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With advancements of modern biophysical tools and superresolution imaging, cell

biology is entering a new phase of research with technological power fitting for

membrane dynamics analyses. However, our current knowledge base of cellular signaling

events is mostly built on a network of protein interactions, which is incompatible with

the essential roles of membrane activities in those events. The lack of a theoretical

platform is rendering biophysical analyses of membrane biology supplementary to the

protein-centric paradigm. We hypothesize a framework of signaling events mediated by

lipid dynamics and argue that this is the evolutionarily obligatory developmental path of

cellular complexity buildup. In this framework, receptors are the late comers, integrating

into the pre-existing membrane based signaling events using their lipid interface as the

point of entry. We further suggest that the reason for cell surface receptors to remain

silent at the resting state is via the suppression effects of their surrounding lipids. The

avoidance of such a suppression, via ligand binding or lipid domain disruption, enables

the receptors to autonomously integrate themselves into the preexisting networks of

signaling cascades.

Keywords: plasma membrane, lipid rafts, evolution, receptor ligand model, lipid interaction, receptor activation

mechanism

INTRODUCTION

The main goal of this piece is to gather sufficient consensus regarding how biophysicists, or
other specialists so inclined, may approach life science research with a stronger footing of
legitimacy. In recent years, with advancements in superresolution imaging and computational
biology, biophysicists are given enormous probing power in our life science work. In comparison,
traditional biologists using more conventional tools are still making ground-breaking discoveries
at a pace appreciably faster than most of us. A sobering dichotomy is evident that findings made
with biophysical approaches are being regarded as “supplemental” to other paradigms. Using T cell
biology as an example, whereas many papers have been published in this area regarding membrane
behavior upon T cell receptor activation, the whole theoretical framework of T cell activation
can be completely explained without any reference to biophysical properties. Points of interest in
biophysics or membrane biology are generated to explain the details of how polypeptides work.
While we know for certain that this cannot be true, our strongest protest may be the insistence
that “no signaling can be fully understood without its membrane platform.” C’est la vie, such a
defensive stand will not change the “outsider looking-in” mentality. We need to move biophysics
and membrane biology to the frontlines of biological research. The questions are “why hasn’t it
happened?” and “what is the main roadblock?”
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MAIN TEXT

The current state of biological research is protein-centric. The
cause lies in its history and the availability of investigative tools.
Yet, conceptual inertia is not beyond reproach. Our inability to
delineate biological events with models built from membrane
biology is the core deficiency. It is time that we collectively reflect
on this dilemma. In this opinion piece, we make a call for change.

Membrane Structure, Critical Behavior, and
Their Preservation in Biology
Let’s start with the eukaryotic membrane. In the 70s, Singer and
Nicolson presented the mosaic model in which the membrane
bilayer was regarded as a fluid mixture of lipids and proteins
(1). With many years of work into the heterogeneity of vesicular
and plasma membranes, Kai Simons et al. in 1997 proposed the
concept of ordered and disordered membrane phases generically
known as the lipid raft theory (2). Aki Kusumi, mainly using
particle tracking, refined this model with an additional detail
that lipid domains are stabilized by membrane lipid binding
to cortical cytoskeleton, or the picket and fence model (3). As
those theories are discussed at length elsewhere and readers
of this writing are well versed in this stream of concepts, we
simplify our discussion with the most accepted membrane model
(4). Eukaryotic membrane inner leaflets are occupied by mostly
phospholipids with negative charge and are active in signal
exchange in abundance. In comparison the outer leaflets are
structurally dynamic. There, sphingolipids and gangliosides are
more enriched, perhaps due to their enlarged head groups more
suited to the positive curvature. Cholesterol, nimble in size and
low in charge, is free to move laterally (5) or change leaflets
via overcoming the energy barrier set by hydrophobic core of
the bilayer (6). The rendezvous of sphingolipids, cholesterol,
and saturated phospholipids at physiological temperatures forms
the structure of ordered lipid domains. The formation of
ordered vs. disordered lipid domains can be explained by the
combined entropic diffusion and energy conservation in special
lipid pairing (7, 8). Remarkably, this feature is common to all
eukaryotes despite the vast different collections of lipid species in
distinct cell types. About 5% of genes are dedicated to maintain
it (4). As current efforts have not been able to fully mimic
domains found in live cells with defined lipids, the remarkable
preservation implies an extreme cellular dedication in their
maintenance. This point alone should give us a strong clue that
this is something central to all aspects of eukaryotic biology.

Another intrigue of the lipid domains is the critical
behavior which refers to the state where at physiological
temperature, lipid domain formation (demixing) and dissolution
(mixing) are at a critical point (7). This feature, coupled to
cytoskeletal association, was vividly demonstrated with STED
superresolution microscopy, and with a clear linear correlation
to the temperature (9). Such a delicate feature allows large
phase transition with minimal energy input. For instance, minute
disturbance of receptor ligand interaction may force such a phase
change, an ingenious system of signal amplification (receptor
ligation can be viewed as a localized suppression of entropy,
or cooling). We shall return to this point later. Nevertheless, it

should be noted that such a behavior is unimaginable in a cohort
of protein molecules.

Current Status of Understanding
Since the proposal of lipid rafts, biologists have tried to
incorporate this feature into their models of membrane signaling.
To circumvent the optical diffraction limit which makes visual
observations of resting cell lipid rafts impossible, two surrogates
have been developed. One is to isolate detergent-resistant
membrane domains, hoping to capture proteins associated with
or free from lipid rafts at the moment of cell lysis (10). The
other, used by some, is to observe domain coalescence at the
point of “signalosome” formation (11) or visible lipid domains
found on GPMV (12). One of the most influential conclusions
is the partition of protein molecules into different phases of
membrane domains. From those experiments, it was understood
that the transition of those protein molecules with reference to
lipid domains is associated with their state of activation. Some are
activated in disordered phase, such as EGFR (13), while in others
transition into or residence inside the ordered domain is required
for their activation, such as death receptor Fas, IFNγR, and
Wnt receptor (14–16). In addition, protein signaling complex
formation with the participation of numerous components is
also controlled by the coalescence of lipid rafts, such as in TCR
activation (17). Regardless of the study subject, in a protein-
centric world, those events are regarded as the consequence of
receptor ligation and protein–protein interaction, which is taken
as the driving force of lipid domain alteration.

Those observations, however, are not without their own
peril. First, the selection of detergents has a tremendous
effect on the observed association, demanding caution in data
interpretation. Perhaps more importantly, this “snap photo”
approach will leave out spatial temporal regulation. Using TCR
as an example, the signaling is mediated by TCR ligation by the
MHC/peptide complex, yet the signal is initiated at Src family
kinase activation of the tyrosine residues in the ITAM motifs.
Thereafter, the signal has several bifurcations or multiplications;
some of downstream events such as Lck and LAT are clearly
dependent on lipid domains (18), while others such as TCR
itself and CD45 are not (19, 20). Likely due to those technical
limitations, some conclusions are not always in agreement. In
a remarkable demonstration of collegiality among biophysicists,
those differences are accepted as limits of one’s own research
unable to explain seemingly contradicting results. In fact, those
differences en masse reflect the lack of more sophisticated tools
as well as a biophysical explanation of how membranes work
in this setting. Happily, the constraint posed by tool selection
is being rapidly lifted in recent years. A particular case in point
is the newly gained ability to study the dynamics of lipid rafts
on the cell membrane, which in our opinion is the technological
foundation to introduce membrane dynamics into core concepts
of biology.

Evidence of Membrane Lipid Interface Is a
Biological Switch
Imagine a simplest eukaryotic cell with no cell surface receptor
and driven by a few signaling pathways that support the basic
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biology. All those regulations are anchored tomembrane sensing.
Earliest multicellular animals were found about 600 million
years ago. Shortly after, about 550 million years ago, life rapidly
diversified during the Cambrian explosion. Around that time
two rounds of whole genome duplication likely provided a
genetic playground for the emergence of vertebrates (20). It
is hard to imagine that receptor ligand interactions would
have been the dominant way of communication prior to these
junctures. The definition of receptor-ligand interaction is that
they must be evolutionarily coupled. As a single cell is exposed
to an unmalleable environment, this co-evolution lacked a
driving force. On the flip side, receptor-independent sensing
of environment, such as phagocytosis (21, 22), was a daily
occurrence that had propelled the evolution for at least 1.4
billion years. Many prominent signaling pathways came before
this time, including GTPase (23), MAPK (24), phagocytosis
(21), TNFRF (25), Jak/Stat (26) pathways, metalloproteases,
(27) and metabolic events with a possible exception of Wnt
pathway (28). All those pathways are regulated by membrane
events. In our own research, we first discovered that solid
particle binding to plasma membrane induces the accumulation
of lipid rafts which triggers phagocytosis (29, 30). Based on
this finding, we further revealed that immune receptors had
evolved out of a primordial phagocytic signaling that uses
the membrane anchoring protein moesin to sense the PIP2
accumulation in the inner leaflet as a result of particle binding.
Moesin binding to PIP2 opens its ITAM motif, for downstream
signaling, including Syk and PI3K. Remarkably, all those events
are used verbatim in immune signaling of all classes, including
BCR, TCR, and Fc receptors (21). Therefore, the adaptive
immunity hijacked the machinery of the ancient phagocytosis
following membrane sensing. If the intracellular events are
regulated by membrane activities, what argues against the
notion that modern immune receptors initiate signaling with the
same mechanism?

Let’s look at another set of events observed by most if not
all whom have attempted: the consequence of lipid domain
perturbation, mostly in the form of cholesterol depletion. EGFR
(31–33), TNFR1 (34), TLRs (35, 36), TCR (19, 37, 38), TGFβR
(39–41), and shedding events (42–44) are triggered by lipid
domain disruption. Figure 1 illustrates our own findings. There
are certainly good examples where clustering toward lipid rafts
is induced by ligand binding. Linked to the observation that
those receptors are sequestered in their own lipid environment at
the resting state, one can reasonably predict: 1. Some receptors
are self-activating depending on the lipid environment or
phase transition. 2. For one receptor to be accepted as useful
contributor to biology, it would have to obey the suppression
of the membrane. Therefore, membrane lipid phases are an
ingrained tool of suppression of receptors. Kai Simons noted that
due to the size of lipid domains, each raft would contain very
few polypeptides (45). Therefore, those receptors are blocked
by their spatial separation. Once the blockage is released, such
as in the case of domain disruption, they become activated.
Fessler and Parks used a number of examples to show how
lipid perturbation itself is sufficient to activate many receptors
(46). Yet, they stopped at the last step to connect the final

dots that lipid perturbation-mediated receptor activation and
ligand/receptor-based activation may be fundamentally the same
at least for some receptor families. To extrapolate this idea
further, we can imagine that a receptor ligation interaction,
rather than bringing in certain conformations to accommodate
their interaction binding partners, could easily regulate its
lipid interface to avoid the suppression. In light of the critical
behavior in membrane lipids, such a minute change can cause
the clustering of signaling molecules as a consequence of lipid
domain alteration at the energy level fitting for receptor ligand
interaction. This hypothesis, with modern tools, should be
testable in situ or on a model membrane without the need of
biological feedback, which often causes protein-centric analyses
becoming embroiled in incessant cycles of amplification. If a
receptor/lipid interface event is established as being autonomous,
this binary regulation certainly carries an enormous power of
prediction, with a simplistic elegance not seen in sometimes
chaotic search of how each protein receptor works with its
downstream partners (Figure 2). At minimum, it explains why
several thousand signaling receptors can stay silently together
on a cell, and during an activation event, several signaling
cascades are triggered at the same time, as those involved
are likely gated by their own membrane sequestration. This is
not to say that receptors are mere puppets in this chain of
events; they certainly play their role in the clustering and their
own complex formation as they also possess ranges of lipid
specificities and membrane dynamics (47, 48). But the activation
initiation point can be explained by lipid receptor interface, or
the sum of “collectives” of protein-lipid interaction following the
introduction of a ligand.

Toward a Simple Beginning
Our lab has preliminary data to suggest that “suppression
avoidance” is a core mechanism of some cell death receptors,
and the cellular signaling is initiated at the simple phase change
between the receptor and its surrounding lipid species. This
type of effort, while fulfilling the common wisdom that receptor
activation is responding to its ligand, is probably also suited
to explain some activation triggers, particularly those that are
not protein in nature. In such a scenario, many “ligands” can
activate their “receptors” via lipid alteration without the need
of direct engagement. For instance, a long acyl chain fatty
acid can alter the domain features, which allows a particularly
strong signaling receptor to become activated in response to
lipid domain change. Macroscopically, this would look like
a perfect receptor/ligand interaction. Current dogma would
require the search of how this pair of receptor/ligand works, but
the “suppression avoidance” model would relieve ourselves from
this futility. In fact, some of the low-hanging fruits should be easy
to spot.

We are not arguing against the vast network of protein
signaling in biology. However, from an evolutionary perspective,
membrane triggered events should be highly relevant and they
set the basic signaling principles in the cell. The numerical
imbalance between the vast number of cell/vesicle surface
receptors and limited signaling pathways clearly tells us that
the former hijacked the latter, to develop the mesmerizingly
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FIGURE 1 | Proposed mechanism for TNFR1 signal activation initiated as a negotiation between the receptor and its surrounding lipid species. (A) In the resting state,

TNFR1 mainly exists as monomers and dimers on the cell membrane under the suppression of dense lipid rafts. (B) Under TNFα ligand stimulation, TNFR1 negotiates

with lipid domains by changing its transmembrane domain conformation, and then enters lipid rafts for trimerization. (C) When the lipid rafts are disrupted by MβCD or

3oc [N-(3-oxododecanoyl) homoserine lactone], TNFR1 spontaneously trimerizes and activates signals without ligands as the membrane suppression is relieved.

FIGURE 2 | How receptors may enter the preexisting signal cascades: as many signaling events present in modern day eukaryotic cells predate the multicellular life

forms, those enclosed single cells interacted with the environment via lipid membrane. Those signal cascades are therefore coupled to membrane sensing, particularly

in response to lipid domain alteration. New receptors cannot reinvent a new signal cascade; rather than producing protein molecules as adaptors, they can also

regulate their own lipid interface, which is the legitimate and built-in mechanism of cell activation.

complex activation patterns in modern eukaryotic cells. Similar
to the preservation of amino acid codons, those basic signaling
events cannot be altered in the biological continuum. Then it is
reasonable to question how the late comers, the receptor-ligand
interaction, came into the theme. For our purpose, if they also
use the lipid interface as the initiation point, then we have the
theoretical prowess to establish a model toward a membrane-
based biology, to smooth out rough edges and peculiarities in the
protein-centric paradigm.

This opinion piece may be deemed inaccurate or even false
in the future. However, as a research discipline with cutting
edge tools and deals with some of the most autonomous
events that formed the platform for other late developed
biology, our collective attempt to create a landscape for this
new frontier, no matter how juvenile at the beginning, is
certainly worthwhile.
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