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A B S T R A C T   

Despite advancement in therapeutic options, Non-Small Cell lung cancer (NSCLC) remains a lethal disease mostly 
due to late diagnosis at metastatic phase and drug resistance. Bone is one of the more frequent sites for NSCLC 
metastatization. 

A defined subset of cancer stem cells (CSCs) that possess motile properties, mesenchymal features and tumor 
initiation potential are defined as metastasis initiating cells (MICs). A better understanding of the mechanisms 
supporting MIC dissemination and interaction with bone microenvironment is fundamental to design novel 
rational therapeutic option for long lasting efficient treatment of NSCLC. 

In this review we will summarize findings about bone metastatic process initiated by NSCLC MICs. We will 
review how MICs can reach bone and interact with its microenvironment that supports their extravasation, 
seeding, dormancy/proliferation. The role of different cell types inside the bone metastatic niche, such as 
endothelial cells, bone cells, hematopoietic stem cells and immune cells will be discussed in regards of their 
impact in dictating the success of metastasis establishment by MICs. 

Finally, novel therapeutic options to target NSCLC MIC-induced bone metastases, increasing the survival of 
patients, will be presented.   

1. Introduction 

Lung cancer is often diagnosed when it is locally advanced or met-
astatic (Miller et al. 2019), and bone is a common metastatic site with 
about 30–40 % of advanced NSCLC patients developing bone metastases 
(Kuchuk et al., 2013; Riihimaki et al., 2014; D'Oronzo et al., 2019; Roato 
et al., 2008), which decrease the quality of life, since they are associated 
to skeletal related events (SREs). Indeed SRE, such as fractures, pain, 
bone marrow compression may occur in 30–60 % of bone metastatic 
patients and reduce survival (Kuchuk et al., 2013). In the bone micro-
environment different populations of stem and mature cells live, inter-
acting to regulate haematopoiesis, bone remodeling and immune cell 
activity. Bone metastases disrupt the equilibrium of bone microenvi-
ronment, that is endowed of some properties favoring homing and 
growth of tumor cells (Croucher et al., 2016). Osteolytic lesions are 
associated to activation of osteoclast (OC) activity and suppression of 
osteoblast (OB) one, neoangiogenesis and activation of immunosup-
pressive subsets of immune cells (Coleman et al., 2020a). 

It is even more evident that bone metastatization can start early in 
the history of tumor, since disseminated tumor cells (DTCs), enriched for 

a subset of cancer stem cells (CSCs) responsible for metastasis initiation 
have been detected in bone marrow of patients long before the diagnosis 
of metastases (Mohme et al., 2017). CSCs contribute mainly to the 
heterogeneity of cancer and are endowed with different characteristics 
that account for primary tumor maintenance, aggressiveness, drug 
resistance, metastasis and tumor-immune-microenvironment remodel-
ing (Su et al., 2020; Visvader and Lindeman, 2012). In NSCLC, a subset 
of CSCs, constituted by metastasis initiating cells (MICs), have been 
demonstrated able to promote bone metastasis initiation (Bertolini et al., 
2015). 

In recent years, immune checkpoint inhibitor (ICI) therapy 
completely changed the strategy of treatment of advanced NSCLC, 
which express programmed death-ligand 1 (PD-1 L) (Doroshow et al., 
2019; Pasello et al., 2020), thus some data on the effect of ICI treatment 
on bone metastasis formation are emerging. 

In this review, we will analyze the recent advancements in the 
knowledge of the different steps involved in the bone metastatic process 
initiated by NSCLC MICs. Finally, the results deriving from experimental 
and clinical studies on the effectiveness of anti-resorbing drugs and ICI 
in the treatment of bone metastases will be discussed. 
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2. NSCLC CSCs generation 

CSCs are comprised of heterogeneous and specialized cell subsets 
deputed to primary tumor maintenance, drug resistance, tumor escape/ 
metastasis formation (Leon et al., 2016; Bocci et al., 2019). Indeed, CSCs 
are functionally defined as self-renewing cells responsible for tumor 
initiation and generation of differentiated tumor cells, comprising the 
bulk of the tumors (Visvader and Lindeman, 2008; Walcher et al., 2020). 

The first evidence for the existence of a subset of CSCs in primary 
NSCLC was provided by Eramo et al.: the authors demonstrated that 
primary lung cancer cells expressing the surface marker CD133 were 
able to form tumor spheres in culture, that could be transplanted in 
immunocompromised mice (Eramo et al., 2008). Bertolini et al. 
demonstrated that CD133+ cells, sorted from NSCLC primary tumors 
and patient derived xenograft (PDX) models, possess the highest ability 
to initiate tumor when injected in mice and can maintain their tumori-
genic ability during in vivo serial transplantation assay. CD133+ cells- 
derived tumors resemble the phenotype of original tumor, indicating 
the ability of CD133+ CSCs to reform the heterogeneity of bulk tumor 
(Bertolini et al., 2009). 

The process of Epithelial to Mesenchymal transition (EMT) can 
provide tumor cells with stemness feature and migrating abilities 
necessary for successful establish metastases (Polyak and Weinberg, 
2009). First evidence for the existence of MICs was reported in 
pancreatic adenocarcinoma, where the subset of CSCs expressing CD133 

and the chemokine receptor CXCR4 determines the metastatic pheno-
type of the individual tumor cells (Hermann et al., 2007). In NSCLC, 
subset of CD133+CXCR4+ cells were also demonstrated to represent 
MICs, since they are endowed with both tumor initiation properties, 
mesenchymal and migration properties (Bertolini et al., 2015). By 
exploiting an original model of bone metastasis assay, generated by 
implanting a vital human bone fragment in the flanks of immunocom-
promised mice, the authors demonstrated the high bone tropism and 
metastasis formation ability of CD133+CXCR4+ MICs, sorted from 
NSCLC PDX models. Finally, the presence of CD133+CXCR4+ MICs 
within primary NSCLC was correlated with tumor relapse and poor pa-
tients' outcome (Bertolini et al., 2015). 

Notably the subset of CD133+CXCR4+ MICs are preferentially 
modulated by microenvironmental stimuli that can trigger their 
expansion or de novo generation through the induction of EMT (Bertolini 
et al., 2015; Andriani et al., 2016). In particular, cancer associated fi-
broblasts (CAF) were demonstrated to play a pivotal role in modulation 
of CSC phenotype, through the release of factors such as tumor growth 
factor β (TGFβ), insulin growth factor II (IGF-II) and stromal-derived 
factor-1 (SDF-1) that can expand the subset of CSCs, also through the 
induction of EMT, and prime their metastatic dissemination toward 
distant site (Andriani et al., 2016; Chen et al., 2014), Fig. 1. 

NSCLC MICs can also be spared by conventional chemotherapy and 
can be responsible for tumor recurrence and metastatic progression after 
therapy (Bertolini et al., 2009; Eramo et al., 2008; Levina et al., 2008). A 

Fig. 1. The crosstalk between primary tumor and bone is mediated by CSCs, and particularly by their subset named MICs. Chemotherapy directly influences the 
tumor microenvironment promoting inflammatory monocytes (iMo) and cancer-associated fibroblasts (CAFs), all stimulating the formation of CD133+ CSCs and 
their subset of metastasis initiating cells (MICs), through the induction of epithelial-mesenchymal transition (EMT) and the release of factors such as SDF-1, TGF-β 
and IGF-II. Once reached the microvasculature of bone, MICs can find a favorable soil to live. Dormancy can be soon stimulated by the production of trombospondin- 
1 (TSP-1) by endothelial cells of the sinusoids. Moreover, MICs can compete with hematopoietic stem cells (HSCs) for the lodgment in the bone marrow niche, which 
is also constituted by osteoblasts (OBs), stromal cells and mesenchymal stem cells (MSCs), all contributing to the dormant state of MICs, through the production of 
many molecules, such as SDF-1, Anxa2, TGF-β2, BMP-7, GAS-6. If MICs receive stimuli promoting mesenchymal-epithelial transition (MET), they start to proliferate 
producing factors able to activate osteoclasts (OCs), such as RANKL, VEGF, CSF-1, IGF-II. OCs resorb bone causing the release of factors by the bone matrix, IGF, 
PDGF, FGF, H +, Ca2+, which stimulates tumor cells, thus contributing to the establishment of the typical bone metastatic vicious cycle. 
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recent study demonstrated that cisplatin treatment of NSCLC pre-clinical 
models induces an increased release of both stromal and tumor SDF-1, 
resulting in the recruitment of both CXCR4+ inflammatory monocytes 
(IM), with pro-tumorigenic activities and MICs, Fig. 1. The crosstalk of 
IM and MICs at distant site determines massive increase of metastasis 
formation, that can be prevented by the combination with a CXCR4 
inhibitor (Bertolini et al., 2021). 

3. Factors regulating osteotropism 

For years, cancer dissemination has been thought to be a late process 
in tumorigenesis, but now it is known that it can be an early and highly 
inefficient process by which tumor cells can enter vasculature, travel in 
circulation as circulating cancer cells (CTCs), extravasate and colonize 
distant sites. Indeed, also early-stage tumor can release several CTCs in 
circulation, that become DTCs once landed to specific organs in which 
they can find right condition for survival (Braun et al., 2005; Massague 
and Obenauf, 2016). To survive in a distant site, DTCs must activate 
mechanisms of immune escape and create a supportive niche, where 
they grow and then give origin to an overt metastasis (Chambers et al., 
2002). Thus, osteotropism is regulated by different biological and mo-
lecular processes, which are activated by DTCs, according to their sur-
vival needs and allowing them to end with bone metastasis formation 
(Table 1). Below we will discuss some of the bone metastatic steps taken 
by CSCs in general, with a particular focus on NSCLC MICs. 

3.1. Chemokine gradient promotes homing to bone 

The chemokine receptor CXCR4 has been demonstrated to regulate 
several processes of tumor cells and in particular CSCs, by activating 
different pathways that can promote cell survival, proliferation, cancer 
cells dissemination and drug resistance (Wang et al., 2016). 

The chemokine SDF-1 (also known as CXCL12) is the ligand of 
CXCR4 and it is expressed in the most common sites of metastasis such as 
lymph nodes, lungs, liver, and bone marrow. CXCR4/SDF-1 axis acts as 
driver of cancer cells from different tumors to their transfer in the 
bloodstream, and then to extravasate in secondary organs, such as bone, 
interacting with the bone marrow stromal components (Coniglio, 2018; 
Morein et al., 2020; Chatterjee et al., 2014). NSCLC stem cells, which 
highly express CXCR4, are attracted into the bone marrow, leading to 
bone metastatic process initiation (Bertolini et al., 2015; Phillips et al., 
2003), Fig. 1. Moreover, the analysis of CXCR4 in primary tumors 
demonstrated that metastatic NSCLC show a higher expression of CXCR4 
than non-metastatic NSCLC (Su et al., 2005; Zhou et al., 2015). 

CXCR7 is a G-protein-coupled receptors, that can act both as 
signaling or non-signaling scavenger/decoy receptor for SDF-1 (Wang 

et al., 2018). CSCs of several tumor types exploit CXCR4/CXCR7 re-
ceptors for migration, dissemination and colonization of SDF-1 rich or-
gans (Lopez-Gil et al., 2021). Several molecules targeting CXCR4/ 
CXCR7/CXCL12 axis have been tested to impair cancer dissemination 
and to sensitize CSC to chemotherapy/immunotherapy (Duda et al., 
2011; Daniel et al., 2020). 

CXCR4/SDF-1 axis is known for hematopoietic stem cell (HSC) 
homing (Sharma et al., 2011) and it is also involved in bone healing after 
fractures (Yellowley, 2013), indeed SDF-1 has an important role in 
mesenchymal stem cell (MSC) migration at fracture site (Dar et al., 
2006; Kitaori et al., 2009). Moreover, SDF-1 directly enhances osteo-
clastogenesis and regulates OC function (Okada et al., 2016; Hatano 
et al., 2018). Recently, it has also been showed that CXCR7 agonist in-
hibits the enhancement of SDF-1-induced osteoclastogenesis (Nugraha 
et al., 2022). Thus, the relevance in targeting SDF-1 pathway is due to its 
double effect, both of CSCs and OCs, resulting in the block of bone 
metastases. 

3.2. The dense network of capillaries in the cancellous bone 

In the bone marrow, endothelial cells are organized in fenestrated 
sinusoids, which allow for extravasation of CTCs, that find oxygen and 
nutrients in abundance, promoting bone marrow colonization. The 
cross-talk between bone and endothelial cells is commonly active during 
bone modeling, where angiogenesis and osteogenesis are coupled in an 
hypoxic microenvironment (Ramasamy et al., 2016; Grosso et al., 2017; 
Wang et al., 2007; Hulley et al., 2017). Endothelial cells stimulate 
osteogenic pathways for bone repair, and osteogenic precursors release 
angiogenic factors, such as vascular endothelial growth factor (VEGF) 
(Stucker et al., 2020). In tumors, hypoxia increases angiogenesis by 
stimulating the expression of VEGF and its receptors, angiopoietin, basal 
fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF), 
stem cell factor (SCF), osteopontin (OPN), and matrix metal-
loproteinases (MMPs) (Krock et al., 2011). In bone marrow, VEGF can 
promote OB differentiation and activity, but also osteoclastogenesis, 
fueling the cancer-bone vicious cycle (Hu and Olsen, 2016; Kitagawa 
et al., 2005; Yang et al., 2008), Fig. 1. In particular, the perivascular 
niche that comprises endothelial cells, pericytes and BMSCs cells 
contribute to maintain metastatic CSCs in dormant state in breast cancer 
(Kusumbe, 2016; Ghajar et al., 2013). Moreover, it has been reported 
that endothelial cells can transdifferentiate into OB-like cells in prostate 
cancer, inducing bone metastasis (Lin et al., 2017). Such transition from 
endothelial cells to OBs is induced by tumor itself to promote its pro-
gression and it is part of the tumor-induced stromal reprogramming, 
which is one of the strategies engaged by tumor to modify the micro-
environment (Yu et al., 2021). 

3.3. The role of hypoxia on bone tumor progression 

Hypoxia-inducible factor-1α (HIF-1α) is a mediator of the metastatic 
organotropism from the tumor cells, indeed it is highly expressed in 
metastases. Bone is a hypoxic tissue, and it is known that hypoxia reg-
ulates bone remodeling through the stabilization of HIF transcription 
factors. Furthermore, hypoxia contributes to the coupling between 
angiogenesis and osteogenesis (Wang et al., 2007), and control bone cell 
activity (Hulley et al., 2017; Bentovim et al., 2012). Hypoxia induces 
OBs and cancer cells to release RANKL, VEGF, colony stimulating factor 
(CSF-1), IGF-II, which stimulates OCs (Knowles, 2015). In the bone 
microenvironment, hypoxia regulates some immunosuppressive subset 
of immune cells, inducing the up-regulation of immune checkpoint in 
myeloid derived suppressor cells (MDSCs), that promote T cell exhaus-
tion, thus contributing to the formation of the immunosuppressive 
environment (Doedens et al., 2010). This aspect will be treated in detail 
in a following chapter. 

Hypoxia regulates OCT4, SOX2 and NANOG, the master genes of 
stemness (Mimeault and Batra, 2013; Abou Khouzam et al., 2020; Najafi 

Table 1 
Factors regulating osteotropism.  

Survival strategies 
in bone 

NSCLC DTC features References 

Chemokine 
gradient 

Expression of CXCR4/CXCR7 
receptors 

Bertolini et al., 2015;  
Coniglio et al., 2018;  
Morein et al., 2020 Migration to bone producing 

SDF-1 
Plasticity EMT confer stemness features 

and capability to migrate 
Bertolini et al., 2009;  
Mani et al., 2008 

Dormancy Quiescent state confers 
chemotherapy-resistance and 
immune system escape 

Esposito and Kang, 
2014; Endo and Inoue, 
2019; Phan and 
Croucher, 2020 

Neoangiogenesis, 
hypoxia 

VEGF production regulates OCs 
and OBs HIF-1α is highly 
expressed by NSCLC CSCs 

Hu and Olsen, 2016;  
Pezzuto et al., 2019 

Immune evasion Creation of an 
immunosuppressive 
microenvironment 

Abou Khouzam et al., 
2020; Fortunato et al., 
2020; Bertolini et al., 
2022  
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et al., 2020), and HIF-1α promotes EMT of cancer cells, leading to the 
maintenance and the dormancy of CSCs (Tam et al., 2020). In breast 
cancer, HIF-1α increases circulating levels of SDF-1, thus activating the 
CXCR4 signaling, which is associated to the dissemination of cancer cells 
(Devignes et al., 2018). In NSCLC cells, HIF-1α has been shown to pro-
mote the stemness of cancer cells through the regulation of several 
pathways, including PI3K/Akt/mTOR (Gong et al., 2018). Moreover, the 
expression of HIF-1α is high in NSCLC, it correlates with bone metas-
tases, and it is predictive of poor prognosis (Pezzuto et al., 2019). More 
recently, it has been shown that hypoxia can enhance NSCLC stem cells 
by up-regulating stemness, drug resistance, cell proliferation, migration 
and invasion through the endothelial cell-specific molecule-1 (ESM1), 
which is often overexpressed in different tumors (Gu et al., 2021). 
Furthermore, HIF-1α induces up-regulation of Tie1 (Tyrosine kinase 
with immunoglobulin and epidermal growth factor homology domains) 
expression, and it promotes cisplatin resistance through the stimulation 
of CSCs in NSCLC (Li et al., 2021). 

3.4. Dormancy or overt metastatic growth in bone marrow 

DTCs in bone marrow are less differentiated compared to the primary 
tumor cells (Coleman et al., 2020a) and are enriched for the subset of 
MICs, with mesenchymal traits and the capability to initiate metastasis 
(Yu-Lee et al., 2018). DTCs can establish a supportive niche, where they 
can lay in a dormant state or activate in overt metastasis because of 
different factors (Phan and Croucher, 2020), Fig. 1. The status of 
dormant cells allows them to be resistant at the conventional radio- 
chemotherapy since they are not proliferating, and contemporary to 
interact with the bone microenvironment and immune system, inducing 
a tumor supportive environment and an immunosuppressive (Endo and 
Inoue, 2019; Jahanban-Esfahlan et al., 2019). 

Bone is an attractive site for DTCs, since they can compete with hosts 
HSCs for the lodgement in the niches (Calvi et al., 2003). Indeed, the 
same strategies adopted by HSCs to maintain their dormant phenotype 
and ability to switch in a proliferative status may also be adapted by 
DTCs (Esposito and Kang, 2014). Osteoblasts (OBs), which are a 
component of HSC niche, express SDF-1 and annexin-II (Anxa2), that 
attract both HSCs and cancer cells expressing their receptors, CXCR4 and 
Anxa2r, respectively (Shiozawa et al., 2008). HSC niches express 
adhesion molecules and secrete factors able to induce dormancy of 
DTCs, which can remain in a quiescent state in the bone marrow of 
cancer patients for years (Shiozawa et al., 2010). MSCs represent the 
other population of normal stem cell present in the bone marrow. They 
regulate HSCs, which in turn are mainly responsible for maintaining 
pluripotency of MSCs. MSCs interact also with DTCs inducing their 
doemant phenotype through (i) a direct intercellular communication 
mediated by miRNA and exosomes, able to block the G0/G1 transition 
(Bliss et al., 2016); (ii) the secretion of growth-suppressive factors, such 
as TGF-β2, bone morphogenetic protein 7 (BMP7), growth arrest specific 
6 (GAS6) and leukemia inhibitory factor (LIF) (Eltoukhy et al., 2018). In 
bone marrow, the presence of a stable vasculature, for example char-
acterized by the expression of thrombospondin-1 (TSP-1), is associated 
to dormancy (Ghajar et al., 2013). Conversely, a sprouting neo- 
vasculature, with endothelial cells producing tenascin C, fibronectin, 
periostin and collagen I accelerates the outgrowth of DTCs (Oskarsson 
et al., 2014). 

Alterations of the acidic and hypoxic conditions, as well as the high 
extracellular calcium concentration are associated to an increased OC 
activation, with a consequent release of many growth factors, contained 
in the bone matrix such as IGF, platelet-derived growth factor (PDGF), 
fibroblast growth factors (FGFs) and calcium (Ca2+), which promote 
cancer cell growth (Lou et al., 2011), Fig. 1. 

Also, genetic and epigenetic mutations influence the capability of 
DTCs to form bone metastases, which is highly variable, reflecting the 
different rate of genomic alterations (Celia-Terrassa and Kang, 2018). 

The immune system is involved in the control of dormancy state of 

DTCs, and the topic deserves a whole discussion, which is out of this 
revision, thus we suggest an interesting review outlining the mechanism 
of immune cells in regulating dormancy (Jiang et al., 2021). 

4. Bone immune microenvironment 

4.1. The immunosuppressive subsets of cells affect bone cells 

Bone homeostasis is regulated by the activity of bone-resorbing OCs 
and bone-forming OBs. DTCs and immune cells interfere with the co-
ordinated activity of OC and OBs, providing a favorable soil for bone 
metastases. DTCs, enriched in CSCs localize in the bone marrow, escape 
the immune system control, because this is an “immunocompromised 
area”. Indeed, bone is endowed of a peculiar immune microenviron-
ment, which is less immunoreactive than other organs, due to the 
presence of the HSC niches, which need protection (Abou Khouzam 
et al., 2020). Bone marrow is characterized by many immunosuppres-
sive cells, such as MDSCs, regulatory T cells (Tregs), and tumor- 
associated macrophages (TAMs), which weaken the activity of cyto-
toxic lymphocytes involved in tumor immunosurveillance (Baschuk 
et al., 2015; Almand et al., 2001) and interact with bone cells. 

MDSCs promote cancer progression in pleiotropic ways, such as by 
shaping tumor microenvironment and metastatic niches, by activating 
immunosuppressive mechanisms and inflammation (Wang et al., 2019). 
The infiltration of MDSCs within NSCLC tissues has been detected in a 
patient-derived xenograft model, and it was correlated with cancer 
progression and a poor patient's prognosis. These MDSCs directly pro-
mote metastasis through the EMT process, since they express CCL11, 
that activate Akt and Erk signaling pathway, promoting NSCLC metas-
tasis (Lin et al., 2021). In pre-clinical model of NSCLC, a population of 
MDSCs, identified by CCR2/CXCR4 expression, was able to help 
CD133+CXCR4+ MIC extravasation at the metastatic site and to induce 
their expansion through the release of SDF-1 (Bertolini et al., 2021). In 
NSCLC, a higher frequency of a MDSC subset was associated with 
reduced recurrence-free survival (Zhang et al., 2015). Moreover, the 
increase of circulating MDSCs in NSCLC patients' peripheral blood is 
associated with a reduced overall survival (OS). Indeed, patients treated 
with anti-PD-1 immunotherapy showed reduced circulating MDSCs, a 
longer progression free survival (PFS) and OS (Koh et al., 2020). 

Particularly relevant it is also the fact that MDSCs can differentiate 
into OCs, contributing to bone metastatic osteolysis in a mice model of 
bone metastatic breast cancer (Danilin et al., 2012). The accumulation 
and activity of MDSCs in bone microenvironment is also regulated by 
dickkopf-1 (DKK-1) Wnt signaling pathway inhibitor, indeed its 
neutralization reduced the number of MDSCs and the tumor growth 
(D'Amico et al., 2016). It has been shown that DKK-1 was expressed in 
tumor preferentially metastasizing to bone, where it down regulates OB 
activity, leading to increase bone resorption by OCs (Zhuang et al., 
2017). Furthermore, DKK-1 promotes vasculogenic mimicry, by 
inducing EMT and CSCs in NSCLC (Yao et al., 2016). Thus, therapeutic 
strategy based on DKK-1 inhibition can exert a double effect hindering 
MDSC activity and controlling bone metastases. 

In bone marrow, CD4+CD25+ Tregs traffic through CXCL12/CXCR4 
signaling pathway (Zou et al., 2004). Treg cells inhibit osteoclasto-
genesis due to IL-4 and IL-10, which are dependent on CTLA4 (Kim et al., 
2007), an immune checkpoint, currently associated with immuno-
therapy. CTLA4 can also bind to CD80/CD86 on OC precursors, pro-
moting OC apoptosis (Zaiss et al., 2007), and preventing bone resorption 
(Zaiss et al., 2010). Conditioned medium from NSCLC MICs has been 
demonstrated able to promote Tregs, indeed targeting MICs with an anti- 
CXCR4 treatment prevented the stimulation of Tregs (Fortunato et al., 
2020). 

TAM promote the growth of bone metastases as shown in experi-
mental model of OCs and macrophages depletion (Pollard, 2004). In in 
vitro experiments, Fortunato et al. showed that conditioned medium 
from NSCLC MICs induced TAM polarization of macrophages toward M2 
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phenotype, with the up-regulation of the immunosuppressive IL-10 and 
VEGF, and the decrease of the inflammatory cytokines IL-12 and IL-6. 
These data confirmed the immunosuppressive behavior of MICs, 
which also show a high expression of PD-L1 and CD38, CD73 enzymes 
able to catabolize the production of adenosine as well as high release of 
the immunosuppressive IL-10 (Fortunato et al., 2020). The level of 
extracellular adenosine in the bone microenvironment has been shown 
to be important for bone homeostasis (Sauer et al., 2009). Human OB 
precursors produce extracellular adenosine, which modulates the 
secretion of interleukin 6 (IL-6) and OPG, contributing to the regulation 
of bone resorption and formation (Evans et al., 2006). We recently 
demonstrated that NSCLC CSCs modulate the levels of adenosine in the 
presence of bone cells, such as OCs and OBs. Particularly, the increase of 
adenosine induced by NSCLC CSCs, lowers pH in the microenvironment, 
and activate OCs in an in vitro co-culture of OCs and CSCs (Bertolini 
et al., 2022). Therefore, the immunosuppressive ability of CSCs could 
generate at the bone metastatic site a proficient microenvironment for 
their seeding and colonization. 

4.2. Bone cells affect immune cells 

Besides being important components of the HSC niche, OBs promotes 
HSC proliferation through PTH receptor stimulation (Calvi et al., 2003) 
and support all differentiation stages of B cells (Zhu et al., 2007). OB 
conditional ablation in mice resulted in lack of B cell differentiation. 
Indeed, OBs release interleukin-7 (IL-7) and SDF-1, that are fundamental 
for survival and activity of B cells (Miller et al., 2002; Egawa et al., 
2001). 

OCs mobilize HSCs, by releasing cathepsin K, that degrades matrix in 
the areas of bone remodeling, inducing the release of SDF-1, stem cell 
factor (SCF), and osteopontin (OPN), which deprive the bone niche of 
HSC-binding sites (Kollet et al., 2006). In mice, where OC activity was 
suppressed, MSCs increased, but they were unable to differentiate into 
OBs, thus HSC homing to bone and HSC niches were impaired (Mansour 
et al., 2012). These mice also showed an impaired B cell maturation and 
T-cell activation (Blin-Wakkach et al., 2004). Mice knockout for RANK 
ligand (RANKL) had osteopetrosis due to the absence of OCs, but also 
showed the impairment of B and T lymphocytes development and lack of 
lymph node organogenesis (Yasuda et al., 1998; Dougall et al., 1999). 
OCs express immunosuppressive cytokines, such as IL-10 and metabolic 
enzymes as indoleamine 2,3-dioxygenase 1 (IDO1), which limits T cell 
activity (Li et al., 2010; Li et al., 2014; Kiesel et al., 2009). 

Osteocytes release Receptor Activator of NFkB Ligand (RANKL), that 
supports OCs and lymphopoiesis. The absence of osteocytes leads to loss 
of lymphoid-supporting stroma in bone marrow and in thymus, resulting 
in a severe lymphopenia, which is reverted whether osteocytes are re- 
established (Sato et al., 2013). In a mice model of estrogen deficiency, 
RANKL released by osteocytes is responsible for the increase in B cells 
and bone loss (Fujiwara et al., 2016). 

5. RANK/RANKL axis as target to block NSCLC CSCs 

RANKL is crucial for OC formation, function, and survival (Boyle WJ, 
Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature 
2003). RANK is expressed in each lung cancer histotype, particularly 
Rao et al. showed that 72 % of lung adenocarcinomas were positive for 
RANK (Rao et al., 2017), according to the previously published data, 
deriving from samples of primarily early stage treatment-naive resected 
NSCLCs (Botling et al., 2013). Moreover, the RANK/RANKL/OPG sys-
tem is highly associated with tumor invasiveness and metastasis, indeed 
pre-clinical models of bone metastases demonstrated that RANKL inhi-
bition was able to prevent tumor-associated bone metastases (Miller 
et al., 2014; Feeley et al., 2006; Tannehill-Gregg et al., 2006). Ran-
domized clinical trials showed that the monoclonal antibody denosu-
mab, which binds to RANKL, blocking the RANK/RANKL binding 
reduced the SREs and improved overall survival (OS) when compared 

with zoledronic acid (ZA) in patients with lung cancer (Henry et al., 
2011). Subsequently Scagliotti et al. showed that treatment with deno-
sumab significantly prolonged survival, in patients with bone metastases 
by NSCLC adenocarcinomas and squamous tumors (Scagliotti et al., 
2012). Notably, a case report showed the regression of an ALK-mutated 
primary lung adenocarcinoma upon treatment with denosumab, sug-
gesting that inhibition of RANKL could reflect on ALK inhibition, leading 
to a regression of the tumor overexpressing ALK (Curioni-Fontecedro 
et al., 2013). 

More recently, Sisay et al. showed that the inactivation of RANK 
decreased the NSCLC cancer initiation capabilities by reducing CSC 
formation, delaying the malignant lung tumor progression (Rao et al., 
2017). The capability of denosumab to target CSCs is particular 
important in view to prevent bone metastases formation. A recent 
published review reported the experience of 10 years after approval of 
denosumab in adjuvant regimen to prevent bone metastasis induced 
SREs, showing that NSCLC patients with bone metastases and a life ex-
pectancy major than 3 months, must be treated with both denosumab or 
ZA (Coleman et al., 2020b). Moreover, combination of denosumab with 
ICIs, has been demonstrated effective in controlling bone metastases in 
lung cancer (Liede et al., 2018; Myoken et al., 2020). 

6. Checkpoint inhibitors in bone metastases 

Checkpoint pathways are involved in OC formation. For instance, the 
CD200/CD200R axis, which plays an inhibitory role in T cell response 
(Siva et al., 2008), also modulates differentiation of OCs and bone mass 
(Cui et al., 2007). Indeed, PD-1 deficiency leads to a reduction of 
osteoclastogenesis without altering the number of OBs (Nagahama et al., 
2004). PD-1 was highly expressed in pre-OCs, while its expression was 
lost during OC formation in vitro. The addiction of PD-L1 in in vitro cell 
cultures could increase low-dose RANKL-induced OC differentiation. 
Moreover, in the presence of RANKL both pre-OCs and mature OCs 
increased Chemokine (C-C motif) ligand 2 (CCL2) secretion (Wang et al., 
2020). In a mice model of Lewis Lung Carcinoma (LLC), Wang et al. 
reported that infiltrating tumor cells in bone marrow microenvironment 
express PD-L1 and CCL2 that stimulate OC differentiation, according to 
previously published works by other groups (Khan et al., 2016; Kim 
et al., 2006). CCL2 expression was upregulated by PD-L1 activation of 
JNK during OC differentiation, contributing to osteoclastogenesis. 
Blocking PD-1, using monoclonal antibody, resulted in an inhibition of 
CCL2 production and of OC formation (Wang et al., 2020). NSCLC pa-
tients who received ICIs as first-line therapy showed an increase in 
overall survival higher than patients treated in second line (Liang et al., 
2020; Qiang et al., 2022). This result suggests that likely these patients 
had an immune system not completely suppressed, thus the checkpoint 
inhibitor helps the anti-tumor immune response. Despite the effect of 
checkpoint inhibitors on OC formation and activity, the role of immu-
notherapy on bone metastases is currently under investigation and re-
sults are not completely clear. Comparing advanced NSCLC patients 
with and without bone metastases, treated with anti-PD-1, no difference 
was observed in median progression-free survival (PFS) (Tamiya et al., 
2018). Multicenter retrospective studies on patients treated with anti- 
PDL-1, reported contrasting results since a study did not show signifi-
cant differences in PFS associated to bone metastases (Kawachi et al., 
2020), while another one reported that the presence of bone metastases 
is associated to worse clinical outcomes (Cortellini et al., 2020). In line 
with this last result, Li et al.'s reported that bone metastases negatively 
affect the efficacy of ICI monotherapy, and neither palliative radio-
therapy nor bisphosphonates could improve the overall survival (Li 
et al., 2020). In general, a greater number of bone metastases correlates 
with a more advanced stage of NSCLC and consequently with a poor 
response to immunotherapy (Nakata et al., 2020). Nonetheless, these 
same Authors suggest also that the monitoring of bone metastases during 
the treatment with anti-PD-1 could be useful to evaluate the prognosis, 
since a bone response within 2 months from the beginning of the 
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monotherapy with anti-PD-1 was indicative of a better PFS (Nakata 
et al., 2020). In another study by Schmid et al., anti-PD-1 treatment 
failed, and patients reported metastatic progression (Schmid et al., 
2018). In two case reports, anti-PDL-1 treatment resulted effective in 
control bone metastases (Asano et al., 2021). Recently, a retrospective 
study on NSCLC patients with bone metastases, contemporary treated 
with bone-targeted therapy and anti-PD-L1, showed an increased sur-
vival (Qiang et al., 2022). Advanced NSCLC patients with bone metas-
tases should receive the ICI early, in order to improve the tumor 
microenvironment of the metastatic sites, therefore enhancing efficacy 
and prolonging survival. Indeed, it has been demonstrated that the anti- 
PD-L1 was more effective in monotherapy both when used in first- or 
second-line therapy for patients with advanced NSCLC (Peters et al., 
2018). 

7. Conclusions 

Due to the success of the new anti-cancer treatments, NSCLC patients' 
survival has been prolonged. Unfortunately, increased survival may also 
be accompanied with an increased chance to develop bone metastases. 
MICs, a subset of CSCs particularly endowed of metastasis initiating 
capabilities, have been recognized as drug resistant, tumorigenic and 
able to seed secondary organ, such as bone. Understanding how MICs 
reach, survive and grow in bone is mandatory to identify potential tar-
gets able to inhibit bone metastasis formation. 

NSCLC MICs can exploit SDF-1 gradient to reach bone where they 
can find a favorable microenvironment, composed of bone cells, HSCs, 
dense network of capillaries and hypoxia condition, which may all 
concur in facilitating MIC seeding and colonization of the bones. Among 
the several strategies proposed to prevent CSC-induced metastasis, 
preventing the chemokine axis governing CSC dissemination to bone 
metastasis might impair metastasis formation. Moreover, the combina-
tion of anti-resorptive agents with ICI drugs, as well as ICI monotherapy, 
should be effective in preventing/controlling NSCLC CSC-derived bone 
metastasis especially whether administered early in the history of the 
disease, thus modifying the timing of administration so far adopted. 
Indeed, helping the immune system to exit the immunosuppressive state 
induced by CSCs could avoid their outgrowth that ends with overt 
metastatization, overall resulting in long-lasting efficacy in treatment of 
patients with NSCLC. 
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