
ORIGINAL RESEARCH
published: 13 July 2020

doi: 10.3389/fvets.2020.00351

Frontiers in Veterinary Science | www.frontiersin.org 1 July 2020 | Volume 7 | Article 351

Edited by:

Francisco Javier Salguero,

Public Health England,

United Kingdom

Reviewed by:

Fauna Leah Smith,

University of California, Davis,

United States

Alessandra Piersigilli,

University of Bern, Switzerland

Valeria Grieco,

University of Milan, Italy

*Correspondence:

Hongbin Wang

hbwang1940@neau.edu.cn

Specialty section:

This article was submitted to

Veterinary Experimental and

Diagnostic Pathology,

a section of the journal

Frontiers in Veterinary Science

Received: 06 February 2020

Accepted: 20 May 2020

Published: 13 July 2020

Citation:

Ding JF, Li SC, Jiang LH, Li YP,

Zhang XH, Song QZ, Hayat MA,

Zhang JT and Wang HB (2020)

Laminar Inflammation Responses in

the Oligofructose Overload Induced

Model of Bovine Laminitis.

Front. Vet. Sci. 7:351.

doi: 10.3389/fvets.2020.00351

Laminar Inflammation Responses in
the Oligofructose Overload Induced
Model of Bovine Laminitis
Jiafeng Ding 1,2, Shuaichen Li 1,2, Lihong Jiang 1,2, Yuepeng Li 1,2, Xianhao Zhang 1,2,

Qiaozhi Song 1,2, Muhammad A. Hayat 1,2, Jian-Tao Zhang 1,2 and Hongbin Wang 1,2*

1Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China, 2Heilongjiang Key Laboratory for

Laboratory Animals and Comparative Medicine, Harbin, China

Bovine laminitis causes substantial economic losses and animal welfare problems in

dairy farms worldwide. Previously published studies have reported that the inflammatory

response plays a central role in the pathogenesis of the disease. To our knowledge,

inflammation associated with bovine laminitis induced by high levels of exposure to

oligofructose (OF) has not been reported and characterized. In fact, the disease

manifestations in this model closely approximate those of clinical laminitis. The objective

of this study was to characterize the inflammatory response in OF-induced bovine

laminitis. A total of 12 Chinese Holstein dairy heifers were utilized in this study. The

heifers were randomly divided into two groups, treatment (n = 6) and control (n = 6).

The treatment group heifers were administered OF solutions via a stomach tube (dose:

17 g/kg of body weight). Upon development of a lameness score of 2 with consecutive

positive reactions in the same claw, they would be humanely euthanized. Control heifers

were administered deionized water (dose: 2 L/100 kg of body weight) and humanely

euthanized at 72 h. Real-time quantitative PCR (qPCR) assays were performed to

determine the messenger RNA (mRNA) concentrations of inflammatory mediators in the

lamellae. Concentrations of interleukin (IL)-1β, IL-6, IL-8, C-X-Cmotif chemokine ligand-1

(CXCL-1), macrophage cationic peptide-2 (MCP-2), E-selectin, intercellular adhesion

molecule-1 (ICAM-1), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase-1

(iNOS-1), and plasminogen activator inhibitor-1 (PAI-1) were significantly increased

(P < 0.05) in the treatment group. No significant difference was found for tumor necrosis

factor alpha (TNF-α), IL-10, CXCL-6, and MCP-1. These results demonstrated and

characterized the laminar inflammatory response leading to the pathogenesis of bovine

laminitis at the early stages.

Keywords: bovine laminitis, pathogenesis, inflammation, real-time quantitative PCR, oligofructose

INTRODUCTION

Lameness causes substantial economic losses and animal welfare problems in dairy farms
worldwide (1, 2). Bovine laminitis is a disease of the foot that results in lameness (3). Afflicted
animals present with sole ulcers, sole hemorrhages, and white line disease in dairy cows (4). The
prevalence of these lesions is closely related to breeding, management, and environmental factors
(5). In recent years, several studies focused on epidemiology (6), pathophysiology (7), histology
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(8, 9), and proteomics (10) of disease states. However, due to
the inconsistencies in clinical cases and the lack of reproducible
experimental models, the exact pathogenesis of bovine laminitis
remains unclear (11).

In clinical practice, bovine laminitis typically follows systemic
inflammatory diseases, including septic pleuropneumonia,
metritis, and ruminal acidosis (12, 13). The oligofructose (OF)
overload model most closely mimics this clinical presentation,
relative to other existing bovine laminitis models. In the OF
model, characteristic pathophysiological and histological changes
are observed as in natural clinical cases (8, 14). It also has been
utilized by several related studies, such as the biomechanics
of claw suspensory tissue (15) and the oxidative response of
neutrophils to platelet-activating factors (16). Furthermore, this
model is a more reliably induced and representative model than
others (starch overload and histamine injection models) (17).
Over the last two decades, this model has been intensively used
in the study of equine laminitis (18–20), but less frequently in
bovine laminitis (21).

A clinically similar but distinct disease called sepsis-
related laminitis (SRL) has been described in horses (18),
which has similar pathophysiological characteristics to systemic
inflammatory response syndrome (SIRS) in humans (22).
Inflammatory responses play a central role in laminar injury
and subsequent failure in the OF-induced equine laminitis,
characterized by markedly increases of inflammatory mediator
gene expression and leukocyte influx in lamellae tissue (18,
19, 23). These inflammatory mediators primarily contributed
to the inflammatory response, including activation of vessel
endothelium, adhesion and emigration of leukocytes, and
changes in vessel, which resulted in organ injury and failure
(24). However, to our knowledge, no existing studies have
characterized the inflammatory response and its role in the
pathogenesis of OF-induced bovine laminitis. Thus, the laminar
messenger RNA (mRNA) expression of multiple cytokines,
chemokines, adhesion molecules, and inflammatory molecules
was assessed in the context of the OF-induced bovine laminitis
model. The objective of this study was to characterize the
inflammatory response in a bovine laminitis model as a
foundation for future laminitis studies.

MATERIALS AND METHODS

Ethics Statement
The experimental protocols describing the management and care
of animals were approved by the Animal Ethics Committee
(AEC) of the Northeast Agricultural University (Harbin, China)
that monitors compliance with the Animal Welfare Act (2001).
All heifers were continuously monitored by the investigators
(permission number: SRM-13).

Animals
A total of 12 Chinese Holstein dairy heifers were used in this
study at an average age of 20.67 ± 3.01 months, an average
body weight (BW) of 379.71 ± 19.77 kg, and an average body
condition score (25) of 3.00 ± 0.23. Each heifer was clinically
healthy, had no history of severe systemic diseases, exhibited

TABLE 1 | Locomotion scoring system adapted from Sprecher et al. (26).

Lameness

score

Description Assessment criteria

1 Normal The heifer stands and walks with a level-back

posture. Its gait is normal.

2 Mildly

lame

The heifer stands with level-back posture but walks

with an arched-back posture. Its gait is normal.

3 Moderately

lame

The heifer stands and walks with an arched-back

posture. Its gait develops a short-striding step with

1 or more limbs.

4 Lame The heifer stands and walks with an evident

arched-back posture. Its gait develops a deliberate

step at a time. The heifer favors 1 or more

limbs/feet.

5 Severely

lame

The heifer demonstrates an inability or extreme

reluctance to bear weight on 1 or more of its

limbs/feet.

normal locomotion and posture, and had no claw disorders
(solar ulceration, white line disease, etc.). Animals to be enrolled
in the study were purchased from the Wandashan Dairy Farm
(Harbin, China).

Model Induction
The claws of heifers were trimmed 10 days prior to initiation
of the experiment. For acclimation, heifers were housed in a
large animal experimental barn with a concrete floor. Heifers
were trained and fed grass hay ad libitum (7.5% total water-
soluble sugar content). After acclimation, all heifers could accept
clinical examination without any discomfort, could be led to
walk and trot by hand, and agreed to lift the distal front limb
for foot palpation and hoof testing. The heifers were randomly
arranged into two groups, including a treatment group (n = 6)
and a control group (n= 6). Each animal in the treatment group
was administered OF solutions (Bailong Biotech, Inc., Dezhou,
China; purity, 98%; dose, 17 g/kg BW in 2 L/100 kg of BW warm
deionized water) into the rumen via gastric tube, and control
group heifers were given 2 L/100 kg of BWwarm deionized water
by the same method, as previously described (14, 17). A 5%
OF dose was administered twice daily before the experiment for
3 days.

Orthopedic examinations were performed (14), including
locomotion assessment, hoof testing, and weight shifting at −24,
0, 6, 12, 18, 24, 36, 48, 60, and 72 h. In the locomotion assessment,
the heifers were led by hand to walk and trot in a straight
line and to turn in a small circle on the same surface. Five
licensed veterinarians assessed the locomotion scores of each
heifer according to previous study (Table 1) in an experimentally
blinded manner (26). Heifers receiving a score of ≥2 by all
veterinarians were considered to be lame. In hoof testing, the
front legs were lifted up, while a hoof tester was applied over
the site of the axial sole–bulb junction and the central region
of the dorso-abaxial claw wall in all front claws. A suitable
pressure was applied to assess fasciculation in the musculus
triceps. Animals were scored based on their attempts to withdraw
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TABLE 2 | Gene, sequence, amplification size, and efficiency of the primers used for quantitative PCR (qPCR).

Gene Polarity Sequence (5′
→ 3′) Size

(bp)

Amplification

efficiency (%)

NCBI

accession no.

Cytokine

IL-1β Forward ATTCTCTCCAGCCAACCTTCATT 100 96 NM_174093

Reverse TTCTCGTCACTGTAGTAAGCCATCA

IL-6 Forward ATGACTTCTGCTTTCCCTACCC 180 105 NM_173923

Reverse GCTGCTTTCACACTCATCATTC

IL-8 Forward GACAGCAGAGCTCACAAGCATCT 105 94 NM_173925.2

Reverse AAGCTGCCAAGAGAGCAACAG

IL-10 Forward ACAGGCTGAGAACCACGGGC 175 90 NM_174088.1

Reverse GACACCCCTCTCTTGGAGCTCACT

TNF-α Forward CCAGAGGGAAGAGCAGTCCC 114 92 NM_173966.3

Reverse TCGGCTACAACGTGGGCTAC

Chemokine

CXCL-1 Forward CATCCAGAGCGTGAAGGTGA 100 97 NM_175700.2

Reverse GGTGGGGTTGAGACACACTT

CXCL-6 Forward TGAGAGAGCTGCGTTGTGTG 119 103 NM_174300.2

Reverse GGTGGCTATCACTTCCACCT

MCP-1 Forward GCAATTAACTCCCAAGTCGCC 161 95 NM_174006.2

Reverse TGCTTGGGGTCTGCACATAA

MCP-2 Forward ATCACCAACAGCCAGTGTCC 133 91 NM_174007.1

Reverse TCGGTGTTCGGGACTTTTGG

Adhesion molecule

ICAM-1 Forward CGACCACAGGAGCAACTTCT 171 106 NM_174348.2

Reverse TCGCACTTCAGGGTCTGTTC

E-selectin Forward CATCCTCAGAACGGCACTGT 167 97 NM_174181.2

Reverse ACTTCACAAACTGGGACCCG

Inflammatory molecule

COX-2 Forward ATCTACCCGCCTCATGTTCCT 187 93 AF031698

Reverse GGATTAGCCTGCTTGTCTGGA

iNOS Forward CAGGATGACCCCAAACGTCA 190 101 XM_024979646.1

Reverse CCTTCTGGTGAAGCGTGTCT

PAI-1 Forward TCTTCCACAAGTCCGATGGC 142 92 XM_024984644.1

Reverse ATGCTGAGAGTGTTCCCGTG

Housekeeping gene

ACTB Forward ACTTGCGCAGAAAACGAGAT 123 97 BT030480

Reverse CACCTTCACCGTTCCAGTTT

GAPDH Forward GGGTCATCATCTCTGCACCT 176 95 DQ402990

Reverse GGTCATAAGTCCCTCCACGA

UXT Forward TGTGGCCCTTGGATATGGTT 101 101 BC108205.1

Reverse GGTTGTCGCTGAGCTCTGTG

their legs. Reactions to hoof testing were subjectively classified as
none, slight, or marked. In weight shifting, heifers were observed
whether they shifted their weight to another side during the
examination period.

For the consideration of animal welfare, supportive therapy
was provided (14). Ringer’s acetate (Heping Animal Medicine,
Inc., Harbin, China; dose, 15 ml/kg of BW) and sodium
bicarbonate (Heping Animal Medicine, Inc., Harbin, China;
specification, 84 g/L; dose, 1.5 ml/kg of BW) were administered
at 18 and 24 h, and calcium borogluconate (Heping Animal
Medicine, Inc., Harbin, China; specification, 14mg of

Ca/ml; dose, 1.4 ml/kg of BW) was administered by jugular
infusion at 18 h.

Sample Acquisition
When the treatment group heifers were scored ≥2 and had
consecutive positive reactions in the same claw (14, 17), the
animals were humanely euthanized. The control heifers were
humanely euthanized at 72 h. The front limbs were rapidly
removed by disarticulation of the metacarpophalangeal joint.
Several tissues (approximately 2.5–3.0 cm2) were excised using
a band saw, consisting of the third phalanx, lamellae tissue, and
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the central part of the dorso-abaxial claw wall (27, 28). Lamellae
tissue (∼1 cm2) was rapidly dissected from the larger tissue
blocks using a lancet. Several dissected lamellae were immediately
snap frozen in liquid nitrogen and later stored at −80◦C.
Remaining lamellae samples were fixed in 10% neutral buffered
formalin (Kanning Medicine, Inc., Zhongshan, China) for at
least 24 h. The formalin-fixed lamellae was treated with graded
alcohol, xylene, and paraffin using an automatic tissue-processing
machine (8). Sections (4µm thick) were cut and stained
with Mayers hematoxylin and eosin (H&E) for observation of
histological changes within the epidermal and dermal lamellae
and periodic acid–Schiff (PAS) staining for basement membrane
changes. Veterinary pathologist Prof. Guangxing Li (Northeast
Agricultural University) and medical pathologist Prof. Zhao
(Harbin Medical University) blindly read the sections in a
random order.

RNA Isolation and cDNA Synthesis
Total RNA was extracted from three separate lamellae samples
of 12 heifers using Absolutely RNA Miniprep kits (Stratagende,
Inc., California, USA). The quantity and purity of extracted
RNA were measured using a NanoDropTM One Microvolume
spectrophotometry (Thermo Scientific, Massachusetts, USA).
The integrity of RNA was determined by 1% agarose gel
electrophoresis (Bio-Rad Laboratories, California, USA). One
microgram of total RNA was reverse transcribed using the
PrimeScriptTM RT reagent kit (Takara, Dalian, China) with
genomic DNA (gDNA) eraser according to the manufacturer’s
instructions. Subsequently, complementary DNA (cDNA) was
diluted with DNase/RNase free water (dilution rate, 1:4) (Takara,
Dalian, China) and stored at−20◦C.

Real-Time Quantitative PCR
The quantitative PCR (qPCR) was conducted using a
LightClycler 480 (Roche, Indiana, Germany), and quantification
was assessed with SYBR Premix Ex TaqTM II (Takara, Dalian,
China). The primers for interleukin (IL)-1β, IL-6, IL-8, IL-10,
tumor necrosis factor alpha (TNF-α), C-X-C motif chemokine
ligand (CXCL)-1, CXCL-6, macrophage cationic peptide
(MCP)-1, MCP-2, E-selectin, intercellular adhesion molecule-1
(ICAM-1), cyclooxygenase-2 (COX-2), inducible nitric oxide
synthase-1 (iNOS-1), plasminogen activator inhibitor-1 (PAI-1),
and housekeeping genes (β-actin, GAPDH, and UXT) used in
this study were the same as previously reported (27–31) and
were designed to target bovine-specific sequences (Table 2).
The specificity of selected primer sequences was verified using
the Basic Local Alignment Search Tool (BLAST) from the
National Center for Biotechnology information (NCBI) database
(http://blast.ncbi.nlm.nih.gov/). A 20-µl PCR mixture contained
2 µl sample cDNA and 18 µl PCR master mix. The master
mix contained 10 µl SYBR green dye, 1.6 µl each primer
solution (forward and reverse primers, each 10µM), and 6.4 µl
DNase/RNase free water. The PCR conditions were as follows:
95◦C for 1min (ramp rate, 4.4◦C/s); 40 cycles of amplification
(quantification analysis model), 95◦C for 5 s (ramp rate, 4.4
◦C/s) and 60◦C for 1min (ramp rate, 2.2◦C/s); 1 cycle of
melting (melting curves analysis model), 95◦C for 5 s (ramp rate,

4.4◦C/s), 60◦C for 1min (ramp rate, 2.2◦C/s), increasing to 95◦C
(ramp rate, 0.11◦C/s); 1 cycle of cooling, 50◦C for 30 s (ramp
rate, 2.2◦C/s). All amplified cDNA fragments were confirmed
by gel electrophoresis and melting curve analysis. The values of
cycle threshold crossing (Ct) were calculated by the Light Cycler
480 software (version 1.5.0, Roche, Germany). Template DNA
(10-folded serial dilution) were used to generate standard curves
and calculate the efficiency for each PCR reaction. Negative
controls consisted of DNase/RNase free water, and each sample
was analyzed in triplicate.

Data Analysis
The 2−11Ct method was used to calculate changes in relative
gene expression. Data analysis was performed using GraphPad
Prism (version 7.04, GraphPad Software, Inc., San Diego, USA).
The data fulfilled the assumption of a Gaussian distribution,
according to a Shapiro–Wilk normality test. The data were
analyzed by Student’s t-test. P < 0.05 was considered significant.
All data are presented as mean± standard deviation (SD).

RESULTS

Clinical Data
Heifers of the treatment group developed depression, anorexia,
watery diarrhea, tachycardia, tachypnea, and pyrexia. The signs
of depression, anorexia, and watery diarrhea were observed at
6–12 h, and severe signs occurred at 24–36 h, then gradually
recovered. Generally, persistent tachycardia, hypopnea, and
pyrexia could be observed from 6 to 72 h and became increasingly
severe before 36 h, then gradually recovered. At 36 h, the rate
of heart beat reached the maximum mean value (69.83 ±

13.82 beats/min), rectal temperatures also reached the maximum
mean value (39.25 ± 0.40◦C), and respiratory rate reached the
minimum mean value (15.00 ± 1.90 counts/min). These heifers
were otherwise graded as normal at −24 and 0 h. The signs of
lameness were observed at 36 h. At 72 h, the locomotion scores of
them were≥2. From 36 to 60 h, a variable clinical observation for
hoof testing examination was observed in the animals. At 72 h,
each of them had a consecutive reaction in the same claw. All
heifers developed weight shifting involving both front and hind
legs. Weight shifting was first observed in two heifers at 12 h and
later in all remaining heifers between 36 and 72 h.

Heifers in the control group failed to develop clinical signs
of systemic inflammatory disease. During the assay period,
clinical observations were normal, for heart rate (48.92 ± 1.70
beats/min), rectal temperature (38.31± 0.22◦C), and respiratory
rate (23.35 ± 1.11 counts/min). They were graded as normal
(locomotion score= 1) and did not exhibit pain reactions during
hoof testing examination with no signs of weight shifting.

Laminar Histopathology of Claws
Gross observation of the control group revealed normal lamellae.
From histological sections, the epidermal and dermal layers of the
lamellae were intimately connected (Figures 1A,B). In the PAS-
stained sections, the epidermal lamellae had a rounded tip and
was closely connected to the basement membrane. The basement
membrane appeared as a consecutive and distinct line. In the
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FIGURE 1 | Gross sections of the lamellae layer from (A,B) control and (C,D) oligofructose treated heifers. Labels in the sections: B, basal cells; SB, surprabasal cells;

BM, basement membrane; DL, dermal lamellae; EL, epidermal lamellae; WBC, white blood cells; Tip, the tip of the epidermal lamellae). (A) H&E stain. The normal

appearance of the dermo-epidermal junction consists of numerous interlocking lamellae. (B) Periodic acid–Schiff (PAS) stain. The tip of the epidermal lamellae is

rounded and in a close association with the basement membrane. (C) H&E stain. Stretched epidermal lamellae and increased numbers of suprabasal cells are

observed. (D) PAS stain. The basement membrane has an attenuated appearance; the basal cells are enlarged and wider in the dermal lamellae.

HE-stained sections, the basophilic nuclei of basal cells were oval
and located away from the basement membrane with regular
nuclear polarity shifts. Suprabasal cells were almost parallel to the
direction of epidermal lamellae. Hyperemia, hemorrhage, and a
few inflammatory cells (mainly lymphocytes and macrophages)
were observed, albeit rarely, in the dermal lamellae.

Gross observation of the treatment group revealed a
patchy distribution of dermal hyperemia in the dorsal and
bottom region of the lamellae. In the histological sections, the
epidermal lamellae appeared stretched and with a pointed tip
(Figures 1C,D). In the PAS-stained sections, the basement
membrane had a folded and attenuated appearance, and
occasionally separated from the basal cells. Basal cells had
rounded and centrally positioned nuclei. Nuclei had a coarse
chromatin network. Suprabasal cells appeared hyperplastic.
Hyperemia, hemorrhage, and pronounced inflammatory
infiltrates (granulocytes and monocytes) were observed in the
dermal lamellae.

Laminar Inflammatory Cytokine mRNA
Concentration
Laminar mRNA concentrations of the cytokines IL-1β, IL-6, and
IL-8 were significantly increased in the treatment group (P <

0.01) relative to the control group. There was no change in
laminar mRNA expression of IL-10 and TNF-α (Table 3 and
Figure 2).

Laminar Chemokine mRNA Concentration
Laminar mRNA concentrations of chemokine CXCL-1 and
MCP-2 were significantly increased in the treatment group (P
< 0.01) compared to the control group. There was no change
in laminar mRNA expression of chemokine CXCL-6 and MCP-1
(Table 3 and Figure 3).

Laminar mRNA Concentration of
Endothelial Adhesion Molecule
Laminar mRNA expressions of the endothelial adhesion
molecule E-selectin (P < 0.01) and ICAM-1 (P < 0.05) were
significantly increased in the treatment group relative to the
control group (Table 3 and Figure 4).

Laminar mRNA Concentration of
Inflammatory Molecule
LaminarmRNA expression of inflammatorymolecules COX-2 (P
< 0.01), iNOS (P < 0.01), and PAI-1 (P < 0.05) was significantly
increased in the treatment group when compared to the control
group (Table 3 and Figure 5).

DISCUSSION

Bovine laminitis is also referred to as diffuse aseptic
pododermatitis, which results in local and systemic clinical
signs (32). It is characterized by claw pain and lameness (33).
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In clinical practices, laminitis is typically secondary to severe
systemic inflammatory disease (e.g., septic pleuropneumonia,
metritis, ruminal acidosis, etc.).

In the present study, the OF overload model was employed
to induce a bovine model of laminitis. This model was selected
for the following reasons: (1) the histamine injection model and
the starch overload model are not reliable; (2) the histological
changes in the OF model are similar to those observed in clinical
laminitis cases; and (3) the OF model has been widely used in the
studies of bovine and equine laminitis.

The laminitis-inducing mechanism of OF is similar to other
carbohydrate overload models. A high intake of nonstructural
carbohydrates, which could reduce the rumen pH, results in the
death and lysis of Gram-negative bacteria. This bacterial die-
off compromises the intestinal barrier functions. This allows

TABLE 3 | Fold changes in laminar gene expression of inflammation mediators

after oligofructose administration.

Inflammation mediator Fold change P value

Cytokine

IL-1β 2.76 ↑ 0.0022

IL-6 2.63 ↑ 0.0045

IL-8 9.53 ↑ 0.0007

IL-10 0.61 0.0694

TNF-α 0.84 0.9879

Chemokine

CXCL-1 5.04 ↑ 0.0001

CXCL-6 0.92 0.6314

MCP-1 0.93 0.2987

MCP-2 3.05 ↑ 0.0004

Adhesion molecule

ICAM-1 1.81 ↑ 0.0478

E-selectin 2.90 ↑ 0.0381

Inflammatory molecule

COX-2 1.30 ↑ 0.0259

iNOS 5.13 ↑ 0.0225

PAI-1 1.43 ↑ 0.0480

Values displayed are mean fold change from control values.

NS, nonsignificant changed values; ↑, significant increased values.

lipopolysaccharide (LPS) to translocate from the digestive tract
into the peripheral circulation (17, 34, 35). Subsequently, free
LPS activates systemic inflammatory responses and leads to
multiorgan damage, such as rumenitis (36), synovitis (37), and
liver impairment (38).

In the present study, heifers in the treatment group developed
characteristic signs of bovine laminitis, and histological changes
of their lamellae tissues were consistent with clinical laminitis
cases. Those results corroborated those of previous studies,
which indicated the successful induction of bovine laminitis
(14, 17). This study reported that laminar mRNA expressions
of several inflammatory cytokines, chemokines, endothelial
adhesion molecules, and inflammatory molecules were increased
at the early stage of the OF-induced bovine laminitis. To our
knowledge, this is the first study to characterize the inflammatory
response in this model. Our findings were similar to equine SRL
and human SIRS/sepsis (16, 39), indicating that lamellae failure
might be caused by a systemic inflammatory response, as is the
case with organ failure in human SIRS/sepsis.

Pathogen-associated molecular pattern molecules (PAMPs)
(e.g., LPS) activate leukocytes and other innate immune
cells (40, 41). Inflammatory mediators including inflammatory
cytokines, chemokines, endothelial adhesion molecules, and
inflammatory molecules could be produced by PAMP-activated
cells (24). Meanwhile, the activated leukocytes pass through the
activated endothelium and migrate into the tissues of target
organs (42). Activated tissue macrophages, migratory leukocytes,
and multiple inflammatory mediators together constitute the
inflammatory response, leading to organ injury and failure
resulting from sepsis (43).

In this study, gene expression of inflammatory cytokines
IL-1β, IL-6, and IL-8 was increased in the lamellae of the
treatment group. Previous studies reported that the laminar
expression of IL-1β, IL-6, and IL-8 was related to the degree of
lamellar injury (44). Furthermore, these inflammatory cytokines
are important components of the innate immune response, which
have also been reported to participate in human SIRS/sepsis
(22). A previous study found that the increased plasma level
of IL-1β was negatively correlated with the progression of
organ dysfunction and mortality in septic patients (45). Another
study reported that IL-1β commonly underwent an early
but transient burst of expression after being exposed to the

FIGURE 2 | Mean fold changes in interleukin (IL)-1β, IL-6, and IL-10 messenger RNA (mRNA) expression after oligofructose administration in heifers. Significant

increases in cytokines relative to the control group are indicated as **P < 0.01.
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FIGURE 3 | Mean fold changes in CXCL-1 and MCP-2 messenger RNA (mRNA) expression following oligofructose administration in heifers. Significant increases in

chemokines relative to the control group are indicated as **P < 0.01.

FIGURE 4 | Median fold changes in E-selectin and intercellular adhesion molecule-1 (ICAM-1) messenger RNA (mRNA) expression after oligofructose administration

in heifers. Significant increases in adhesion molecules relative to the control group are indicated as *P < 0.05, **P < 0.01.

FIGURE 5 | Mean fold changes in cyclooxygenase-2 (COX-2), inducible nitric oxide synthase-1 (iNOS-1), and plasminogen activator inhibitor-1 (PAI-1) messenger

RNA (mRNA) expression after oligofructose administration in heifers. Significant increases in inflammatory molecules relative to the control group are indicated as

*P < 0.05, **P < 0.01.

stimulation of endotoxin (46). Similarly, an increase in IL-1β
at the early stage of the development of laminitis was observed
here, indicating that it might take part in the productions of
other cytokines.

In human sepsis, IL-6 expression was correlated with
organ injury and apoptosis (47). Recently, a commercial IL-
6 signaling-related drug was used as a potential therapeutic
for the treatment of rheumatoid arthritis and sepsis (48, 49).
It has been reported that IL-6 signaling-related glycoprotein

130 (gp130) might play an important role in the stretching of
epidermal lamellae and separation from the dermal lamellae (50).
These changes are also histologically characteristic of clinical
laminitis cases, which were also observed in this study. It
has been reported that IL-8 primarily acts as a chemokine,
promoting migration of neutrophils into the lamellae in OF-
induced bovine laminitis (51). It has also been reported to be
expressed by endothelial cells following exposure to PAMPs and
TNF-α (46).
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Tumor necrosis factor-α is a prominent inflammatory
cytokine during human SIRS/sepsis. However, a notable lack of
TNF-α expression was observed in this study. In OF-induced
equine laminitis, the expression of TNF-α was also not increased
early on in the lamellae, but the serum concentration of TNF-α
was significantly increased (52). These observations are indicative
of a systemic cytokine response. An early transient burst of TNF-
α occurring in this process may be another possible explanation.
A lung sepsis model in baboon reported that the gene expression
of TNF-α was also not increased, but that of IL-1β and IL-6
was increased in the target organ (53). Similar observations were
made here.

Like TNF-α, IL-10 expression was not increased in this
study, indicating that the lamellae did not mount an anti-
inflammatory response during the early stage of laminitis. It is
well established that IL-10 is an anti-inflammatory cytokine that
serves to temper immune responses (42). Increased IL-10 has
generally been associated with improved prognostic outcomes in
septic patients (54). The expression of IL-10 was not increased,
which can be explained by the lack of TNF-α response in
this study (18). This speculation is based on previous studies,
in which the plasma concentration of IL-10 was decreased
by the administration of antimonoclonal TNF-α antibodies in
chimpanzees with sepsis (55).

The expression of the chemokines CXCL-1 and MCP-2 were
increased in the lamellae, suggesting that the migration of
neutrophils and mononuclear cells into lamellae maybe involved
in this inflammatory response. In OF-induced equine laminitis,
increased gene expression of CXCL-1 and MCP-2 and the
migration of neutrophils and mononuclear cells into lamellae
are observed (20). A recent study reported that CXCL-1 could
induce neutrophils to infiltrate the sites of bacterial infection
and was involved in the granulopoiesis and mobilization of
neutrophils in sepsis (56). Furthermore, MCP-2 is another
important chemokine in inflammation and immunomodulation,
which could activate mononuclear cells and direct them into
target tissues (57).

The expressions of the adhesion molecules E-selectin and
ICAM-1 were increased in lamellae, indicating that endothelial
activation occurred in this study. The increased expression of
adhesion molecules is a characteristic of endothelial activation,
which leads to the adhesion of circulating leukocytes. The
expression of E-selectin and ICAM-1 could be explained
by the upregulated expression of IL-1β and IL-6, as these
proinflammatory cytokines positively induce the transcriptional
regulation of E-selectin and ICAM-1 (58).

In this study, the expressions of the inflammatory molecules
COX-2, iNOS, and PAI-1 were increased in the lamellae. Similar
results were reported in OF-induced equine laminitis, indicating
that these inflammatory molecules might play similar roles in the
two laminitis models (18). COX-2 is known as a crucial mediator
in the inflammatory response, as the various physiological
effects of numerous prostanoids (the products downstream
of COX-2), including platelet aggregation, vasomotor, and
proinflammatory effects (59). As such, COX-2 is a therapeutic
target for nonsteroidal anti-inflammatory drugs (NSAIDs). The
increased expression of COX-2 could be speculated from the

increased proinflammatory cytokine IL-1 in this study, as the
expression of COX-2 was mainly driven by the activation
of nuclear factor-kappa B (downstream of proinflammatory
cytokine signaling) (60). However, the pathological functions of
COX-2 in bovine laminitis were still unclear. In equine laminitis,
laminar COX-2 expression was observed in multiple laminitis-
related cells (61), especially laminar basal epithelial cells (LBEC).
Furthermore, LBEC are responsible for maintaining the integrity
of the epidermal lamellae and basement membrane. Therefore,
it is possible that COX-2 maybe involved in the failure of the
lamellae and that COX-2 may serve as a prognostic indicator
of laminitis. In endotoxin-induced sepsis, COX-2-deficient mice
exhibited increased survival and decreased leukocyte infiltration
into kidneys and lungs, when compared to wild-type mice (62).

Expression of the vasoactive substances iNOS and PAI-1
were increased in lamellae. Overexpression of iNOS results
in excessive nitric oxide (NO), which causes systemic/local
hypotension and organ dysfunction in sepsis (63). Elevated
PAI-1 expression was reported to be a crucial regulator of
fibrinolysis by inhibiting plasminogen activator, which could lead
to disseminated intravascular coagulation and organ dysfunction
in septic patients (64). Intravascular coagulation has been
observed in bovine lamellae with laminitis (9). Recently, PAI-1
was determined to be a significant predictor of severity through a
meta-analysis of human sepsis cases (65).

In conclusion, this study reported the occurrence of laminar
inflammatory responses at the early stages of OF-induced bovine
laminitis. Expression of multiple mediators of inflammation
increased, indicating that the inflammatory injury might play
an important role in the pathogenesis of laminitis. Moving
forward, more in-depth molecular studies on inflammatory
signaling pathways [e.g., nuclear factor kappa B (NF-κB)
mitogen-activated protein kinase (MAPK) pathways] are needed
to discover effective anti-inflammatory agents for the treatment
of bovine laminitis.
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