also given separately for SEVR and MILD. P-values are given for the predictor of interest GE, multiple R2

are given for the complete models. N, number of patients contributing to the model. *P, 0.05, **P, 0.01.
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findings for GE and are given in Supplementary Table 3
and Fig. 5. For completeness, modelling results are also given
for MOD, CC and CPL which did not show any group
differences at T1. None of these measures was correlated
with clinical scores at T2 (Supplementary Tables 4–6).

In order to explore further characteristics of SEVR in
the present cohort with respect to the contribution of
brain network topology to recovery, we explored NIHSS
subitems and tested additional GE models for these sub-
scales (summarized in Supplementary Table 7). SEVR
was mainly characterized by deficits in the motor domain,
sensory disturbances, dysarthria and extinction/neglect. GE
models are summarized in Supplementary Table 8. They in-
dicate that network–outcome relationships for GE might
be particularly driven by improvement in the motor
domain (NIHSS Items 4–6) and in extinction/neglect
(NIHSS Item 11).

Final analyses focused on the relationships between GE,
LV and clinical scores at T1. Across all patients (STROKE)
significant associations were found between LV and
NIHSS, mRS and BI, where larger lesions correlated with
more impairment, after adjustment for GROUP (all P≤
0.001). LV×GROUP interactions were not significant.

Only UEFM at T1 was not related to LV (P= 0.973). In con-
trast to LVs, GE did not correlate with the initial deficits, nei-
ther in STROKE (all P≥ 0.376), nor separately in SEVR or
MILD as evidenced by non-significant GE×GROUP
interactions.

Discussion
The main findings of the present structural network analyses
were (i) a significant reduction in GE, a graph-theoretical
measure of network integration, early after ischaemic stroke
and (ii) a significant negative association of thismeasure with
the extent of persistent functional deficits in the late subacute
stage. That is, the higher structural GE was early after stroke
(T1), the better the clinical outcome on follow-up (T2).
Importantly, subgroup analyses revealed that this associ-
ation was driven by patients with more severe initial deficits
and not detectable in patients with mild to moderate symp-
tom burden. Measures of modular processing and network
segregation did neither exhibit comparable alterations early
after stroke nor did they show network–outcome associa-
tions, neither in severely nor in mildly affected patients.

Table 4 Early structural network efficiency and subsequent recovery after stroke

Model summary

Outcome Group Predictor Coef. P F R²

NIHSS T2 STROKE GE −0.61 0.002** 12.47 0.602
GROUP 0.292

GE×GROUP 0.020*
NIHSS T1 0.44 0.030*

SEVR GE −0.50 0.032* 4.56 0.395
NIHSS T1 0.38 0.091

MILD GE 0.11 0.510 10.73 0.544
NIHSS T1 0.69 ,0.001***

mRS T2 STROKE GE −0.53 0.002** 14.29 0.595
GROUP 0.025*

GE×GROUP 0.008**
mRS T1 0.34 0.027*

SEVR GE −0.43 0.019* 7.73 0.436
mRS T1 0.46 0.013*

MILD GE 0.23 0.249 4.05 0.311
mRS T1 0.49 0.022*

BI T2 STROKE GE 0.62 ,0.001*** 28.36 0.764
GROUP 0.802

GE×GROUP ,0.001***
BI T1 0.65 ,0.001***

SEVR GE 0.48 0.002** 21.80 0.720
BI T1 0.6 ,0.001***

MILD GE ,−0.01 0.999 4.24 0.333
BI T1 0.58 0.010**

UEFM T2 STROKE GE 0.12 0.106 87.62 0.834
UEFM T1 0.89 ,0.001***

Linear models correlating GE at T1 with clinical outcome at T2. GE×GROUP interactions were evaluated in the whole stroke cohort (STROKE) for NIHSS, mRS and BI.
Group-specific models were fit in the case of a significant interaction. For UEFM the non-significant interaction term was omitted from the model (see ‘Results’ section). Model
predictors are derived from baseline models and model simplification (see ‘Statistical analysis’ section). Outcome and predictor values were z-standardized to enable comparability of
coefficients. R² given as multiple R² of the complete model.
*P, 0.05.
**P, 0.01.
***P, 0.001.
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Early alterations of structural
network efficiency after stroke
The present findings extend the results of our previous co-
hort study, which showed that focal brain lesions lead to in-
creasingly less integrated structural networks over time after
stroke.17 Our data complement these temporal profiles (i) by
showing that the stroke-related decrease in GE is already sig-
nificant in the early subacute stage and (ii) that this effect is
driven by severely affected patients with larger lesions and
higher initial symptom load. Under the assumption that low-
er structural efficiency would reduce the potential to facili-
tate functional connectivity between brain regions,42 this
result is well in line with one EEG study on functional net-
works showing an acute reduction in network integration
after stroke.21 However, there are also fMRI studies that
have not detected any significant changes in network top-
ology acutely after stroke, even in patients with severe
deficits.20

Early structural network efficiency
relates to recovery after stroke
Previously, it has been evidenced that the amount of increas-
ing dis-integration across networks correlated with the
amount of final residual symptom burden. Importantly
though, early network topology did not relate to later out-
comes which led to the conclusion that only the change
over time and not the absolute values of topology metrics,
e.g. obtained in the acute stage, might be informative for
structural–clinical relationships.17 Although methodologic-
ally different to tractography and structural networks, ana-
lyses of functional resting-state networks had not
corroborated this hypothesis, particularly with respect to
the motor domain, one of the most influential factors for se-
quelae after stroke.19 The present study now provides evi-
dence that structural GE, a surrogate of network
integration, obtained in the early subacute stage by means
of whole-brain tractography, can significantly enhance re-
gression models to explain inter-subject variability in subse-
quent persistent deficits, operationalized by established
scores, such as NIHSS, mRS and BI 3–6 months after stroke.
It evidences that already absolute GE, and not only its change
over time,17 might be informative to enhance predictive out-
comemodels. LV as a contributing factor was neither related
to GE, nor did it add to infer the functional outcome after
stroke, but it was significantly correlated with the initial def-
icits. GE was not related to the initial deficit. These distinct
relations suggest that early GE relates to subsequent recovery
processes and is not a surrogate of mere symptom burden
after stroke which is further supported by the statistical ap-
proach of taking the initial clinical deficit into account.
One previous resting-state study found that acute CPL was
related to improvement in motor function 3 months after
stroke. However, this study did not correct for the initial def-
icits.23 Apart from that study, the importance of early

network topology for inference of neurological recovery
has only been assessed by few structural22 and functional im-
aging studies.18,19,24,25 For instance, the former integrated
acute lesion data with normative connectome data to inter-
polate individual early network disruption and related it to
recovery processes. However, individual network topology
in older stroke patients might differ significantly from nor-
mative topologies, particularly when these data were col-
lected in younger participants and not age-matched
controls.22

The early decrease in GE and its association with subse-
quent deficits were only present in patients with more severe
deficits. In this subgroup, earlyGEexplainedup to24%in the
variability of the clinical outcomewhen comparedwithmod-
elswhich included the initial clinical deficit and the LV. In our
view, it is important to point out that this finding might have
been missed if the entire cohort would have been modelled
without assessing the interaction between the initial deficit
and the influence of GE on recovery. In that case, one might
have come to the erroneous conclusion thatGE could explain
the outcome in patientswithmild tomoderate and severe def-
icits. However, as illustrated by the effect plots of Fig. 4, vari-
ability in GE in the mildly affected group at T1 was largely
uncorrelated with the outcome at T2. This also held true
when omitting the initial deficit from the models in order to
increase the variance in the outcome to explain by GE.
How can we interpret this difference between patients with
severe and mild to moderate initial impairment? Structural
imaging had already evidenced that severe strokeswith larger
LVs lead to more widespread alterations of white matter
microstructure of the motor network not only of the ipsile-
sional but also of the contralesional hemisphere.43 Residual
motor functions of chronic stroke patients with larger corti-
cospinal tract damage have been reported to additionally de-
pend on the integrity of premotor–motor connections—an
association not detected in patients with smaller lesion
load.44 Functional imaging studies have shown an increasing
dependency of residual motor functions on distributed key
motor areas of the contralesional hemisphere.45 Hence, we
propose that the present results might indicate that the extent
of the initial impairment can moderate the association be-
tween preserved network topology and better outcome after
stroke. With regard to future studies, these results might also
argue that particularly patients with more severe deficits
might be more suitable to study relationships between net-
work topology after stroke and behaviour. Neuroimaging
studies are clearlymore feasible in stroke patientswith less se-
vere deficits. However, this selection bias might hide some
relevant mechanisms, as the present data suggest.

Limitations
There are a number of important limitations worth noting:
first, the present analysis is based on the combination of in-
dependent samples of two different studies. Models were
statistically corrected for this factor; significant contribu-
tions were not detected. The same holds true for the

12 | BRAIN COMMUNICATIONS 2022: Page 12 of 14 P. R. Nemati et al.



combined time point of the outcome measure at T2, either
after 3 or 6 months.30 The additional consideration of this
factor in the models did not alter the findings. Second, group
allocation was conducted based on a clustering analysis
based on NIHSS and UEFM scores. Hence, this allocation
should be considered arbitrary; it is specific to the present co-
horts and might be different in independent samples. Also,
group composition might change when considering alterna-
tive approaches of patient stratification, such as the PREP al-
gorithms which combine clinical scores and measures of the
structural and functional integrity of the corticospinal
tract.46,47 Third, the reduced variance in the outcome vari-
ables in the mildly impaired patients is an inherent statistical
limitation. Most patients in this group showed a favourable
recovery until T2. However, this limitation is relativized by
the finding in MILD that for NIHSS, mRS and BI, the re-
spective score at T1 was needed to explain the T2-value. As
an additional post hoc analysis, we adapted the initial mod-
els for these three outcome variables and included the inter-
action GE×Outcome-T1 (continuous) instead of GE×
GROUP. In other words, we omitted the potentially arbi-
trary group allocation for each patient in each outcomemod-
el. For all GE models, the interactions remained significant
(NIHSS P= 0.03, mRS P= 0.01, BI P, 0.001), indicating
that the influence of higher GE at T1 on better recovery at
T2 increases with higher initial deficit. Fourth, particularly
in SEVR, there were still a lot of missing data at T2. Thus fi-
nal models were fit on reduced sample sizes. Fifth, we found
significant associations between GE and NIHSS, mRS and
BI, measures of disability and symptom burden, but not
UEFM, a measure of motor functions. This might indicate
an outcome-specific importance of network topology after
stroke. In fact, imaging studies have repeatedly shown that,
at least in part, results might be specific to certain outcome
measures and not easily generalized across others.17,30,48

As an alternative explanation, a strong relationship between
UEFM at T1 and T2 might explain why GE was not capable
to explain additional variances. Taking NIHSS at T1 into ac-
count for the initial deficit, GE would show a significant as-
sociation with UEFM at T2 across the complete cohort
(Supplementary Table 2). Finally, P-values remained uncor-
rected for multiple comparisons in the regression analyses
leading to good sensitivity at the cost of reduced specificity.
This work has been designed as an exploratory re-analysis
of two independent cohorts of stroke patients which have
been already published.29,30 Hence, caution is advised
when interpreting the present findings, prospective studies
are needed to obtain further insights.

Conclusion
This study provides empirical evidence that structural net-
work efficiency as a graph-theoretical marker of large-scale
network topology, quantified by diffusion MRI and individ-
ual whole-brain tractography early after stroke, relates to re-
covery. Notably, this contribution was only evident in

severely but not mildly affected stroke patients. This suggests
that the initial deficit might shape the dependency of recov-
ery on global network topology after stroke.
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