
fphys-11-01043 August 17, 2020 Time: 16:35 # 1

ORIGINAL RESEARCH
published: 19 August 2020

doi: 10.3389/fphys.2020.01043

Edited by:
Gentaro Iribe,

Asahikawa Medical University, Japan

Reviewed by:
Akira Amano,

Ritsumeikan University, Japan
Vicky Y. Wang,

The University of Auckland,
New Zealand

*Correspondence:
Kenneth S. Campbell

k.s.campbelluk@y.edu

†Present address:
Brianna Sierra Chrisman,

Department of Bioengineering,
Stanford University, Stanford, CA,

United States

Specialty section:
This article was submitted to

Computational Physiology
and Medicine,

a section of the journal
Frontiers in Physiology

Received: 16 November 2019
Accepted: 29 July 2020

Published: 19 August 2020

Citation:
Campbell KS, Chrisman BS and
Campbell SG (2020) Multiscale

Modeling of Cardiovascular Function
Predicts That the End-Systolic

Pressure Volume Relationship Can Be
Targeted via Multiple Therapeutic

Strategies. Front. Physiol. 11:1043.
doi: 10.3389/fphys.2020.01043

Multiscale Modeling of
Cardiovascular Function Predicts
That the End-Systolic Pressure
Volume Relationship Can Be
Targeted via Multiple Therapeutic
Strategies
Kenneth S. Campbell1* , Brianna Sierra Chrisman2† and Stuart G. Campbell2

1 Division of Cardiovascular Medicine, Department of Physiology, University of Kentucky, Lexington, KY, United States,
2 Department of Biomedical Engineering, Yale University, New Haven, CT, United States

Most patients who develop heart failure are unable to elevate their cardiac output
on demand due to impaired contractility and/or reduced ventricular filling. Despite
decades of research, few effective therapies for heart failure have been developed.
In part, this may reflect the difficulty of predicting how perturbations to molecular-
level mechanisms that are induced by drugs will scale up to modulate system-level
properties such as blood pressure. Computer modeling might help with this process
and thereby accelerate the development of better therapies for heart failure. This
manuscript presents a new multiscale model that uses a single contractile element
to drive an idealized ventricle that pumps blood around a closed circulation. The
contractile element was formed by linking an existing model of dynamically coupled
myofilaments with a well-established model of myocyte electrophysiology. The resulting
framework spans from molecular-level events (including opening of ion channels and
transitions between different myosin states) to properties such as ejection fraction that
can be measured in patients. Initial calculations showed that the model reproduces
many aspects of normal cardiovascular physiology including, for example, pressure-
volume loops. Subsequent sensitivity tests then quantified how each model parameter
influenced a range of system level properties. The first key finding was that the End
Systolic Pressure Volume Relationship, a classic index of cardiac contractility, was
∼50% more sensitive to parameter changes than any other system-level property.
The second important result was that parameters that primarily affect ventricular filling,
such as passive stiffness and Ca2+ reuptake via sarco/endoplasmic reticulum Ca2+-
ATPase (SERCA), also have a major impact on systolic properties including stroke
work, myosin ATPase, and maximum ventricular pressure. These results reinforce the
impact of diastolic function on ventricular performance and identify the End Systolic
Pressure Volume Relationship as a particularly sensitive system-level property that can
be targeted using multiple therapeutic strategies.
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INTRODUCTION

Diseases caused by reduced or dysregulated contractile function
are a major clinical problem. About half of the 6 million
Americans who have heart failure, for example, exhibit depressed
contractile function (Benjamin et al., 2018). Another 700,000
Americans have inherited genetic mutations that have been
linked to myopathies (Watkins et al., 2011; Houston and Stevens,
2014). Treatment options for most of these patients remain
limited. For example, the clinical guidelines for heart failure
(Writing Committee et al., 2013) recommend standardized
therapies (primarily β-blockers and ACE inhibitors) that were
developed > 30 years ago and produce a 5-year survival
rate of only 50% (Benjamin et al., 2018). Given these
facts, there is a pressing need to leverage the field’s ever-
increasing knowledge of molecular and cellular-level processes to
enhance clinical care.

Multiscaled computer modeling could accelerate this process.
Indeed, a recent paper (Campbell et al., 2019) outlined a potential
approach that creates patient-specific computer models that
integrate genomic, proteomic, imaging, and functional data and
then runs the models forward in time to predict how each patient
will respond to possible therapeutic interventions. The authors
went on to describe a moonshot goal of running a clinical trial
to test whether implementing the model-optimized therapy helps
patients more than the current standard of care. While this sort
of endeavor still seems some way in the future, it captures the
possible long-term impact of patient-focused modeling.

The current work describes one step in the development
of multiscale models of cardiovascular function and builds on
extensive prior work by many other groups including but not
restricted to papers by Negroni and Lascano (1996), Shim et al.
(2004), and Pironet et al. (2013). Specifically, the framework
described here was constructed by linking the MyoSim model of
dynamically-coupled myofilaments (Campbell et al., 2018) with
the sophisticated model of myocyte electrophysiology developed
by ten Tusscher et al. (2004). This created a contractile system
that was based on molecular-level events (including opening of
ion channels and transitions between different myosin states)
that could be manipulated via numerical parameters. To the
authors’ knowledge, the current model is the first to simulate
blood circulation using a myofilament system that incorporates
transitions between the OFF and ON states of myosin (Irving,
2017). Since these transitions contribute to length-dependent
Ca2+-activation (Ait-Mou et al., 2016; Kampourakis et al., 2016;
Zhang et al., 2017), the current model can help to improve
understanding of ventricular function.

Organ-level function was simulated using the technique
described by Shin et al. (Shim et al., 2004) and Campbell et al.
(2008) which approximates the left ventricle as a hemisphere. In
this approach, the volume of the ventricle is related to the length
of a contractile element embedded circumferentially in the mid-
transmural wall, while the chamber pressure is deduced from the
stress in the contractile element via Laplaces’s law. The circulatory
system was modeled using zero-dimensional (lumped parameter)
compartments (Shi et al., 2011) representing the aorta, arteries,
arterioles, capillaries, and veins. Flows between the different

compartments were defined by Ohm’s law with one-way valves
controlling the movement of blood into and out of the ventricle.

The model spans from molecular-level events to system-
level properties but remains simple enough to run on a laptop.
The code is open-source and available for free and unrestricted
download. The results described in the following pages include
sensitivity analyses that demonstrate how modulation of cell
and molecular-level processes scale up to impact system-level
properties. Some metrics (particularly the End Systolic Pressure
Volume Relationship, ESPVR) were predicted to be particularly
sensitive to molecular-level interventions while others (for
example, stroke volume) were harder to modulate. These types
of insights may prove useful as scientists try to translate their
research toward improved clinical care.

MATERIALS AND METHODS

Electrophysiological Model
Ten Tusscher et al.’s model of the electrophysiology of a mid-
myocardial human myocyte (ten Tusscher et al., 2004) was
downloaded as Python source code from CellML.org (Lloyd
et al., 2008). The model was based on nine channels, four
pumps, and two exchangers and has 17 state variables and 46
numerical parameters. Most of the parameters were kept fixed
at the published values but the code was modified to allow
adjustments to the following parameters: Ca Vleak, Ca Vmax_up,
gCaL (all related to a calcium dynamics), gto (transient outward
current), gKr (rapid time-dependent potassium current), and gKs
(slow time-dependent potassium current).

When paced at 1 Hz with 3 ms pulses of stimulus current (−52
pA pF−1), the base model took several hundred heart-beats to
reach steady-state. The simulations presented in this work were
initiated using the steady-state solution which was obtained by
pre-calculating 1000 consecutive heart-beats.

MyoSim
The mechanical properties of dynamically-coupled myofilaments
were simulated using the MyoSim framework (Campbell, 2014).
As shown in Supplementary Figure S1, binding sites on the
thin filaments were activated by Ca2+. Cross-bridges transitioned
between an OFF (also called super-relaxed, or interacting heads
motif) state (Alamo et al., 2008; Hooijman et al., 2011; Nag et al.,
2017), an ON state (that could attach to actin), and a single
bound force-generating state. The bound heads contributed to
cooperative activation of the thin filament. The rate of the OFF to
ON transition increased linearly with force. As recently described
by Campbell et al. (2018), this allows the model to exhibit length-
dependent activation and reproduce the timing and magnitude
of isometric twitch contractions measured at different sarcomere
lengths (Campbell, 2011).

Additional details relating to the MyoSim model are provided
in Supplementary Information.

Ventricle
The ventricle was idealized as a single hemisphere characterized
by a chamber volume Vventricle, a slack volume Vslack (when the
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passive stress in the MyoSim model was zero), a wall volume
Wvolume, and an internal radius r. The wall thickness Wthickness
was calculated as Wvolume / (2 π r2) with r defined as:

r =

(
3 Vventricle

2 π

)1/3
(1)

The pressure Pventricle inside the ventricle was deduced from
Laplace’s law as:

Pventricle =
2 S Wthickness

r
(2)

where S was the wall stress calculated by the MyoSim model.

Circulation
The systemic circulation was modeled using zero-dimensional
compartments representing the aorta, arteries, arterioles,
capillaries, and veins. Each compartment had a compliance Cx
and a resistance Rx where x indicated the specific compartment.
The pressure Px in each compartment was calculated as
Px = Vx/Cx where Vx is the compartment volume.

Ohm’s law was used to calculate the blood flow into and out
of each compartment. The relevant formulae are included as Eqs
(S11) and (S12) in Supplementary Information.

Model Parameters
Base values for the parameters used in the simulations are
shown in Supplementary Table S1. In contrast to many of the
authors’ prior publications, no attempt was made to constrain
the parameters using new experimental data. Instead, parameters
were set to plausible values based on prior experience and typical
values for a human. For example, the total blood volume Vtotal
was fixed at 5 liters.

Computer Code
Simulations were performed using code written in Python with
non-trivial calculations performed using functions from the
Numpy (van der Walt et al., 2011) and Scipy (Jones et al., 2001)
libraries. Source code and documentation are available online at
https://campbell-muscle-lab.github.io/PyMyoVent/. Simulations
implemented with 1 ms time-steps ran in near real-time on a
typical PC core. The electrophysiology model was the slowest part
of the algorithm.

RESULTS

Figure 1 summarizes the multiscale model of the human
cardiovascular system that was developed for this work. Heart-
beats were initiated at 1 Hz by applying a pacing stimulus to
a model published by ten Tusscher et al. (2004) that simulates
the electrophysiology of a human mid-myocardial cell. At each
time-step, the free intracellular Ca2+ concentration predicted by
the electrophysiological model was passed to a MyoSim model
of sarcomere level-contraction (Campbell, 2014; Campbell et al.,
2018). The contraction model was coupled to a ventricle that
was idealized as a hemisphere (Campbell et al., 2008). This

FIGURE 1 | Overview of the multiscale model of cardiovascular physiology.
Ca2+ transients simulated using a well-established model of the
electrophysiology of a human cell (ten Tusscher et al., 2004) drove a
contractile model implemented using MyoSim (Campbell, 2014; Campbell
et al., 2018). The pressure and volume in the hemispherical ventricle were
calculated from the contractile element’s force per unit area and length. The
ventricle pumped blood through a systemic circulation that was mimicked
using zero dimensional compartments. Additional details are provided in
section “Materials and Methods.”

approximation allowed the pressure and volume in the ventricle
to be calculated from the contractile element’s force per unit area
and length. The ventricle was in turn coupled to a circulation
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that was mimicked using lumped parameters and valves that
controlled the flow of blood into and out of the heart.

Additional details about each level of the model are provided
in section “Materials and Methods.”

Base Simulation
Figure 2 shows a simulation of 17 heart beats performed using
the base parameters listed in Supplementary Table S1. The
calculations were started with the ventricle filled to 150% of
its slack volume and the remainder of the blood in the venous
compartment. Heart beats were initiated once per second by
activating a 3 ms pulse of stimulus current (−52 pA pF−1) in the
electrophysiological model.

Each Ca2+ transient activated thin filaments in the contractile
model. This allowed myosin heads to transition into the force-
generating state, thereby raising wall stress and ventricular
pressure (Eq. 2). Once the ventricular pressure exceeded
aortic pressure, blood was pumped into the aorta, and
subsequently through the other circulatory components, with
inter-compartmental flow rates defined by Ohm’s law (Eq. S12
in Supplementary Information). The ventricle relaxed when
the intracellular Ca2+ concentration declined and ventricular
pressure dropped below that in the aorta. Once ventricular
pressure fell below venous pressure, blood flowed back
into the heart, re-stretching the ventricle and extending the
contractile element.

The simulation evolved toward a steady-state as blood moved
through the circulation to fill the arterial, arteriolar, capillary, and
venous compartments. This required approximately seven beats
with the base parameters. A volume perturbation was imposed
during the second half of the simulation (Figure 2, double-
headed arrow) to determine how the ventricle responded to
reduced pre-load (ventricular filling).

Figure 3 illustrates the steady-state behavior of the system
on an expanded time-scale. The heart beat was initiated by
the activation pulse which triggered an action potential and an
intracellular Ca2+ transient. Non rose sharply as the thin filament
was activated by the Ca2+ signal (see Supplementary Figure S1
and additional details in Supplementary Information). This
allowed some of the myosin heads in the MON state to transition
into the MFG state. The force developed by the attached
cross-bridges accelerated the J1 transition and pulled additional
heads from MOFF to MON and subsequently to MFG via a
positive-feedback loop that was modulated by thin filament
cooperativity and force-dependent recruitment (Campbell et al.,
2018). Ventricular pressure scaled with the force generated
by the cross-bridges and increased quickly while the chamber
remained isovolumic.

Once ventricular pressure exceeded aortic pressure, blood was
pumped into the aorta, and the contractile element shortened as
the ventricle started to contract. The shortening reduced the force
generated by attached cross-bridges and the MOFF state started to
repopulate. Although half-sarcomere force decreased by ∼50%
during ejection, ventricular pressure remained elevated due to the
diminishing internal radius of the chamber (Eq. 2).

The final stages of relaxation progressed under isometric
conditions as the thin filament deactivated and myosin heads that

detached from the MFG state were no longer able to re-bind to
available sites.

End Systolic Pressure Volume
Relationship
Figure 4 shows pressure-volume loops (ventricular pressure
plotted against ventricular volume) for beats 10–15 of the
simulation shown in Figure 2. Blood was being removed from
the venous compartment during this phase of the simulation so
the pressure-volume loops showed a progressive trend toward
lower pressure and lower volume. The End Systolic Pressure
Volume Relationship (ESPVR, an index of cardiac contractility)
was calculated as the slope of a regression line fitted to the
top left corner of each loop. In this example, the ESPVR was
1170 mm Hg liter−1.

Sensitivity Analysis
Figure 5 shows how 12 system-level properties varied as the k1
parameter was adjusted from 0.1 to 10 times the base value shown
in Supplementary Table S1. Steady-state beats and single-beat
estimates of the ESPVR for three of the k1 parameter values are
shown in Supplementary Figures S2, S3. Although the limits are
somewhat arbitrary, the 0.1 to 10x range is probably large enough
to encompass the functional effects that could be achieved
through pharmaceutical modulation of the molecular transition.
The red lines in each panel show the best-fit of a 5th order
polynomial to the simulated data. The slope of each polynomial
was evaluated at the base parameter value and normalized to
the corresponding y value to produce relative sensitivity metrics
that defined how each system-level property varied with small
adjustments in k1. For example, the relative sensitivity metric was
+0.49 for maximum ventricular pressure (because it increased
with small increases in k1 near the base value, Figure 5A) but
−0.17 for minimum ventricular pressure (because this property
decreased as k1 was increased, Figure 5B).

Note that the sensitivity metric only quantifies the effect of
small changes in the model parameter. Larger changes often
produced more complex effects that, in many cases, resulted in
non-physiological behavior. For example, maximum ventricular
pressure initially increased as k1 was elevated above its base
value because the OFF/ON thick filament equilibrium was
shifted toward the ON state. This corresponds to increased
cardiac contractility. However, if k1 was increased by more
than a factor of ∼3, the active contraction became so strong
that the ventricle ejected most of its contents into the
circulation and shrank down to a small volume. Cardiac output
thus decreased to a non-physiological extent if contractility
increased beyond a certain point. This effect is illustrated in
Supplementary Figure S4.

Calculations summarizing the effects of adjusting other model
parameters are shown in Supplementary Figures S5–S34. Note
that each parameter was scaled from 0.1 to 10 times its base
value in order to maintain a fixed proportional change. Non-
monotonic relationships between model parameters and system-
level properties (similar to the relationship between k1 and stroke
volume described above) were observed frequently.
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FIGURE 2 | Multiscale simulation of 17 heart-beats. The simulation took about seven beats to reach steady-state as blood was pumped through the systemic
circulation. The blood volume was reduced by 60% between the 10th and 15th beats to determine how the ventricle responded to reduced pre-load. The panel
showing the volumes of the circulatory compartments is plotted on a log scale. All other panels are plotted with linear scales.

Alternative strategies, including spline interpolation,
could have been used to deduce sensitivity metrics but
5th order polynomials were chosen because they produced
satisfactory fits to the simulated data and the calculations were
straightforward to implement.

Figure 6 shows the sensitivity metrics for every combination
of system-level property and model parameter as a heat-map. The
first key finding from this analysis is shown by the gray bars above
the matrix. These are arranged in order of size and represent
the mean value of the absolute relative sensitivities for each
system-level property (The absolute term prevents positive and
negative relative sensitivities from canceling out). The highest
bar, and thus the most sensitive property, was the ESPVR which

had a mean absolute relative sensitivity of 0.52. The next most
sensitive property was stroke work with a mean value of 0.35.
One implication is that perturbing a randomly-chosen model
parameter is likely to change the ESPVR at least 50% more than
any other system-level property.

A second key finding is that both systolic and diastolic
properties were sensitive to ventricular filling. The gray
bars to the right of the heat-map show the mean of the
absolute sensitivities for each model parameter. The bars are
separated into three groups corresponding to the sarcomeric,
electrophysiological, and circulatory levels of the model. The
most sensitive parameters in each group were L (the length
constant for the passive tension curve, equation S9), Ca
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FIGURE 3 | Multiscale simulation of a heart-beat at steady-state. The figure shows the 8th beat from Figure 2 on an expanded time-scale.

Vmaxup (a parameter that controls how quickly Ca2+ is
pumped into the sarcoplasmic reticulum), and Vslack (the
volume at which passive wall stress in the ventricle is
zero). Although these parameters are most obviously related
to diastolic function, the sensitivity metrics show that they
also influenced systolic properties. For example, all three
parameters had a strong impact on ESPVR, stroke work, and
minimum ventricular volume. These findings reinforce the
impact of diastolic function on ventricular performance and
could be interpreted as a molecular-level correlate of the Frank-
Starling mechanism.

DISCUSSION

This work presents a computer model that bridges from
molecular-level mechanisms (for example, opening of ion
channels) to system-level cardiovascular properties (for example,
blood pressure) that are measured in patients. The approach

helps narrow the wide gap that currently separates myocyte
biophysics from clinical cardiology and might have the potential
to help accelerate translational research. For example, Figure 6
illustrates how sensitivity analysis can be used to identify
molecular-level interventions that have a particularly large
impact on cardiovascular function. Similar calculations, perhaps
based on more sophisticated models, might prove useful for
in silico screens designed to identify potential therapeutic targets
(Campbell et al., 2019).

Alternative Strategies for Sensitivity
Analysis
The sensitivity metrics used in this work quantified the
relationship between individual molecular-level parameters and
a suite of system-level properties. This approach was selected
because many of the molecular parameters in the model
can targeted in vivo using current and/or potential future
pharmaceutical interventions. Other mathematical approaches
are possible. For example, Sobel analysis is a variance-based
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FIGURE 4 | Simulated pressure volume loops and the End Systolic Pressure
Volume Relationship (ESPVR). Ventricular pressure plotted against ventricular
volume for beats 10–15 of the simulation shown in Figure 2. The ESPVR was
calculated as the slope of a regression line (shown in red) fitted to the top-left
corner (green circles) of each pressure-volume loop.

sensitivity method that can quantify the effects of combinations
of parameters (Sobol, 1993). It can therefore test for interactions
between system inputs (Wenk, 2011).

Another option is to test how system-level function depends
on chamber-level properties. For example, as shown in Eq.
(S9), the passive wall stress at a given half-sarcomere length
depends on three molecular-level parameters: σ (a scaling
factor), Lslack (the half-sarcomere length at zero passive stress),
and L (a parameter that defines the curvature of the passive
length-tension relationship). Supplementary Figure S35 shows
how system-level properties varied as σ and L were adjusted
simultaneously so that passive stress at a given half-sarcomere
length was held constant. Essentially, this presentation shows
how the system is influenced by the non-linear stiffness of
the ventricle. Accordingly, this type of analysis might be
useful for scientists and clinicians who think primarily about
chamber properties rather than biophysical parameters. It
could also be extended to quantify the effects of association
constants (for example, k1/k2, Eqs S3 and S4) rather than the
individual parameters.

Physiological Insights
Figure 6 showed that the End Systolic Pressure Volume
Relationship (ESPVR) was ∼50% more sensitive to the model
parameters than any other system-level property. Indeed, the
absolute values of the ESPVR sensitivities exceeded 0.3 for 10 of
the 12 sarcomere-level parameters. The sensitivities were positive
for k3, kcb, kforce, k1, kon, and σ, and negative for L, koff, and k4,0
(see Supplementary Information for additional details about the
mechanisms controlled by each parameter). These are important
findings because the ESPVR is a classic measure of cardiac
contractility and frequently depressed in patients who have heart
failure (Parmley, 1985).

One interpretation of these results is that contractility is
reduced in heart failure precisely because the EPSVR is impacted

by so many mechanisms. A subtle deficit in nearly any aspect
of sarcomere-level function could compromise contractility,
with the ESPVR’s high sensitivity to molecular-level function
compounding the system-level problem.

An alternative, more optimistic, interpretation is that
contractility can be rescued using multiple therapeutic strategies.
Consider a hypothetical patient who develops heart failure
because they have inherited a mutation that reduces the
rate of cross-bridge binding (k3, Eq. S5 in Supplementary
Information). This individual could potentially be treated with
a small molecule, such as omecamtiv mecarbil, that accelerates
the transition and reverses the original deficit (Malik et al., 2011;
Swenson et al., 2017). If this approach failed, perhaps because
the mutation also altered the drug’s binding pocket, Figure 6
suggests that alternative treatment strategies could include:
enhancing force-dependent recruitment (kforce), increasing titin-
based stiffness (σ), reducing the thin filament off rate (koff)
and/or slowing myosin detachment (k4,0). While the ultimate
goal is, of course, to develop computer models that are specific
to individual patients, even the simple analyses described
here might help clinicians to weigh options in cases that are
particularly challenging.

Additional physiological insights can be gained by viewing
the relationships between sensitivity metrics. For example, the
metrics for stroke work and stroke volume (equivalent to cardiac
output in this work since heart rate was fixed) are correlated:
parameter modifications that increased one, also increased the
other. Unfortunately, the mean absolute relative sensitivity for
stroke work was 0.35, almost double the corresponding value for
stroke volume. This implies that it could be difficult to enhance
cardiac output in patients without a greater than proportional
change in metabolic cost. Again, this could be problematic for
patients who have heart failure and who already struggling to
maintain adequate circulation.

The parameter sweeps (Figure 5 and Supplementary Figures
S5–S34) summarize large amounts of data but the results for L
(Supplementary Figure S5) are particularly note-worthy. This
parameter controls the curvature of the passive length tension
relationship (Eq. S9) and had a particularly strong effect on most
system-level properties. As noted earlier, the high mean absolute
relative sensitivity of L reinforces the importance of diastolic
function for ventricular performance. The additional point made
here is that ventricular efficiency exhibited a clear optimum near
L’s base parameter value (Supplementary Figure S5I). Ventricles
with smaller values of L (stiffer chambers) or larger values (more
compliant chambers) used greater amounts of ATP to perform a
given amount of work.

The main sources of passive tension in myocardium are
collagen, titin, microtubules, and intermediate filaments but titin
is probably the most important component at physiological
sarcomere lengths (Granzier and Irving, 1995). Titin’s stiffness
can be modulated by multiple post-translational mechanisms
(Hidalgo and Granzier, 2013) and the relative expression of its
isoforms changes with disease (Nagueh et al., 2004). Perhaps
the relationship between titin’s stiffness and ventricular efficiency
is one of the driving forces underpinning these complex
regulatory effects?
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FIGURE 5 | Effects of changing k1 on system-level properties. (A–L) Show values (blue circles) for 12 system-level properties (for example, maximum ventricular
pressure) predicted for values of k1 ranging from 0.1 to 10 times the value shown in Supplementary Table S1. The red lines show the best-fit of a 5th order
polynomial to the simulated data. The relative sensitivity for each property was defined as the slope of the polynomial at the base parameter value (that is, when the
multiplier was 1) divided by the corresponding y value. The division normalized the slope to facilitate comparisons between different properties.

Another parameter that deserves comment is k1. As shown
in Eq. (S3) in Supplementary Information, this parameter
modulates the rate at which myosin heads transition from the
OFF to the ON state. Since only heads in the ON state can
attach to actin, k1 has a strong influence on contractility. This is
evident from the parameter sensitivities shown in Figure 6 and
the simulations shown in Supplementary Figures S2, S3. The
last of these figures shows single-beat estimates of the ESPVR
determined using the curve-fitting method described by Mirsky
et al. (1987). These simulations suggest that the ESPVR increases
by a factor of 2.65 as k1 is increased from 1 to 3 s−1. OFF / ON
transitions in striated muscle are currently a very exciting area

of research and are thought to be regulated by myosin-binding
protein-C (McNamara et al., 2016) as well as being an important
therapeutic target (Anderson et al., 2018). It may be useful to note
that the MyoSim framework has also been used to investigate
how phosphorylation of regulatory light chain accelerates the
ON transition in cardiac trabeculae from rodents and thereby
increases Ca2+ sensitivity (Kampourakis et al., 2016; Campbell
et al., 2018). In the current simulations, this could be modeled as
a phosphorylation dependent change in the k1 parameter.

The final physiological insight described here relates to
stroke volume. The parameter sweeps show that this system-
level property has a clear optimum for about 50% of the
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FIGURE 6 | Relative sensitivities for each combination of system-level
property and model parameter. Red colors show property / parameter
combinations that were positively correlated for small changes in the base
parameter value. For example, stroke work, minimum ventricular pressure,
and myosin ATPase all increased as L became larger (red boxes in columns
2–4 of the top row and Supplementary Figure S5). Blue colors show
negative correlations. For example, ESPVR decreased as L became larger
(blue box in column 1 of top row). The gray bars above the matrix show the
mean of the absolute relative sensitivity values for each system-level property.
The bars on the right show the corresponding means for each model
parameter. The model parameters are clustered in three groups corresponding
to the sarcomeric, electrophysiological, and circulatory levels of the model.

model parameters (including, for example, k1, Figure 5, and
kon, Supplementary Figure S11). The optimum reflects the
fact that weak contractions do not pump much blood while
contractions that are excessively strong squeeze the ventricle dry
(Supplementary Figure S4). Contractility seems to be a situation
where you really can have too much of a good thing!

Limitations
Despite its strengths, the current model has several limitations.
These include: (1) the single ventricle framework, (2) the
omission of ventricular geometry and torsional effects, (3) the
absence of autonomic control, and (4) the one-way coupling of
the electrophysiological and contractile modules. These issues are
considered in more detail in the following paragraphs.

The single ventricle framework is probably the most obvious
limitation of the current model. Human hearts have two
ventricles, with the left chamber pumping blood through the
systemic circulation to the right side of the heart, and the right
ventricle pumping blood through the pulmonary circulation to
complete the circuit. Averaged over time, the flows through
the systemic and pulmonary systems must be equal. However,
perturbations such as a change in posture or a Valsalva maneuver,
produce short-term differences in left and right ventricular
output. Similarly, clinical conditions that initially effect one
ventricle (for example, pulmonary hypertension) can induce
long-term remodeling in the other ventricle (Vonk Noordegraaf
et al., 2017). It’s clearly impossible to study these types of effects
with a single ventricle framework.

Lumens et al. (2009) developed the TriSeg model to
overcome this issue. The approach developed by these authors is
conceptually similar to the single ventricle framework presented
here but uses a more sophisticated geometry. Specifically,
the TriSeg model simulates a biventricular heart using three
contractile elements, one in the left ventricular free wall, one
in the right ventricular free wall, and one in the septum.
This allows simulation of complex organ-level effects including
interactions between the left and right ventricles and septal
geometry dynamics. One disadvantage of Lumens et al.’s original
implementation was that contractile forces were calculated
using a heuristic approach, that is, from equations that linked
myofiber strain and force but were not based on a molecular-
level model.

More recent calculations using the TriSeg framework
performed by Tewari et al. (2016) replaced the heuristic equations
with a sophisticated cross-bridge model and added in an
additional model of myocardial metabolism. However, Tewari
et al.’s contractions were driven with experimentally-recorded
Ca2+ transients rather than with an electrophysiological model as
in this manuscript. This data-driven simulation approach is very
useful because it eliminates potential uncertainties associated
with the electrophysiological model. A drawback is that it
makes it difficult to investigate how electrophysiological changes
influence system-level behavior. For example, Tewari et al.’s
model can’t predict how SERCA activity influences function
(Supplementary Figure S16) because the simulations don’t
include this level of molecular detail. An exciting next step would
be to combine the strengths of the different frameworks and
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create a TriSeg model that integrates models of electrophysiology,
metabolism, and contraction.

The second limitation relates to ventricular geometry. The
current framework idealizes the ventricle as a thin-walled
hemisphere. This is useful because it allows the ventricular
volume and pressure to be calculated from the chamber’s
circumference and wall-stress. However, the simplification
completely neglects many important features. For example,
the current framework cannot reproduce cardiac torsion, the
complex twisting motion of the heart (Russel et al., 2009).
Nor can the model incorporate transmural (Haynes et al.,
2014) or potential base to apex variation (Sharma et al., 2003)
in contractile properties and fiber alignment (Streeter et al.,
1969). Since the ventricle is mimicked as a hemisphere, it
is also impossible to simulate the patient-specific geometries
required for personalized simulations. This may be particularly
limiting for studies focused on hypertrophic cardiomyopathy.
This clinical condition frequently reflects a sarcomeric gene
mutation and is often associated with region-specific growth,
most commonly involving the basal interventricular septum
(Marian and Braunwald, 2017).

The best way to simulate regional and architectural effects
is to implement a finite element model. This approach
deconstructs the entire heart into small interconnected blocks
(the elements), calculates the physical properties (stress and
dimensions) of each element, and then uses applied mathematics
to integrate the block-level data to infer global function
(Guccione et al., 1995). Cardiac finite element modeling is
a highly evolved field and multiple groups have used the
technique to investigate complex behaviors including transmural
variation (Wang et al., 2016), torsion (Bagnoli et al., 2011),
and regional growth (Klepach et al., 2012; Lee et al., 2016).
Although many cardiac finite element models are based on
phenomenological contraction laws, two recent publications have
used the MyoSim model to simulate the contractile properties
of each element. (Zhang et al., 2018; Mann et al., 2020). The
main disadvantage of the approach is that the calculations
are very involved. As a result, finite element simulations are
typically run on a dedicated computer cluster and typically
require hours to complete. This differentiates the technique from
the current model which is simple enough to run in near real-
time on a laptop.

One of the disadvantages of using the current model to
screen potential therapeutic strategies is that the calculations
assume that the heart is otherwise unperturbed and continues
to beat once per second. A real heart would obviously be
subject to autonomic control. Although beyond the scope of
this work, it will be possible to reproduce autonomic control
in future research by implementing a virtual baroreceptor
(Kosinski et al., 2018). This could be done by monitoring the
arterial blood pressure predicted by the model and adjusting the
heart-rate in order to maintain pressure within pre-set limits.
This chronotropic mechanism might be enough to maintain
homeostasis during small perturbations but, as in the case of
real hearts, additional changes in contractility would probably be

required during large perturbations. These could be implemented
by, for example, modulating the L-type Ca2+ current in the
electrophysiological model (Bodi et al., 2005) or accelerating
the J1 transition (Supplementary Figure S1) to mimic the
effects of increased phosphorylation of regulatory light chain
(Kampourakis et al., 2016).

The final limitation that will be discussed is the one-way
coupling of the electrophysiological and contractile models.
As shown in Figure 1, the current framework uses ten
Tusscher et al.’s electrophysiological model to predict the Ca2+

concentration in the myofibrillar space. More succinctly, the
electrophysiology drives the contraction. Although this approach
is practical, powerful, and nearly universal in current contractile
modeling, it overlooks experimental data that show that quick
length changes can perturb the intracellular Ca2+ concentration
(Wakayama et al., 2001; Ter Keurs et al., 2006; Ter Keurs
and Boyden, 2007). These experimental results imply that the
contractile system can influence a cell’s electrophysiological
status (presumably through variable buffering of Ca2+ ions by
troponin) as well as the other way around. Again, this limitation
could be corrected by re-writing the computer code so that the
differential equations defining the electrophysiology were solved
at the same time as the equations governing the contractile
system. In practice, this would be a significant technical
undertaking, and again beyond the scope of the current work.
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