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The role of thyroid hormones (THs) in the cardiovascular (CV) system, through
several direct and indirect effects is recognized. Even very small modification in
TH levels (as those observed in subclinical hypothyroidism or hyperthyroidism, and
low triiodothyronine syndrome) may adversely affect the CV system, whereas thyroid
hormones benefit the CV system and improve the prognosis. There is also evidence of
vitamin D effects on cardiometabolic disease (e.g., through modulation of endothelial
and smooth muscle cell activity, renin-angiotensin-aldosterone system, nitric oxide,
oxidative stress, and inflammatory response), as well as an association between vitamin
D [25(OH)D] deficiency and autoimmune thyroid diseases or cancer, and a relationship
between vitamin D concentration and titers of antibodies and thyroid autoimmunity
replacement. Interestingly, experimental data indicate a direct effect of vitamin D on
Type 2 deiodinase expression causing subsequential peripheral conversion of T4 into
T3. However, the functional links among THs, vitamin D and the cardiovascular system,
and clinical effects of coexisting abnormalities in this new troublesome triad, have not
yet been reviewed. The main aim of this review is to discuss pathophysiology of this
relationship, proposing new mechanistic insights involving vitamin D in the modulation
of cardiometabolic disease and thyroid profile.

Keywords: vitamin D, 25(OH)D, thyroid hormones, cardiovascular system, pathophysiology

INTRODUCTION

The roles of thyroid hormones (THs) in cardiovascular (CV) disease, such as heart failure (HF)
or acute myocardial infarction (MI), through several direct and indirect effects are well-known
(Jabbar et al., 2017; Abdel-Moneim et al., 2020). The two conditions share a number of
underlying mechanisms and risk factors (e.g., endothelial dysfunction, increased blood pressure
and dyslipidemia) (Jabbar et al., 2017). Moreover, the importance of THs in CV homeostasis may
be deduced by the fact that even very small changes in TH levels (e.g., those observed in subclinical
hypothyroidism or hyperthyroidism, and low triiodothyronine syndrome) adversely impact the CV
system, whereas THs benefit the CV system and improve the prognosis (Razvi et al., 2018; Mastorci
et al., 2020). Moreover, whether experimental studies suggest that TH administration may reduce
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infarct size and improve myocardial function after acute
myocardial infarction (AMI), increasing clinical evidence which
indicates that the manifestations of subtle thyroid abnormalities
(e.g., low T3 syndrome) during AMI course are associated with
adverse prognosis (Razvi et al., 2018).

In this context, the classical roles of vitamin D are related
to the regulation of bone turnover and phospho-calcium
homeostasis (Caprio et al., 2017). However, the pleiotropic roles
of vitamin D have been recognized through preclinical and
observational studies, and the importance of vitamin D in non-
skeletal sites has emerged, as well as the role of vitamin D in type
2 diabetes (T2D) and cardiovascular and autoimmune diseases,
neoplasia, and all-cause mortality (Caprio et al., 2017). Many
data indicate that Vitamin D affects cardiometabolic disease. Its
actions include modulation of endothelial and smooth muscle cell
activity, renin-angiotensin-aldosterone system (RAAS), insulin,
nitric oxide, oxidative stress status, inflammatory response, as
well as aortic valve calcification processes (Kim et al., 2017;
Latic and Erben, 2020; de la Guía-Galipienso et al., 2020). Its
deficiency has been associated with CV risk, a higher risk of
atherosclerosis, HF and CV mortality (Latic and Erben, 2020; de
la Guía-Galipienso et al., 2020).

Moreover, there are some evidence suggesting an association
between vitamin D [25(OH)D, the form by which vitamin
D status is measured in blood] deficiency and autoimmune
thyroid diseases (e.g., Hashimoto’s thyroiditis and Graves’
disease, and/or postpartum thyroiditis), and a relationship
between vitamin D levels and titers of antibodies and thyroid
autoimmunity replacement (Kim, 2017). Experimental results
suggest that vitamin D status could exert a role on thyroid
cancer onset and progression, and that the active form of
vitamin D [1,25(OH)2D3] might be beneficial in thyroid
cancer treatment (Kim, 2017). Interestingly, vitamin D has
been shown to be associated with an increase of Type 2
deiodinase (DIO2) levels and peripheral conversion of THs
(specifically from thyroxine-T4 into triiodothyronine-T3) in
tissue homogenates (from liver, kidney, muscle, femur bone,
heart and brain) of diabetic rats (Alrefaie and Awad, 2015).
Moreover, although all the mechanisms underlying the role
of vitamin D on TH profile are not completely understood,
likely there may be the involvement of vitamin D-related
antioxidants, anti-inflammatory and immunoregulatory effects
(Kim, 2017).

The functional links among THs, vitamin D and the
cardiovascular system, and clinical effects of coexisting
abnormalities in this new troublesome triad, have not yet
been reviewed. The main aim of this review is to discuss
pathophysiology of this triangle, proposing new mechanistic
insights involving vitamin D in the onset and development of
cardiometabolic disease and TH function.

THs AND CV SYSTEM

TH system has a central regulatory role on virtually all
metabolic functions in the human body by interacting with
several cellular pathways, TH facilitate the functional integration

among different organs and systems, in various physiological and
pathological conditions, involving autonomic nervous system,
the renin-angiotensin-aldosterone system, vascular reactivity and
renal function (Razvi et al., 2018). At CV level, TH regulate
homeostasis mainly by influencing cardiac contractility and
systemic vascular resistance. In chronic diseases, at systemic
level, TH promote regenerative and reparative processes to
compensate the systemic stress conditions (Sabatino et al.,
2014). In this perspective, TH play as multiple level regulators
and, thus, have a relevant potential for innovative therapeutic
approaches (Pantos et al., 2007b, 2010). T3 is considered the
biologically active form of TH and mediates almost all TH effects
at tissue level. T3 is generated by 5′-monodeiodination of T4
in peripheral tissues by type I (DIO1) and DIO2 deiodinases.
A third enzyme, called type III 5-monodeiodinase (DIO3) is
responsible of TH catabolism and catalyzes the removal of one
iodine from the inner tyrosilic ring of T4 and its conversion
to the inactive rT3 (reverse-T3) (Bianco and da Conceicao,
2018). THs homeostasis in the heart requires a fine regulation,
involving specific transporters at plasma membranes (such as
the monocarboxylate transporters MCT8 and MCT10) (Friesema
et al., 2008). The finding of monodeiodinases activities in
normal and pathological myocytes unveiled a more complex
TH regulatory dynamic than initially thought, since it suggested
that both hormones (not only the active T3) can be uploaded
inside the cardiac cells by membrane transporters (Sabatino
et al., 2000; Gereben et al., 2008). THs effects at genomic level
are mediated by specific receptors (TRs): TRα (TRα1, TRα2),
TRβ (TRβ1, TRβ2): TH-TR complex specifically interacts with
TH-response elements (TREs) in the promoters of target genes
(Cheng et al., 2010). Differently, the non-genomic action of
TH trigger specific metabolic pathways involving receptors at
plasma membrane level (i.e., integrin ανβ3) or cytosolic TRs
(Pantos and Mourouzis, 2014). Recently, the protective effects
of THs have been investigated in rats where the alteration
of molecular function and biological processes turned out
to be beneficial after MI (Pantos et al., 2007a). THs has
been shown to increase cardiac contractility, stimulate cardiac
hypertrophy and angiogenesis, reduce apoptosis, improve left
ventricular remodeling and function. More specifically, T3
regulates myocardial contraction/relaxation in MI by inducing
the pathological switch of myosin heavy chains (MHC)
from α to β isoform, and controls calcium ions (Ca2+)
flux into the sarcoplasmic reticulum by inducing expression
of sarcoplasmic reticulum calcium adenosine triphosphatase
(SERCA2) and inhibiting phospholamban (PLB), SERCA’s
counteracting molecule (Kinugawa et al., 2001). Interestingly,
the overexpression of TRα1 during the pathological hypertrophy
settlement in MI in rats is strictly associated to this receptor
redistribution from nucleus to cytoplasm, where it plays an
important role in the (MHC) from α to β isoform switch
(Kinugawa et al., 2001).

Besides the effects on the heart, TH genomic and, mainly,
non-genomic effects are also evident on the vasculature,
both in vascular smooth muscle (VSMC) and endothelial
cells (Ojamaa et al., 1996; Sabatino et al., 2015). The
rapidity with which VSMC respond to T3 suggest the
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involvement of main non-genomic mechanisms, since the
genomic would require a longer period for protein synthesis
and for biological effects to be observed (Ojamaa et al.,
1996). It is well known that T3 induces vascular relaxation
via endothelium-dependent pathways. However, more recently,
several studies have demonstrated that T3 may potentiate
vascular relaxation also through endothelium-independent
mechanisms, in which VSMC are a crucial target for T3-mediated
vasodilation (Samuel et al., 2017). More specifically, nitric
oxide (NO) production by VSMC, other than by endothelium,
has been considered the driving factor in local regulation
of vascular response (Lee et al., 2008) mainly via PI3K/Akt
signaling pathway activation (Carrillo-Sepúlveda et al., 2010).
Furthermore, it has been observed that both T4 and T3
administration induce new blood vessel formation via surface
receptor ανβ3-mediated pathway in human microvascular
endothelial cells (Balzan et al., 2013; Liu et al., 2014) and in rat
heart and aorta tissues during ischemic reperfusion procedure
(Sabatino et al., 2016).

VITAMIN D AND CV PATHOPHYSIOLOGY

Vitamin D receptors are present in a variety of cells and
tissues, including cardiomyocytes, VSMC and endothelial cells,
suggesting many extra-skeletal effects of this vitamin, over
the traditional calcium and phosphorus homeostasis (Gouni-
Berthold and Berthold, 2021). Indeed, several data reported
a correlation between vitamin D deficiency and CV disease,
as 25(OH)D levels appeared associated with different CV risk
factors (e.g., blood pressure, obesity, and metabolic syndrome),
incidence of atherosclerosis and heart failure, peripheral arterial
disease, and adverse prognosis and mortality, suggesting that
the indirect association between hypovitaminosis D with the
cardiovascular system is essentially explained through its
association with cardiometabolic risk factors (Vassalle et al.,
2015). In particular, the effects of vitamin D on diabetes include
improvement of insulin sensitivity (e.g., through modulation of
adiponectin gene), increase of insulin gene transcription, insulin
receptor expression, and glucose transport (Maestro et al., 2000;
Lahbib et al., 2015; Lontchi-Yimagou et al., 2020). In humans,
25(OH)D inversely correlates with glycated hemoglobin, and
with prevalence and risk of diabetes (Zhao et al., 2020; Bejar et al.,
2021; Salih et al., 2021).

Over the course of time, it has been estimated that calcitriol
directly or indirectly regulates a myriad of genes, modulating
a number of pathophysiological pathways. Both genomic and
non-genomic actions are mediated by the vitamin D receptor
(VDR), through regulation of transcriptional activity of target
genes or activation of intracellular second messengers (Pike et al.,
2016). Nonetheless, the modulation of gene expression may be
regulated by co-regulatory elements rather than only by VDR
(Pike et al., 2016). Thus, it is difficult to list all possible effects
mediated by vitamin D on the CV system. In fact, many possible
mechanisms may explain effects of vitamin D on CV systems
through effects on endothelium (e.g., vitamin D deficiency causes
reduced eNOS expression and SOD activity), smooth muscle cells

and vascular calcification (e.g., modulating metalloproteinase
expression), RAAS activation, effects on altered inflammatory
pathways (e.g., vitamin D deficiency is associate with increased of
NF-kB and IL-6), insulin secretion and sensitivity (e.g., reducing
inflammation and oxidative stress, and regulates Ca2+ level in
different cellular types as well as adipokines release such as
adiponectin and leptin), parathyroid hormone (PTH) secretion
[1,25(OH)2D regulates its own synthesis decreasing the PTH
synthesis and secretion] (Jablonski et al., 2011; Aoshima et al.,
2012; Szeto et al., 2012; Vassalle and Pérez-López, 2013; Wacker
and Holiack, 2013; Lim et al., 2020; Szymczak-Pajor et al., 2020;
Wee et al., 2021) (Figure 1).

Chronic vitamin D deficiency may predispose to
hypertension, and one mechanism recently identified
characterizing this direct cardiac effects is the modulation
of the function of transient receptor potential C cation channels,
which is a mechanosensitive cation channel that plays a role
in cardiac slow-force responses to hemodynamic changes
(Stratford et al., 2021). Moreover, vitamin D has direct effects
on the atrial electrophysiology and atrial fibrillation, a direct
association with regulation of cardiac autonomic activity,
and a direct role in the regulation of vasomotor inducing
changes of pressor and depressor vasomotor responses (Mann
et al., 2013; Hanafy et al., 2014). Some studies evidenced that
vitamin D deficiency results in structural and ionic channel
remodeling and autonomic dysfunction that may predispose
the individuals to lethal cardiac arrhythmias and sudden
cardiac death (Drechsler et al., 2010; Deo et al., 2011; Mann
et al., 2013). In fact, vitamin D has direct effects on myocytes.
Vitamin D also affects cardiac contractility indirectly by
calcium metabolism and directly via vitamin D receptors-VDR
(Tishkoff et al., 2008).

For it concerns atherosclerosis, vitamin D can act in
several ways. For example, macrophages lacking VDR present
an increase in the uptake of cholesterol and this results in
cholesterol accumulating in the intracellular space, whereas
knockdown of VDR in endothelial cells leads to endothelial
cell activation (upregulation of VCAM-1, ICAM-1 and IL-
6, decreased peripheral blood mononuclear cell-PBMC rolling
velocity and increased PBMC rolling flux and adhesion to the
endothelial line) (Szeto et al., 2012; Bozic et al., 2015).

Interestingly, among direct effects, recent data suggest that
vitamin D maintains endothelial stability in vitro by enforcing
cell-cell interactions (Vila Cuenca et al., 2018).

However, although several studies have demonstrated
beneficial effects of vitamin D supplementation (versus placebo)
on CV clinical manifestation and risk factors, no clear benefit
of vitamin D administration for CV disease has been evidenced
in randomized controlled trials (Latic and Erben, 2020; Michos
et al., 2021).

Surely further work is needed to establish the protective role
of vitamin D in this setting, as controversial results may be
due to interference of possible confounding factors, such as
baseline 25(OH)D levels, dose, duration of supplementation,
season, as well as population characteristics (e.g., number of
subjects enrolled, heterogeneity of patients, time spent outdoors),
which may be considered in result interpretation.
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FIGURE 1 | Main interactions between deficiency of vitamin D and THs on the CV system creating a complex network in a adverse vicious circle. Under the effect of
underlying common mechanisms related to oxidative stress, inflammation, hypocalcemia and immune system worsening, Vitamin D deficiency induces VSMC
proliferation, endothelial dysfunction, facilitates vascular calcification, and promotes insulin resistance, RAAS activation, thrombosis, PLT aggregation, and fibrosis to
the CV system, and increased thyroid volume, TSH and T4/T3 impairment to thyroid, whereas THs deficiency also induces fibrosis, mitochondrial dysfunction,
apoptosis, endothelial dysfunction, reduces chronotropic and inotropic effects, increasing MI size in experimental models, and reducing eNOS expression and
activity, angiogenesis, cellular growth and differentiation, and cardiac remodeling at cardiovascular level. VSMC vascular smooth muscle cells, eNOS endothelial nitric
oxide synthase, RAAS renin–angiotensin–aldosterone system, MI myocardial infarction, TSH thyroid stimulating hormone, T3 triiodothyronine, T4 thyroxine.

VITAMIN D AND THYROID
PATHOPHYSIOLOGY

The finding relative to homology between the vitamin D receptor
(VDR) and the TH receptor dates back to the late 1980s
(McDonnell et al., 1988). Few years later, the VDR expression on
rat follicular thyroid cells was evidenced, suggesting a possible
vitamin D role in thyroid pathophysiology (Berg et al., 1994).
However, until today, most data that evaluated the role of
vitamin D in thyroid illnesses are only in the context of
autoimmunity and cancer (recently reviewed in Kim et al., 2017;
Mele et al., 2020).

Autoimmune Thyroid Disease (AITD)
Hypovitaminosis D appears involved in the pathogenesis of
autoimmune disease, where the most common autoimmune
thyroid diseases are Hashimoto’s thyroiditis (HT) and
Grave’s disease (GD).

Hashimoto’s thyroiditis (HT) is characterized by lymphocytic
infiltration destroying the gland tissue, inflammation, and

release of thyroid antibodies (TPOAb and TgAb), leading
to hypothyroidism.

A meta-analysis [including 6/3 studies with
continuous/dichotomous 25(OH)D levels] showed that HT
patients had lower values compared to controls, and more likely
have 25(OH)D deficiency (Wang et al., 2015). Moreover, data on
the inverse correlation between vitamin D values with thyroid
volume, and duration and severity of HT, and TH and thyroid
antibody levels further reinforcing the idea that vitamin D
deficiency might play a role in the risk, onset and development
of HT (Muscogiuri et al., 2016; Chao et al., 2020).

Interestingly, several polymorphisms in the VDR gene (e.g.,
the most common BsmI, FokI, TaqI, and ApaI) have been
studied in their association with HT risk (O’Grady et al., 2014;
Giovinazzo et al., 2017; Wang et al., 2017). Although the results
are controversial and far from definitive, these data suggested the
genetically determined low vitamin D might be associated with
an increased risk of developing HT.

All together these data suggested the possibility of the use of
vitamin D supplementation against HT. Much still needs to be
done in this context, because available data retain many pitfalls, as
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the study populations are generally small, patients heterogeneous,
there is variability of administration (e.g., dose and timing of
supplementation), and many confounding factors may affect
final results (e.g., age, gender, obesity, lifestyle, baseline vitamin
D status, univocity of categories to define hypovitaminosis,
season) are often neglected. Moreover, if values higher than
30 ng/mL (75 nmol/L) are considered optimal for bone and
mineral homeostasis health, correct levels to lower the risk of
autoimmune disease onset and progression are largely unknown
(Holick et al., 2011). However, to testify to this possibility,
reduction of TPOAb and TgAb levels after cholecalciferol
supplementation was observed in patients with low vitamin D
(Simsek et al., 2016; Krysiak et al., 2018; Wang et al., 2018).

Grave’s disease (GD) is characterized by the presence
of gland infiltration by T lymphocytes, thyroid stimulating
hormone (TSH) receptor autoantibodies (TRAb), goiter, and
ophthalmopathy, and hyperthyroidism.

Two meta-analyses suggested that a low vitamin D status may
increase the risk of GD (Wang et al., 2015; Xu et al., 2015).
Moreover, there is data on the association between low vitamin D
levels and the thyroid autoantibody titre in patients with Graves’
disease as well as the association of polymorphisms in the vitamin
D receptor (VDR) gene in patients with GD (Unal et al., 2014;
Zhang et al., 2015; Veneti et al., 2019; Płazińska et al., 2020).

For it concerns vitamin D supplementation, there are a few
studies in the GD setting. In one study, GD patients treated with
standard therapy combined with calcitriol [methimazole 30 mg/d
supplemented with 1.5 micrograms α(OH)D3 for 24 weeks]
showed a greater decrease in serum FT4 and FT3, although there
were no differences in TRAb levels compared to those taking
only methimazole (Kawakami-Tani et al., 1997). Interestingly,
a recent study suggested that administration of cholecalciferol
(1000–2000 IU/day) in GD patients with hypovitaminosis D, if
not decrease the recurrence rate within one year, determines
an earlier occurrence in the group of GD patients not taking
cholecalciferol (Cho and Chung, 2020).

Thyroid Cancer
Vitamin D seems to play a critical role in thyroid cancer onset and
progression, acting with effects on a number of cellular pathways,
including apoptosis, cellular proliferation and differentiation,
angiogenesis, oxidative stress and inflammatory response (Mele
et al., 2020). However, despite the strong evidence observed
in experimental models, clinical studies give more uncertain
results (Mele et al., 2020). Nonetheless, two recent meta-analyses
evidenced the association between low vitamin D levels and
increased risk for thyroid cancer (Hu et al., 2018; Zhao et al.,
2019). Instead, more unclear are the studies investigating the
role of vitamin D supplementation in preventing thyroid cancer
onset, which remain inconclusive (Zhang et al., 2013; O’Grady
et al., 2014).

Central and Peripheral Effects on
Thyroid Function
Little is known on the relationship between vitamin D to other
thyroid dysfunction or disease.

It has been observed that Vitamin D may affect FRTL-5 cells
(thyroid cell line established from normal thyroid glands in
rats) inhibiting TSH-stimulated adenylyl cyclase activity, iodide
uptake and cell growth (Berg et al., 1994). Moreover, vitamin D3
administration decreased TSH values toward normal in diabetic
rats (52± 13, 70± 19, 57± 19 µIU/ml in control group, diabetic
group and diabetic group treated with vitamin D3, respectively)
(Alrefaie and Awad, 2015). Accordingly, an inverse correlation
between 25(OH)D levels and TSH was observed in general
human populations (Chailurkit et al., 2013; Barchetta et al., 2015).

A central effect of 1,25(OH)2 vitamin D3 has been observed
in the receptor modulation (VDR) of TSH secretion by rat
pituitary thyrotroph cells (Sar et al., 1980; Smith et al., 1989). In
this context, experimental data suggested that vitamin D could
increase TRH-induced TSH secretion by pituitary thyrotroph
cells (D’Emden and Wark, 1987). Despite these effects, it is also
possible that the inverse low TSH in the presence of a high
vitamin D could be due, almost in part, to increased THs caused
by the stimulatory effect of vitamin D on thyrocytes, and the
consequent negative feedback control that the THs exert over
the hypothalamus and anterior pituitary, thus controlling the
release of both thyrotropin releasing hormone (TRH) and TSH
(Dietrich et al., 2012; Veneti et al., 2019).

Interestingly, vitamin D administration improved TH profile
in diabetic rats, increasing DIO2 (Alrefaie and Awad, 2015). This
effect of vitamin treatment was also observed in bone extracts
from mice skeleton, where DIO2 activity appeared increased by
2 to 3-fold, and in primary osteoblastic cells, where 1,25(OH)2D3
dose- and time-dependently induced the mRNA expression of
DIO2 (Miura et al., 2002; Gouveia et al., 2005).

All together these data suggested how vitamin D may be
important, acting at central level for pituitary gland function,
also modulating DIO2 expression at thyroid and other organ
levels and consequently affecting peripheral conversion of T4 into
T3 (Figure 2).

However, if is true that vitamin D may affects thyroid
pathophysiology, this relationship is likely reciprocal, although
less is understood on the influence of THs on vitamin D
metabolism. It is known that excess of THs stimulates
bone resorption, increasing the blood values of calcium
and phosphorus and suppressing PTH secretion whereas in
hypothyroidism the bone turnover is decreased, the serum
calcium concentration tends to be lower, and PTH secretion
activated (Delitala et al., 2020; Hans and Levine, 2021).
Accordingly, some data suggested that THs can affect vitamin
D metabolism and, consequently, modulate the availability
of its active form 1,25-(OH)2D3 (decreased in the serum of
hyperthyroid patients and increased in the serum of untreated
hypothyroid patients), which appeared normalized upon
restoration of normal thyroid function (Bouillon et al., 1980).

VITAMIN D IN THE RELATIONSHIP
BETWEEN THYROID AND CV SYSTEM

In GD patients, a significant reduction of pulse wave velocity
(PWV, index of arterial stiffness, recognized as a CV risk
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FIGURE 2 | Multiple action of vitamin D affecting TH levels. The pituitary gland
secretes TSH that stimulates the thyroid to produce thyroxine (T4) and
triiodothyronine (T3). Moreover T3 may be produced in peripheral organs by
deiodination from circulating T4. Vitamin D fits in the complex mechanisms of
regulation of THs. In fact, vitamin D could increase TRH-induced-TSH
secretion by pituitary thyrotroph cells. However, it is also possible that the
finding of low TSH in the presence of a high vitamin D could be due, almost in
part, to increased THs caused by the stimulatory effect of vitamin D on
thyrocytes, and the activation of the negative feedback control that the THs
exert over the hypothalamus and pituitary gland, thus finely modulating the
release of TRH, TSH, and the TH themselves. TRH Thyrotropin-releasing
hormone, TSH thyroid stimulating hormone, T3 triiodothyronine, T4 thyroxine,
DIO deiodinase.

factor) was observed among vitamin D insufficient participants
after cholecalciferol supplementation (70 µg/day-2800 IU for
9 months; Grove-Laugesen et al., 2019). Other results suggested
a role for hypovitaminosis D through actions on visceral fat and
insulin resistance in the interaction between THs and metabolic
syndrome, with consequently increase of cardiometabolic risk
(Verrusio et al., 2019). Moreover, an interaction between
vitamin D, insulin resistance and thyroid profile dysfunction
was observed in obese subjects, likely driven by systemic
inflammation, where vitamin D deficiency represented the only
independent factor associated with presence of HT in such
patients (Răcătăianu et al., 2018). Another study, conducted in
a general population, suggested that different combinations of
vitamin D and TH status can modulate changes in the lipid profile
(triglycerides and HDL) (Mansorian et al., 2018). Clearly, the
verification and identification of these correlations as causality
relations is required, with the design of interventional or cohort
studies to provide benchmark evidence.

In this context, the case of Low T3 Syndrome (LT3) after
AMI is interesting for its clinical significance (Jabbar et al., 2017).
LT3 syndrome is characterized by an isolated reduction of blood
T3 concentration with normal T4 and TSH levels (Jabbar et al.,
2017). This condition interests about 20% of acute MI patients,

and it is associated with more severe clinical manifestations
(left ventricular dysfunction, large MI, and inflammatory and
stress responses), and adverse prognosis (rate of major cardiac
events and a short- and long-term mortality) (Razvi et al., 2018).
Changes in blood THs after acute MI may be the result of
increased DIO3 activity and reduced DIO1 and DIO2 activities
(Olivares et al., 2007; Van den Berghe, 2014). At present,
the utility of TH therapy in the management of acute MI is
evaluated in early-phase clinical trials for improvement of TH
profile, although also looking after possible important adverse
effects related to supraphysiological doses as adverse effects in
the application of this treatment (Razvi et al., 2018). Thus, in
this context, the possibility to use vitamin D supplementation
(safe and very rarely toxic even at high doses) instead or in
combination with TH treatment in acute MI settings may be
of interest. We evidenced that there is a relationship between
LT3 syndrome and hypovitaminosis D in acute MI patients
(submitted data). In the same population, we observed that
patients with low vitamin D (deficient and insufficient groups)
showed a trend toward higher TSH levels in comparison to
patients who had adequate or optimal levels of vitamin D
(1.8 ± 1.8 versus 1.4 ± 1.0), finding particularly evident in those
with a severe hypovitaminosis D (< 10ng/L), although without
reaching significance values (likely the number of patients
enrolled, n = 120, needs to be increased) (Table 1). Moreover,
patients had higher TSH levels in the Spring-Winter period as
opposed to the Autumn-Summer season, according to previous
data consistently reporting a significant TSH increase in the
colder periods (Table 1; Maes et al., 1997; Das et al., 2018). Higher
TSH levels in colder seasons can be due, almost partially, to TSH
hypersecretion in response to lower ambient temperature, lower
peripheral metabolism and change in diet and physical activity
(Danforth et al., 1979; Shinomiya et al., 2014; Louzada et al.,
2014). However, we also observed an inverse seasonal trend for
25(OH)D and TSH, as previously reported (Table 1; Barchetta
et al., 2015; Das et al., 2018). This fact may suggest that vitamin
D may have a role in the modulation of TSH secretion, similarly
to its regulatory role on other pituitary hormones (e.g., growth
hormone; Esposito et al., 2019).

Notably, patients with a severe hypovitaminosis D
[25(OH)D < 10 ng/L] showed lowest fT3/fT4 levels (a TH
index, which reflect deiodinase activity and conversion of
T4 to T3), suggesting that this category of patients may
require more attention and could benefit more from 25(OH)D
supplementation (Figure 3). This fact is further confirmed
by previous data, showing that stable coronary artery disease
prevalence and severity (multivessel disease) was particularly
higher in patients with severe hypovitaminosis D (<10 ng/ml)

TABLE 1 | TSH values according to 25(OH)D status in the overall population and
in different seasons.

<10 10–30 >30 ng/L

All patients 1.83 ± 1.6 1.78 ± 2.0 1.42 ± 1.0

TSH (mU/L)

mean ± DS Winter-Spring 1.93 ± 1.9 1.92 ± 2.2 1.44 ± 1.1

Summer-Autumn 1.7 ± 1.2 1.3 ± 0.5 1.3 ± 0.7
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FIGURE 3 | Values of fT3/fT4 according to 25(OH)D status in 124 AMI
patients (ANOVA; severe hypovitaminosis D versus normal vitamin D
p ≤ 0.001). Median, interquartile, outliers, and extremes of fT3/fT4 are given.

(Verdoia et al., 2014, 2021; Nardin et al., 2016), where the effects
obtained through restoration of sufficient 25(OH)D levels may
be further evaluated in future studies.

Moreover, we also observed that acute MI patients in the
group of severe hypovitaminosis D are older than the subjects
belonging to the other categories (ANOVA; p < 0.01) and
more frequently present T2D (43%, ANOVA; p < 0.01).
Interestingly, patients in the group of 25(OH)D > 30ng/L
do not present T2D, suggesting a negative predictive
value for T2D in those with sufficient vitamin D status in
this population.

VITAMIN D AND INFECTIOUS AND
OTHER IMMUNE-RELATED DISEASES

A relationship between 25-hydroxyvitamin D hypovitaminosis
and increased risk of developing different immune-related
conditions and infectious diseases has been observed, and
recently reviewed (Charoenngam and Holick, 2020). In particular
low 25(OH)D levels have been associated to psoriasis, type 1
diabetes, multiple sclerosis, rheumatoid arthritis, tuberculosis,
sepsis, respiratory infection, and also COVID-19 (Ponsonby
et al., 2005; Megna et al., 2020; Cristelo et al., 2021; Jaimni et al.,
2021; Wald et al., 2021; Chetty and Chetty, 2021).

From these observations, many attempts have been made
to utilize vitamin D supplementation as a treatment or co-
treatment in addition to traditional immunomodulatory
drugs. Unfortunately, there are not yet shared protocols od
25(OH)D supplementation in the different conditions, also
due to the many variables that take place [e.g., dose, route
of administration, dietary interference, genetic individual
characteristics, and age, body mass index, season and
sunlight exposure, baseline levels of 25(OH)D, patient
typology, and supplementation time, and type of outcome
measurements]. Thus, available data are heterogeneous,

and as such not definitive and sometimes controversial
(Charoenngam and Holick, 2020).

Moreover, for it concerns association between vitamin D and
Sars-CoV-2 infection, emerging data indicate that severe vitamin
D deficiency resulted more common in COVID-19 patients,
playing a significant role in worsening the prognosis of these
patients, suggesting vitamin D supplementation as a possible
prophylactic and therapy in this setting (Grant et al., 2020;
Brito et al., 2021; Campi et al., 2021; Güven and Gültekin,
2021). On this regard, a previous meta-analysis evidenced that
vitamin D supplementation resulted safe and protective against
acute respiratory tract infection, with patients with severely
deficiency experienced the major benefit (Martineau et al., 2017).
For COVID-19 patients, a dosage of 50,000 IU of vitamin D3
twice a week for the first week and the dose of 50,000 IU
for the second and third week was suggested to reach and
maintain levels above 40 ng/ml (Ebadi and Montano-Loza, 2020).
Interestingly, a small cohort observational study evidenced that
combined oral doses of vitamin D (1000 IU), Mg (150 mg),
and vitamin B12 (500 µg) was associated with a significant
reduction in the proportion of COVID patients with clinical
worsening (requiring oxygen support, intensive care support, or
both) (Tan et al., 2020).

Interestingly, seen the adverse repercussions of Sars-CoV-2
infection on the cardiovascular system and thyroid function,
whether the use of supplementation to maintain sufficient
vitamin D levels may alleviate these conditions and their
complications in COVID-19 patients remains to be better
elucidated (Gorini et al., 2020; Kumari et al., 2020; Zhang et al.,
2020; Ansari Ramandi et al., 2021).

CONCLUSION

For many years medicine has been developing into separate,
specialized, almost independent branches. However, much
evidence reveals significant connections between organs,
until now considered as single entities, revealing a complex
intermingled network with a common list of causes, or
contributing factors for “different diseases,” attesting for shared
cellular and molecular mechanisms for their etiology and
progression. So, we must approach a more holistic view to better
understand pathophysiology and improve care of our patients.
Certainly, a lot of aspects are not clear. Currently, there is not
enough strong evidence to support screening for vitamin D
deficiency or vitamin D supplementation in thyroid profile
and CV disease setting with the purpose of risk reduction, or
improvement of these conditions. Several factors will be still
considered in future studies, such as seasonal adjustment of
vitamin D levels, and variable populations and definite reference
25(OH)D values for deficiency in extra-skeletal conditions, such
as CV disease. Moreover, most studies are based on a single
measurement of serum vitamin D levels, which may not be
the best indicator of 25(OH)D over time. Nonetheless, even
considering the deepening of these aspects, available evidence
suggested a role of vitamin D in the relationship between THs
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and cardiometabolic disease, providing vitamin D as a potential
additional, effective, low-cost, easily available and safe tool to
be evaluate in the clinical practice for multi-organ and multi-
disease benefits.

METHODS

We have performed a search for articles in PubMed to
identify pertinent literature, till 13 August 2021, with the
following primary keywords: “COVID-19,” “Sars-CoV-2,”

“vitamin D,” “25(OH)D,” “thyroid,” “cardiovascular disease,”
“supplementation,” “thyroid hormones,” with interposition of
the Boolean operator “AND.”
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Răcătăianu, N., Leach, N. V., Bolboacă, S. D., Cozma, A., Dronca, E., Valea, A.,
et al. (2018). Vitamin D deficiency, insulin resistance and thyroid dysfunction
in obese patients: is inflammation the common link? Scand. J. Clin. Lab. Invest.
78, 560–565. doi: 10.1080/00365513.2018.1517420

Razvi, S., Jabbar, A., Pingitore, A., Danzi, S., Biondi, B., Klein, I., et al. (2018).
Thyroid Hormones and Cardiovascular Function and Diseases. J. Am. Coll.
Cardiol. 71, 1781–1796.

Sabatino, L., Iervasi, G., Ferrazzi, P., Francesconi, D., and Chopra, I. J.
(2000). A study of iodothyronine 5′-monodeiodinase activities in normal and
pathological tissues in man and their comparison with activities in rat tissues.
Life. Sci. 68, 191–202. doi: 10.1016/S0024-3205(00)00929-2

Sabatino, L., Iervasi, G., and Pingitore, A. (2014). Thyroid hormone and heart
failure: from myocardial protection to systemic regulation. Expert. Rev.
Cardiovasc. Ther. 12, 1227–1236. doi: 10.1586/14779072.2014.957674

Sabatino, L., Kusmic, C., Nicolini, G., Amato, R., Casini, G., Iervasi, G., et al. (2016).
T3 enhances Ang2 in rat aorta in myocardial I/R: comparison with left ventricle.
J. Mol. Endocrinol. 57, 139–149. doi: 10.1530/JME-16-0118

Sabatino, L., Lubrano, V., Balzan, S., Kusmic, C., Del Turco, S., and Iervasi, G.
(2015). Thyroid hormone deiodinases D1, D2, and D3 are expressed in human
endothelial dermal microvascular line: effects of thyroid hormones. Mol. Cell.
Biochem. 399, 87–94. doi: 10.1007/s11010-014-2235-8

Salih, Y. A., Rasool, M. T., Ahmed, I. H., and Mohammed, A. A. (2021). Impact of
vitamin D level on glycemic control in diabetes mellitus type 2 in Duhok. Ann.
Med. Surg. 64:102208. doi: 10.1016/j.amsu.2021.102208

Samuel, S., Zhang, K., Tang, Y. D., Gerdes, A. M., and Carrillo-Sepulveda, M. A.
(2017). Triiodothyronine Potentiates Vasorelaxation via PKG/VASP Signaling
in Vascular Smooth Muscle Cells. Cell. Physiol. Biochem. 41, 1894–1904. doi:
10.1159/000471938

Sar, M., Stumpf, W. E., and DeLuca, H. F. (1980). Thyrotropes in the pituitary are
target cells for 1,25 dihydroxy vitamin D3. Cell. Tissue Res. 209, 161–166.

Shinomiya, A., Shinmura, T., Nishiwaki-Ohkawa, T., and Yoshimura, T. (2014).
Regulation of seasonal reproduction by hypothalamic activation of thyroid
hormone. Front. Endocrinol. 5:12.

Simsek, Y., Cakır, I., Yetmis, M., Dizdar, O. S., Baspinar, O., and Gokay, F. (2016).
Effects of Vitamin D treatment on thyroid autoimmunity. J. Res. Med. Sci. 21:85.
doi: 10.4103/1735-1995.192501

Smith, M. A., McHenry, C., Oslapas, R., Hofmann, C., Hessel, P., and
Paloyan, E. (1989). Altered TSH levels associated with increased serum 1,25-
dihydroxyvitamin D3: a possible link between thyroid and parathyroid disease.
Surgery 106, 987–991.

Stratford, K., Haykal-Coates, N., Thompson, L., Farraj, A., and Hazari, M. (2021).
Early-life persistent vitamin D deficiency-induced cardiovascular dysfunction
in mice is mediated by transient receptor potential C channels. J. Steroid.
Biochem. Mol. Biol. 206:105804. doi: 10.1016/j.jsbmb.2020.105804

Szeto, F. L., Reardon, C. A., Yoon, D., Wang, Y., Wong, K. E., Chen, Y., et al. (2012).
Vitamin D receptor signaling inhibits atherosclerosis in mice. Mol. Endocrinol.
26, 1091–1101. doi: 10.1210/me.2011-1329

Szymczak-Pajor, I., Drzewoski, J., and Śliwińska, A. (2020). The Molecular
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