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Abstract: Dextran hydrolysis by dextranases is applied in the sugar industry and the medical sector,
but it also has a high potential for use in structural analysis of dextrans. However, dextranases are
produced by several organisms and thus differ in their properties. The aim of this study was to
comparatively investigate the product patterns obtained from the incubation of linear as well as O3-
and O4-branched dextrans with different dextranases. For this purpose, genes encoding for dex-
tranases from Bacteroides thetaiotaomicron and Streptococcus salivarius were cloned and heterologously
expressed in Escherichia coli. The two recombinant enzymes as well as two commercial dextranases
from Chaetomium sp. and Penicillium sp. were subsequently used to hydrolyze structurally different
dextrans. The hydrolysis products were investigated in detail by HPAEC-PAD. For dextranases
from Chaetomium sp., Penicillium sp., and Bacteroides thetaiotaomicron, isomaltose was the end product
of the hydrolysis from linear dextrans, whereas Penicillium sp. dextranase led to isomaltose and
isomaltotetraose. In addition, the latter enzyme also catalyzed a disproportionation reaction when
incubated with isomaltotriose. For O3- and O4-branched dextrans, the fungal dextranases yielded
significantly different oligosaccharide patterns than the bacterial enzymes. Overall, the product
patterns can be adjusted by choosing the correct enzyme as well as a defined enzyme activity.

Keywords: glucans; structure; HPAEC-PAD; enzymatic fingerprinting; oligosaccharides; chromatog-
raphy; enzymes; exopolysaccharides; enzymatic cleavage

1. Introduction

Dextrans are versatile polysaccharides that have a high application potential in foods,
cosmetics, or medical products [1]. They are formed by dextransucrases which are pro-
duced by several lactic acid bacteria. These enzymes are able to hydrolyze sucrose, release
fructose, and transfer the intermediately bound glucose units to a growing polysaccha-
ride [2]. Dextrans are characterized by a homogenic backbone of α-1,6-linked glucose units.
Depending on the dextransucrase, this backbone may be linear or decorated with mono-,
di-, or oligomeric side chains at position O2, O3, or O4, which results in a considerable
structural complexity [3,4].

A specific hydrolysis of dextrans can be achieved by the application of endo-dextranases,
which hydrolyze the linear, α-1,6-linked areas of the dextran backbone. This results in the
conversion of polymeric dextrans to glucose, isomaltose, linear isomalto-oligosaccharides,
and, in case of branched dextrans, branched oligosaccharides. The most important ap-
plication of dextranases is the removal of dextrans during the sugar production process.
Furthermore, dextranases have potential for some medical purposes such as the treatment
of dental plaque [5]. In addition, endo-dextranase hydrolysis and subsequent analysis of the
liberated oligosaccharides can be used for structural analysis of dextrans or mixed-linkage
α-glucans [6–13]. Dextranases are expressed by a wide range of microorganisms and have
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different properties with regards to their optimum incubation conditions as well as their
product patterns [5]. However, information on the product patterns of dextranases from
varying origins, especially with regards to branched oligosaccharides, is scarce. Therefore,
the aim of this study was to comparatively investigate the release of linear and branched
oligosaccharides from linear, O3-branched, and O4-branched dextrans by bacterial and
fungal dextranases.

Fungal dextranases are widely applied and commercially available, thus, two commer-
cial fungal dextranases (from Chaetomium sp. and Penicillium sp.) were used in this study.
Dextranases from both species were previously investigated with regards to their optimum
incubation conditions and, in part, their hydrolysis products [7,8,14–24]. Because bacterial
dextranases may have a significantly different product spectrum, genes encoding for two
dextranases were cloned from Streptococcus (S.) salivarius DSM 20560 (SSAL_1145) and
Bacteroides (B.) thetaiotaomicron DSM 2079 (BT_3087). As for the fungal dextranases, some
investigations were conducted on the optimum incubation conditions and the hydrolysis
products of dextranases from these genera/species [25–29]. For a detailed investigation of
the products released by hydrolysis with the bacterial and fungal dextranases, dextrans
from Ligilactobacillus animalis, Latilactobacillus curvatus, and Limosilactobacillus reuteri were
used (for simplicity, the abbreviation L. will be used for all three genera). These dextrans
have completely linear, O3-branched, and O4-branched backbones, respectively [11,30]. Be-
cause several oligosaccharides released from these dextrans by Chaetomium sp. dextranase
were previously isolated and characterized in detail [11,12], an analysis of the hydrolysates
by HPAEC-PAD yields detailed information on the product patterns of the dextranases.

2. Materials and Methods
2.1. General

AZCL-dextran and dextranase from Chaetomium sp. (EC 3.2.1.11, 490 U/mg) were
purchased from Megazyme (Bray, Ireland). Dextranase from Penicillium sp. (EC 3.2.1.11,
100–250 U/mg) was purchased from Sigma-Aldrich (Schnelldorf, Germany). pLIC-SGC1
was a gift from Nicola Burgess-Brown (Addgene plasmid # 39187). If not stated otherwise,
all other chemicals used were of “p.a.” grade or better and were purchased from Sigma
Aldrich, VWR (Radnor, PA, USA), or Carl Roth (Karlsruhe, Germany).

2.2. Molecular Cloning and Heterologous Expression

Genes encoding for dextranase from S. salivarius DSM 20560 (SSAL_1145; GenBank
accession number: AIY20395) and B. thetaiotaomicron DSM 2079 (BT_3087; GenBank acces-
sion number: AAO78193) were amplified from the respective genomic DNA by using a
Phusion High-Fidelity PCR kit (Thermo Fisher Scientific, Waltham, MA, USA). Genomic
DNA was purchased from Deutsche Sammlung von Mikroorganismen und Zellkulturen
(DSMZ, Braunschweig, Germany) and primers were synthesized by Integrated DNA
Technologies (Coralville, IA, USA). For ligation independent cloning of the genes into
the pLIC-SGC1 vector, specific overhangs were added at both ends of the genes [31–33].
Genes encoding for glucansucrases from L. animalis TMW 1.971 and L. curvatus TMW 1.624
(previously described by Rühmkorf et al. [34]) were cloned from genomic DNA, while
the gene encoding for glucansucrase from L. reuteri TMW 1.106 was previously cloned
into the pLIC-SGC1 vector [13]. The sequences of the inserted genes were confirmed by
Sanger sequencing (Eurofins GATC Biotech, Konstanz, Germany). For protein expression,
plasmids were transformed into OneShot BL21 Star (DE3) cells by heat shock. A single
colony was transferred to 5 mL of LB medium (100 µg ampicillin/mL) and grown at 37 ◦C
and 225 rpm. After growing the precultures for 6 h at 37 ◦C and 225 rpm, the suspension
was transferred to 200 mL of fresh LB medium (100 µg ampicillin/mL). The culture was
further incubated for 3 h at 37 ◦C and 225 rpm, and isopropyl-β-D-thiogalactopyranoside
(final concentration: 0.1 mM) was added to induce protein expression. After incubating
for 16 h at room temperature, cells were harvested by centrifugation, re-suspended in
binding buffer (50 mM sodium phosphate, 300 mM NaCl, 10 mM imidazole, pH 7.5), and
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lysed by sonication (amplitude 50%, 3 × 20 s pulse, 59.9 s pause) with a Sonifier W−250 D
(Branson, Danbury, CT, USA). Cell debris were removed by centrifugation (30 min, 4 ◦C,
20,000× g) and the clear supernatant was transferred to a HisPur Ni-NTA resin (Thermo
Fisher Scientific; pre-equilibrated with binding buffer). The suspension was incubated for
1 h at 4 ◦C, washed with 4 volumes of binding buffer, and the recombinant proteins were
eluted with elution buffer (50 mM sodium phosphate, 300 mM NaCl, 100 mM imidazole,
pH 7.5).

2.3. Optimum Incubation Conditions

Dextranase activity and optimum incubation conditions were determined by monitor-
ing the hydrolysis of AZCL-dextran according to the manufacturer’s instructions. Briefly,
20 µL of enzyme solution was added to 100 µL of AZCL-dextran suspension in different
buffers (pH 4.0–5.5: 50 mM sodium acetate buffer; pH 6.0–7.0: 50 mM sodium phosphate
buffer; pH 7.5 and 8.0: 50 mM Tris buffer), which were pre-equilibrated at the desired
temperature. Subsequently, the suspension was incubated for 15 min (temperature from
20–90 ◦C). The reaction was stopped by adding 1 mL Tris-base (2%, w/v) and insoluble ma-
terial was removed by centrifugation. The extent of hydrolysis was analyzed by measuring
the absorption at 590 nm in a microplate reader.

2.4. Dextran Production

Prior to dextran production, the hydrolytic activity of recombinant glucansucrases
was analyzed by hydrolyzing 35 mM para-nitrophenyl-α-glucoside in 50 mM sodium
acetate buffer (supplemented with 1 mM CaCl2, pH 5.5). The amount of para-nitrophenol
formed was continuously measured in a microplate reader (Infinite M200 PRO, Tecan,
Männedorf, Switzerland) at 400 nm. Subsequently, dextrans were produced by adding
1 mU (1 U = 1 µmol of released para-nitrophenol/min) dextransucrase to a 500 mM sucrose
solution (50 mM sodium acetate buffer, 1 mM CaCl2, 0.05% ProClin 300, pH 5.5). After
16 h of incubation, dextrans were precipitated by adding two volumes of ethanol (96%
v/v). Subsequently, the precipitated polysaccharides were recovered by centrifugation
and redissolved/resuspended in water. To remove low molecular weight compounds, the
solutions/suspensions were dialyzed for 24 h against water (molecular weight cut-off:
3.5 kDa), and freeze-dried.

2.5. Dextranase-Mediated Hydrolysis

For dextran hydrolysis, the partially insoluble L. animalis and L. curvatus dextrans
were dissolved in 90:10 DMSO/water (v/v, 10 mg/mL) and diluted with water (final
concentration 1 mg/mL). L. reuteri dextrans were completely soluble and thus dissolved in
water (1 mg/mL). Hydrolysis was carried out by adding different activities (determined
by the above described AZCL dextran assay) to the dextran solutions, followed by 24 h
of incubation at 30 ◦C (SSAL_1145) or 40 ◦C (all other dextranases). After inactivation of
the enzymes by heating to 95 ◦C for 5 min, the solutions were diluted and analyzed by
HPAEC-PAD as described below.

To isolate isomaltotriose and isomaltotetraose for incubation with Penicillium sp.
dextranase, L. animalis dextrans were hydrolyzed with Penicillium sp. dextranase (for
isomaltotetraose) and BT_3087 (for isomaltotriose) in preparative scale. After inactivation
of the enzymes and freeze-drying, the resulting oligosaccharides were separated on a Bio-
Gel P-2 column (85× 2.6 cm) with water as eluent at 1 mL/min and 40 ◦C. RI-detection was
used, fractions collected at fixed time intervals were pooled according to the chromatogram,
and freeze-dried. For dextranase hydrolysis, isomaltotriose and isomaltotetraose were
dissolved in water (final concentration: 100 µg/mL) and incubated with 0.1 U, 5 U, 25 U,
and 100 U as described above.
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2.6. High Performance Anion Exchange Chromatography

HPAEC-PAD analysis of dextranase hydrolysates was carried out on an ICS-5000
system (Thermo Scientific Dionex, Sunnyvale, CA, USA). A CarboPac PA200 column
(250 mm × 3 mm i.d., 5.5 µm particle size, Thermo Scientific Dionex) with water (A),
0.1 M sodium hydroxide (B), 0.1 M sodium hydroxide + 0.5 M sodium acetate (C) as
eluents was used for separation. The column was held at 25 ◦C and the flow rate was
0.4 mL/min. Before every run, the column was washed with 100% C for 10 min and
equilibrated with 90% A and 10% B for 20 min. After injection, the following gradient was
applied: 0–10 min, isocratic 90% A and 10% B; 10–20 min, linear from 90% A and 10% B to
100% B; 20–45 min, linear from 100% B to 80% B and 20% C; 45–55 min, linear to 100% C;
55–60 min, isocratic 100% C. Previously characterized oligosaccharides [11,12] were used
as standard compounds.

3. Results and Discussion
3.1. Dextranase Production and Characterization

Heterologous expression of the bacterial dextranases SSAL_1145 and BT_3087 fol-
lowed by purification with immobilized metal affinity chromatography yielded sufficient
amounts of pure enzyme (confirmed by SDS-PAGE, Figure S1). As described above, the
focus of this study was on investigating the released oligosaccharides by HPAEC-PAD,
however, improper incubation conditions may result in a lack of hydrolysis. Therefore, an
assay based on AZCL-dextran was used to determine suitable incubation conditions for
the purified and purchased enzymes (Figure 1).
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Figure 1. Relative activity of bacterial (SSAL_1145 and BT_3087) and fungal (Penicillium sp. and Chaetomium sp.) dextranases
at different pH values and temperatures, determined photometrically by using AZCL-dextran. The activity at each condition
was analyzed in at least two independent experiments.

The activity of the enzymes at different temperatures was clearly different. Dextranase
from Chaetomium sp. showed significant activity between 20 and 90 ◦C with an optimum
between 50–60 ◦C, which is in good agreement with data from the literature and from
the supplier [15,18,19]. In contrast, Penicillium sp. dextranase showed a rather narrow
activity range between 20 and 60 ◦C with a maximum around 40 ◦C. Comparable data
were also obtained in previous studies on Penicillium sp. dextranases [14,24]. Just as
previously described for dextranases from streptococci [26–28], SSAL_1145 had its optimum
temperature between 25 and 40 ◦C and was not active at higher temperatures. Notably,
dextranase from B. thetaiotaomicron showed nearly maximum activity up to 60 ◦C, thus, the
enzyme is very active above the optimum growth conditions of its organism of origin.
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Fungal dextranases were most active (>50% relative activity) between pH 5 and 7,
which is in good agreement with previous studies [14,15,18,19,21,24]. BT_3087 showed a
comparably high activity between pH 4.0 and 7.5, which is again notable with regards to
the optimum growth conditions of its organism of origin. In contrast, dextranase from
S. salivarius was most active at weakly acidic pH (4.0–5.5), which is in good agreement
with previous results on dextranases from streptococci [26–28]. Because all enzymes were
active at weakly acidic pH and because buffers may interfere with the chromatographic
analyses, incubations of structurally different dextrans were conducted in bidistilled water
(pH 5.5–6.0).

3.2. Hydrolysis of Linear Dextrans

To investigate to which degree α-1,6-linked glucose units can be cleaved, dextran
from L. animalis was used. It has been demonstrated in previous studies [30,34] and in
our laboratory, that this polysaccharide is completely linear. However, this also results in
some solubility issues, which can mostly be overcome by solvation in DMSO and dilution
with water. Nevertheless, incomplete solvation may slow down or inhibit enzymatic
hydrolysis to some extent, which was also indicated by lower peak intensities compared to
other dextrans.

In previous studies, we demonstrated that 24 h of incubation at 40 ◦C and enzyme
activity of 5 U dextranase from Chaetomium sp./mg dextran is in most cases sufficient for an
end point incubation [8,11,12]. Therefore, 5 U and 24 h of incubation at 30 ◦C (SSAL_1145)
and 40 ◦C (all other dextranases) were initially used for the hydrolysis of L. animalis dextran
in this study. The HPAEC-PAD chromatograms resulting from these conditions are shown
in Figure 2.

Foods 2021, 10, x FOR PEER REVIEW 5 of 12 
 

 

dextranase from B. thetaiotaomicron showed nearly maximum activity up to 60 °C, thus, 
the enzyme is very active above the optimum growth conditions of its organism of origin. 

Fungal dextranases were most active (>50% relative activity) between pH 5 and 7, 
which is in good agreement with previous studies [14,15,18,19,21,24]. BT_3087 showed a 
comparably high activity between pH 4.0 and 7.5, which is again notable with regards to 
the optimum growth conditions of its organism of origin. In contrast, dextranase from S. 
salivarius was most active at weakly acidic pH (4.0–5.5), which is in good agreement with 
previous results on dextranases from streptococci [26–28]. Because all enzymes were ac-
tive at weakly acidic pH and because buffers may interfere with the chromatographic 
analyses, incubations of structurally different dextrans were conducted in bidistilled wa-
ter (pH 5.5–6.0). 

3.2. Hydrolysis of Linear Dextrans 
To investigate to which degree α-1,6-linked glucose units can be cleaved, dextran 

from L. animalis was used. It has been demonstrated in previous studies [30,34] and in our 
laboratory, that this polysaccharide is completely linear. However, this also results in 
some solubility issues, which can mostly be overcome by solvation in DMSO and dilution 
with water. Nevertheless, incomplete solvation may slow down or inhibit enzymatic hy-
drolysis to some extent, which was also indicated by lower peak intensities compared to 
other dextrans. 

In previous studies, we demonstrated that 24 h of incubation at 40 °C and enzyme 
activity of 5 U dextranase from Chaetomium sp./mg dextran is in most cases sufficient for 
an end point incubation [8,11,12]. Therefore, 5 U and 24 h of incubation at 30 °C 
(SSAL_1145) and 40 °C (all other dextranases) were initially used for the hydrolysis of L. 
animalis dextran in this study. The HPAEC-PAD chromatograms resulting from these con-
ditions are shown in Figure 2. 

 
Figure 2. HPAEC-PAD chromatograms of L. animalis dextrans after 24 h of incubation with 5 U of 
dextranases from Chaetomium sp., Penicillium sp., B. thetaiotaomicron (BT_3087), and S. salivarius 
(SSAL_1145). The oligosaccharides shown in the chromatograms were identified by comparison 
with standard compounds and were not present in the enzyme and dextran solutions. The later 
eluting peaks in the SSAL_1145 hydrolysate result from linear isomalto-oligosaccharides with a 
higher degree of polymerization. 

As expected, enzymatic hydrolysis with Chaetomium sp. dextranase resulted in glu-
cose and isomaltose. Although small amounts of isomaltotriose were detected (probably 

Figure 2. HPAEC-PAD chromatograms of L. animalis dextrans after 24 h of incubation with 5 U
of dextranases from Chaetomium sp., Penicillium sp., B. thetaiotaomicron (BT_3087), and S. salivarius
(SSAL_1145). The oligosaccharides shown in the chromatograms were identified by comparison
with standard compounds and were not present in the enzyme and dextran solutions. The later
eluting peaks in the SSAL_1145 hydrolysate result from linear isomalto-oligosaccharides with a
higher degree of polymerization.

As expected, enzymatic hydrolysis with Chaetomium sp. dextranase resulted in glu-
cose and isomaltose. Although small amounts of isomaltotriose were detected (probably
derived from a delayed hydrolysis of only partially dissolved dextran), this oligosaccharide
disappeared with higher enzyme amounts (as already described previously [8,11,12,15]).
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Hydrolysis with dextranase from Penicillium sp. resulted in the formation of isomaltose and
isomaltotetraose, whereas glucose or isomaltotriose were not detected. Thus, these results
suggest that the Penicillium sp. dextranase used is only able to release even-numbered
isomalto-oligosaccharides. However, isomaltotriose was detected in some preliminary
experiments, therefore, isomaltotriose and isomaltotetraose were purified and separately
incubated with different amounts of Penicillium sp. dextranase (Figure 3).
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amounts of dextranase from Penicillium sp.

Interestingly, isomaltotetraose was not further hydrolyzed by Penicillium sp. dex-
tranase. In contrast, 5 U or more of the enzyme converted isomaltotriose to isomaltose
and isomaltotetraose, which demonstrates that the enzyme catalyzes a disproportionation
reaction with even-numbered isomalto-oligosaccharides as end products. In previous
investigations on Penicillium sp. dextranases, glucose, isomaltose, isomaltotriose, and
isomaltotetraose were described as the main hydrolysis products [14,20,22,23]. The absence
of glucose was only described for a dextranase from Penicillium aculeatum, but this enzyme
yielded isomaltose and isomaltotriose as end products [24]. A condensation reaction was
described for a bacterial dextranase from Arthrobacter globiformis [35], while it was only
hypothesized for a Penicillium lilalicum dextranase [22]. However, the latter enzyme was
able to cleave isomaltotriose to glucose and isomaltose. Therefore, the preferred production
of even-numbered isomalto-oligosaccharides and the catalysis of a disproportionation
reaction is a novel property of Penicillium sp. dextranases.

Because the HPAEC-PAD chromatograms obtained from the hydrolysis of L. ani-
malis dextran with BT_3087 and SSAL_1145 contained isomaltotriose as well as higher
oligosaccharides (in case of SSAL_1145), a higher enzyme amount (100 U) was applied to
investigate if further hydrolysis is possible (Figure 4).

As it can be seen from the chromatograms, higher activities of both BT_3087 and
SSAL_1145 resulted in (almost) complete degradation of higher oligosaccharides and
isomaltotriose to isomaltose and glucose. Therefore, both enzymes eventually yield the
same end products as dextranase from Chaetomium sp. However, different products may
be obtained after the hydrolysis of branched dextrans.
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3.3. Hydrolysis of O3- and O4-Branched Dextrans

The enzymatic hydrolysis of O3-branched dextrans was investigated by using dextrans
produced by glucansucrase from L. curvatus TMW 1.624. Oligosaccharides that result
from the hydrolysis of these dextrans with Chaetomium sp. dextranase were previously
isolated and characterized in detail [11]. To achieve an end-point hydrolysis of the oligo-
and polysaccharides, the enzyme amounts needed for complete hydrolysis of L. animalis
dextrans were used (bacterial dextranases: 100 U, fungal dextranases: 5 U, Figure 5).

Dextranase from Chaetomium sp. yielded the expected oligosaccharide pattern (except
for the minor amounts of isomaltotriose). With regards to the branched oligosaccharides,
Penicillium sp. dextranase yielded a similar product pattern and only slightly varying
peak intensities were observed. In addition, this enzyme only liberated isomaltose and
isomaltotetraose, which is in good agreement with the results described above. As expected,
the bacterial dextranases yielded glucose and isomaltose as the main products, however,
clearly different intensities were detected for the branched oligosaccharides compared to
the dextranases from Chaetomium sp. and Penicillium sp. While D3-Va and D3-VI were of
comparable abundance, D3-IV showed a lower peak intensity and D3-Vb showed a clearly
higher peak intensity compared to the hydrolysates obtained with fungal dextranases.
Both oligosaccharides represent monomeric, O3-bound side chains and only differ in
the attachment of an additional non-reducing glucose unit bound to the O3-branched
backbone unit. Therefore, it is likely that the two oligosaccharides represent the same
portion of monomeric side chains, but different modes of actions of the enzymes yield
varying abundances of the corresponding oligosaccharides. This could be the result from
the attack of different sites within the α-1,6-linked areas of the dextrans, which would
lead to different intermediate products and thus in an increased formation of D3-Vb,
which cannot be hydrolyzed any further. However, the oligosaccharide profiles obtained
with bacterial dextranases also clearly indicate the predominant abundance of monomeric
side chains.

The O4-branched dextrans formed by glucansucrase from L. reuteri TMW 1.106 were
also investigated because they represent a rather rare dextran type and because several
of the enzymatically released oligosaccharides were previously characterized [11,12]. The
resulting HPAEC-PAD chromatograms are shown in Figure 6.
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Figure 5. HPAEC-PAD chromatograms of L. curvatus dextrans after 24 h of incubation with 5 U of dextranases from
Chaetomium sp., Penicillium sp. and 100 U of dextranases from B. thetaiotaomicron (BT_3087), and S. salivarius (SSAL_1145).
The oligosaccharides shown in the chromatograms were identified by comparison with previously characterized standard
compounds [11] and were not present in the enzyme and dextran solutions.
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Figure 6. HPAEC-PAD chromatograms of L. reuteri dextrans after 24 h of incubation with 5 U of dextranases from
Chaetomium sp., Penicillium sp. and 100 U of dextranases from B. thetaiotaomicron (BT_3087), and S. salivarius (SSAL_1145).
The oligosaccharides shown in the chromatograms were identified by comparison with previously characterized standard
compounds [11,12] and were not present in the enzyme and dextran solutions.
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The chromatogram obtained from the hydrolysis of L. reuteri dextrans with 5 U of
Chaetomium sp. dextranase yielded the previously described product pattern [11]. A com-
parable pattern was detected in the hydrolysate obtained with Penicillium sp. dextranase,
however, D4-IV and D4-Va had a higher intensity, whereas the other oligomers showed a
lower intensity. Because the hexa- and heptameric oligosaccharides contain two or three
1,6-linked glucose units on the non-reducing end, the higher abundance of D4-IV and
D4-Va may result from an elevated and possibly ongoing hydrolysis of high molecular
weight compounds. To evaluate this, L. reuteri dextrans were incubated with a higher
enzyme amount (100 U) of Penicillium sp. dextranase and, as a comparison, dextranase
from Chaetomium sp. (Figure 7).

Foods 2021, 10, x FOR PEER REVIEW 9 of 12 
 

 

The chromatogram obtained from the hydrolysis of L. reuteri dextrans with 5 U of 
Chaetomium sp. dextranase yielded the previously described product pattern [11]. A com-
parable pattern was detected in the hydrolysate obtained with Penicillium sp. dextranase, 
however, D4-IV and D4-Va had a higher intensity, whereas the other oligomers showed a 
lower intensity. Because the hexa- and heptameric oligosaccharides contain two or three 
1,6-linked glucose units on the non-reducing end, the higher abundance of D4-IV and 
D4-Va may result from an elevated and possibly ongoing hydrolysis of high molecular 
weight compounds. To evaluate this, L. reuteri dextrans were incubated with a higher en-
zyme amount (100 U) of Penicillium sp. dextranase and, as a comparison, dextranase from 
Chaetomium sp. (Figure 7). 

 
Figure 7. HPAEC-PAD chromatograms of L. reuteri dextrans after 24 h of incubation with different 
amounts of dextranase from Chaetomium sp. and Penicillium sp. The oligosaccharides shown in the 
chromatograms were identified by comparison with previously characterized standard com-
pounds [11,12] and were not present in the enzyme and dextran solutions. 

In case of Penicillium sp. dextranase, an activity dependent degradation of higher ol-
igosaccharides can be observed. While D4-VI and D4-VIIa are the clearly predominating 
products at low enzyme activities, they are completely degraded to D4-IV and D4-Va at 
higher activities. Therefore, isomaltose units are liberated from the non-reducing ends of 
the higher oligosaccharides. Interestingly, higher activities of Chaetomium sp. dextranase 
also led to some further hydrolysis of D4-VIIa (although linear oligosaccharides are usu-
ally completely hydrolyzed at this activity level). As it can be seen in the chromatograms, 
this compound (and most likely other later eluting branched oligosaccharides) were de-
graded to D4-IV and D4-Va. However, the activity on D4-VIIa seems to be rather low, as 
only a slight improvement is observed from 5 U over 25 U to 100 U. Nonetheless, Chaeto-
mium sp. dextranase seems to be able to remove isomaltosyl or isomaltotriosyl units from 
the non-reducing end of branched oligosaccharides. Notably, the portion of D4-Vb also 
increased with increasing enzyme activity. This is most likely a result of the hydrolysis of 
higher oligosaccharides with dimeric side chains (such as D4-VIIb, which may be present 
in trace amounts). Therefore, information on dimeric, 1,6-linked side chains can also be 
derived from the hydrolysates obtained with higher enzyme activities. 

The two bacterial dextranases showed clearly different product patterns compared 
to dextranases from Chaetomium sp. and Penicillium sp. Notably, D4-IV and D4-Vb (no 
terminal, O6-bound glucose unit) were not detected in significant amounts in the hydrol-
ysates obtained with both enzymes; thus, they are (unlike the fungal dextranases) not able 
to cleave the 1,6-linkage in a 1,4,6-linked glucose unit. The main products obtained from 

Figure 7. HPAEC-PAD chromatograms of L. reuteri dextrans after 24 h of incubation with different amounts of dextranase
from Chaetomium sp. and Penicillium sp. The oligosaccharides shown in the chromatograms were identified by comparison
with previously characterized standard compounds [11,12] and were not present in the enzyme and dextran solutions.

In case of Penicillium sp. dextranase, an activity dependent degradation of higher
oligosaccharides can be observed. While D4-VI and D4-VIIa are the clearly predominating
products at low enzyme activities, they are completely degraded to D4-IV and D4-Va at
higher activities. Therefore, isomaltose units are liberated from the non-reducing ends of
the higher oligosaccharides. Interestingly, higher activities of Chaetomium sp. dextranase
also led to some further hydrolysis of D4-VIIa (although linear oligosaccharides are usually
completely hydrolyzed at this activity level). As it can be seen in the chromatograms, this
compound (and most likely other later eluting branched oligosaccharides) were degraded
to D4-IV and D4-Va. However, the activity on D4-VIIa seems to be rather low, as only a
slight improvement is observed from 5 U over 25 U to 100 U. Nonetheless, Chaetomium sp.
dextranase seems to be able to remove isomaltosyl or isomaltotriosyl units from the non-
reducing end of branched oligosaccharides. Notably, the portion of D4-Vb also increased
with increasing enzyme activity. This is most likely a result of the hydrolysis of higher
oligosaccharides with dimeric side chains (such as D4-VIIb, which may be present in trace
amounts). Therefore, information on dimeric, 1,6-linked side chains can also be derived
from the hydrolysates obtained with higher enzyme activities.

The two bacterial dextranases showed clearly different product patterns compared to
dextranases from Chaetomium sp. and Penicillium sp. Notably, D4-IV and D4-Vb (no termi-
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nal, O6-bound glucose unit) were not detected in significant amounts in the hydrolysates
obtained with both enzymes; thus, they are (unlike the fungal dextranases) not able to
cleave the 1,6-linkage in a 1,4,6-linked glucose unit. The main products obtained from the
hydrolysis with BT_3087 were D4-Va, D4-VI, and D4-VIIa and the peak intensity decreased
from D4-Va to D4-VIIa. SSAL_1145 also yielded these oligosaccharides, but the peak in-
tensity decreased from D4-VIIa to D4-Va. In addition, an unknown oligosaccharide which
eluted shortly after D4-VIIa was detected. Therefore, SSAL_1145 showed a clearly lower
activity on the O4-branched dextrans than the other enzymes, which is also indicated by the
generally low peak intensities and the low abundance of linear isomalto-oligosaccharides.

4. Conclusions

Overall, the results of this study demonstrated the diversity of dextranases from
different origins. With regards to the incubation conditions, the high activity of all enzymes
around 40 ◦C and the weakly acidic pH is in good agreement with previous studies and in
most cases the preferred growth conditions of the organisms of origin. Hydrolysis of linear
dextrans showed that dextranases from B. thetaiotaomicron, S. salivarius, and Chaetomium sp.
eventually lead to the formation of isomaltose. However, isomaltose and isomaltotetraose
were detected as the end products of the hydrolysis with Penicillium sp. dextranase. This
unique product spectrum is the result of a disproportionation reaction, in which isomal-
totriose is converted to isomaltose and isomaltotetraose. For O3-branched dextrans, the
product patterns obtained with fungal and bacterial dextranases were comparable within
the two groups but different between them. Namely, dextranases from Chaetomium sp. and
Penicillium sp. were able to hydrolyze O3-branched dextrans to a higher extent. However,
the same conclusions on the dextran structures could be drawn from the oligosaccharide
profiles. In addition, bacterial dextranases also hydrolyzed O4-branched dextrans to a
minor extent compared to fungal dextranases, which resulted in higher portions of longer
branched oligosaccharides. Notably, Penicillium sp. dextranase was able to hydrolyze this
dextran type to a clearly higher degree than Chaetomium sp. dextranase. Therefore, the
enzyme applied for structural analysis or technological purposes has be to chosen carefully.
However, the differences between the enzymes can also be used to selectively produce
certain oligosaccharides in higher yields.

Supplementary Materials: The following are available online at https://www.mdpi.com/2304-8
158/10/2/244/s1, Figure S1: SDS-PAGE analysis of the two recombinant bacterial dextranases
SSAL_1145 and BT_3087.
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