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Background: Neuroblastoma is one of the most devastating forms of childhood cancer.
Despite large amounts of attempts in precise survival prediction in neuroblastoma, the
prediction efficacy remains to be improved.

Methods: Here, we applied a deep-learning (DL) model with the attention mechanism to
predict survivals in neuroblastoma. We utilized 2 groups of features separated from 172
genes, to train 2 deep neural networks and combined them by the attention mechanism.

Results: This classifier could accurately predict survivals, with areas under the curve of
receiver operating characteristic (ROC) curves and time-dependent ROC reaching 0.968
and 0.974 in the training set respectively. The accuracy of the model was further
confirmed in a validation cohort. Importantly, the two feature groups were mapped to
two groups of patients, which were prognostic in Kaplan-Meier curves. Biological
analyses showed that they exhibited diverse molecular backgrounds which could be
linked to the prognosis of the patients.

Conclusions: In this study, we applied artificial intelligencemethods to improve the accuracy
of neuroblastoma survival prediction based on gene expression and provide explanations for
better understanding of the molecular mechanisms underlying neuroblastoma.
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INTRODUCTION

Neuroblastoma, arising from the developing sympathetic nervous
system, is the most common form of malignancy in children (1).
Although diverse treatments have been developed for different stages
of neuroblastoma, survival rates only improved in low and
intermediate risk patients (2, 3). Whole genome sequencing
and RNA sequencing (RNA-seq) delineated the genomic and
transcriptomic traits of neuroblastoma, in which MYCN
amplification, ALK mutations, PHOX2B mutations, TERT
rearrangements, abnormally expressed microRNAs (miRNA) such
asMir17-92a, etc., occurmostly (4–6). Utilizing these data, a number
of previous studies attempted to quantitatively predict outcomes for
neuroblastoma patients. For instance, chromosomal gain or loss
status were used to construct a cox regressionmodel in one attempt,
whereas most studies implemented gene expression data into
multivariable score models (7, 8).

In recent years, machine-learning (ML) has been widely
applied in medical sciences, especially in radiography,
healthcare monitoring and genomics (9–12). ML was adopted
to predict the outcomes and survival time by different
approaches, such as Artificial Neural Network, Supported
Vector Machine, Decision Tree and so on in many types of
cancer (13–15), a vast majority of which outperformed the
traditional cox regression models.

Deep-learning (DL) is a subdiscipline of ML that allows
computers to transform raw data through multiple levels of
representations. DL-based image detection has been widely
studied in the diagnosis of diabetes and cancers (16, 17). In
genomics, a multilayer perceptron could predict survival in an
unsupervised or supervised way and was extended in lung cancer
and hepatocellular carcinoma (18–20). DL-models were also
utilized to predict stages and clinical outcomes in neuroblastoma
(21, 22). However, reports examining the accuracy of DL-model
with survival time are lacking.

Here, we developed a DL-based model to predict outcomes
using gene expression matrices. First, 172 features were selected
by the chi-square test between gene expression levels and patient
survival outcomes in the training cohort. K-means clustering
method was used to divide these gene features into two groups. A
two-layer neural network decoder was then used to predict
survival probabilities and status. F-score, accuracy, sensitivity
and specificity were calculated to demonstrate that our model
could precisely classify patients. To examine the robustness of
our approach, we applied the same procedure in the validation
cohort. Indeed, the area under the curve (AUC) of our model was
0.974 in the 5-year-survival receiver operating characteristic
(ROC) curve, outperforming existing prognostic models.
Furthermore, we partitioned the patients into two subgroups
according to their feature expression levels. These two subgroups
diverged in survival by log-rank test in Kaplan-Meier (KM) curve
with p < 0.001. Gene Ontology (GO) enrichment analysis showed
that the gene feature group 1 was enriched in the JAK-STAT
pathway, while genes involved in bone morphogenesis were
enriched in group 2. Therefore, this DL-based approach could
rigorously predict neuroblastoma survivals and shine lights over
the molecular mechanisms underlying neuroblastoma.
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MATERIALS AND METHODS

Data Acquisition
A total of 721 microarray samples, including two datasets named
GSE49710 and E-MTAB-8248 (for short, GSE49710 and
EMTAB), both detected on Agilent-020382 Human Custom
Microarray 44k, were retrieved from NCBI Gene Expression
Omnibus and ArrayExpress. The GSE49710 cohort, part of the
SEQC project, portrayed Chinese neuroblastoma atlas, while
EMTAB displayed German characteristics. Gene expression
matrices accompanying clinical information were downloaded
directly for the following analyses. F-score, accuracy, sensitivity
and specificity were calculated on the whole GSE49710 cohort.
Besides, GSE49711, the RNA-seq result of the same samples
from GSE49710, was also fetched for lncRNA-related analysis.

Data Preprocessing
To reduce the biases between the two datasets, we normalized the
expression levels by equation (1) since the data should be better
limited in 0 to 1 in the neural network.

fi0 =
fi −min (fi)

max (fi) −min (fi)
(1)

fi here indicates the expression of each RNA. fi0 is designated
for the transformed level.

Feature Selection
After data normalizing, significant gene expression features were
selected by chi-square test which is implemented by ‘chi2’ function
in the python package sklearn (https://scikit-learn.org/). Genes
whose FDR in the chi-square test was less than 0.05 were filtered.
Following this principle, only 172 differentially expressed genes
were chosen.

Another common feature selection approach, the Principal
Component Analysis (PCA), was used to transfer gene
expression matrix into principal components. The cox
proportional regression was used to filter the components. We
then compared the results of the PCA method with the chi-
square method.

Feature Classification
After feature selection, a classifier was built to classify genes into
different subgroups. Genes with similar biological functions were
clustered into the same group. The K-means model in sklearn
divided the selected genes into two clusters.

Model Construction
Then a supervised classification model based on deep neural
networks was built. Both of two feature groups were used as
inputs of our classification. The output of this neural network
was a patient’s probability which ranged between 0 and 1. 0
would indicate that the patient is likely to be alive and 1 would
indicate that the patient would probably be dead.

The structure of this classifier can be seen in Figure 1. It
consisted of two parts, the encoder and the decoder. For the
encoder part, we encoded two different groups of features into
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FIGURE 1 | The overall workflow of our pipeline. Gene expression data from GSE49710 was retrieved and performed a chi-square test to filter 172 features. The K-
means clustering method partitioned patients and genes into two groups. We trained two neural networks for two groups of features and combined them by the
attention mechanism to predict survivals. Further, we analyzed biological effects between two groups and did clinical-relevant analysis.
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two 10 dimensional features by two different two-layer networks.

g 01 = f (w12f (w11fg1 + b11) + b12) (2)

g 02 = f (w22f (w21fg2 + b21) + b22) (3)

g 01g 02 are encoded features. wij are weights of the networks. fg1
and fg2 are transformed expressions using formula (1) and bij are
biases of the networks. The function f indicates the activation
function which is a nonlinear part of the encoder. Here, we used
the ReLU as this nonlinear function:

f (x) = x x > 0 
0 x ≤ 0

n
(4)

To combine these two different encoded features together, we
applied the attention mechanism to this model (23). With the
difference of simply concatenating different features, this
attention mechanism can learn the relationship between them.

G = sig g 02
� �

∗ g 01, sig g 01
� �

∗ g 02
� �

(5)

This step is illustrated in equation 5. G refers to combined
features. sig is a nonlinear function.

sig(x) =
e−x

1 + e−x
(6)

After seizing combined features, we input them into the
decoder part. The decoder part is also a two-layer neural
network.

y ′ = sig(w32f (w31G + b31) + b32) (7)

y' is the output of this classifier.
To train this network, we defined the loss function as

equation 8.

L =
−a(1 − y ′ )g logy ′ y = 1

− (1 − a)y ′  g log (1 − y ′ ) y = 0

(
(8)

a and g are parameters. In this system we set a to 0.2 and g to
2. y is the true label of each patient. The patients of each group
were uneven, so we used Equation 8, which is called the focal loss
and was designed to solve this problem instead of cross entropy
loss function (24). To avoid over-fitting, we drop 20% neurons in
each layer by the dropout method. GSE49710 was chosen to train
the network and EMTAB was to validate our model. For
GSE49710, 70% of samples were used to train and the rest
were to test.

All of the algorithms mentioned in this subsection were
realized by tensorflow 2.2 (https://tensorflow.google.cn/). To
optimize this neural network, we applied Adam optimizer and
set the learning rate to 0.01 (25). The weights of networks were
initialized by glorot uniform distribution (26).

Model Appraisal
To further evaluate our model, we calculated the accuracy,
sensitivity, specificity as well as F-score of our model in two
cohorts (27).
Frontiers in Oncology | www.frontiersin.org 4
Accuracy =
TP + TN
Total

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

F1 = 2 ∗
Precision ∗Recall
Precision + Recall

ROC curves and AUCs were estimated by pROC package in R
to assess the performance of the classifier (28). The time-
dependent ROC (tROC) curve and its AUC were estimated by
survivalROC R package to introduce survival time into our
classifier (29). The curves were plotted by ggplot2 R package
(30). Besides, traditional cox regression models, devised by
Zhong et al. (31) and De Preter et al. (32), were compared
with ours.

Patients Clustering
In order to correspond patients to those two groups of gene
features, we performed K-means clustering on patients.
ConsensusClusterPlus was used to determine the best k with
parameters (cluster algorithmml: km, distance: Euclidean,
replicate time: 1000) (33). The CDF plot and the consensus
matrix instructed us to cluster patients into 2 groups. A heatmap
showing expression levels of features across samples were made
by complexHeatmap R package (34). Survival rates between these
two subgroups were measured by the log-rank test in KM curves.
R packages survival and survminer were used to fit KM equation
and plot the curves (35, 36).

Clinical-Relevance Analyses
In order to test whether our model was independent of other
clinical factors and beneficial for clinicians to identify patients’
conditions, we first applied univariable cox regression on the age,
MYCN status, gender, tumor stage, INSS-Risk and our
probability score. A multivariable cox regression determined
whether a covariate involved was decisive. Forest plots were
plotted by forestplot package (https://CRAN.R-project.org/
package=forestplot). Decision curve analysis was done by
ggDCA (https://cran.r-project.org/web/packages/ggDCA/index.
html). The construction and plot of the nomogram which can
help clinicians to predict survival were done by rms (https://
CRAN.R-project.org/package=rms) and regplot (https://CRAN.
R-project.org/package=regplot) R package. Finally, an alluvial
diagram was used to visualize the characteristics and disease
progressions of each patient. This was achieved by the ggalluvial
R package (37).

Biological Function Prediction
All biological analyses were done on GSE49710. We executed GO
enrichment analysis on the two groups of features by clusterprofiler
R package respectively (38). Gene Set Enrichment Analysis (GSEA)
was done by GSEA software (Broad Institute, Inc., version 4.0.3)
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with gene set ‘c5.all.v7.1.symbols.gmt’ and default parameters. String
(https://string-db.org/) was used to identify protein-protein
interactions (PPI) between the 172 features and Cytoscape
software was used to visualize the interaction networks.
CytoHubba, a module inside Cytoscape, was carried out to
identify the hub genes with 12 algorithms (39, 40). For lncRNAs
searching, we extracted 250 lncRNA expressions by sorting lncRNA
names in gencode.v34.long_noncoding_RNAs.gtf, a collection of
known lncRNAs downloaded from GENCODE (https://www.
gencodegenes.org/). Only lncRNAs that owned a standard error >
0.2 could be enrolled in the correlation test between the 18 mRNAs.
The cut-off values were: p < 0.05 and |coefficient|>0.5. TarBase v.8
and LncBase Predicted v.2 were used to query for mRNA-miRNA
and lncRNA-miRNA pairs respectively (41, 42). TarBase v.8 gave 78
CCNB1-binding miRNAs with filters (Species: Homo Sapiens,
Method Type: High-throughput, Regulation Type: DOWN,
Validation Type: Direct). LncBase Predicted v.2 provided
predicted lncRNA-miRNA pairs with cut-off 0.7. Finally, a
competing endogenous RNA (ceRNA) network was constructed
using Cytoscape.

Immune Microenvironment Estimation
Inferred abundances of immune cells and normal tissue cells
were calculated by single-sample gene set enrichment analysis
(ssGSEA) using GSVA R package (43). Gene sets, also known as
the markers of each cell, were collected by Charoentong et al.
(44). Univariable cox proportional regression tests were exerted
on all cells to reveal prognostic immune cells.

Statistical Analysis
For categorical and continuous data with normal distribution, we
applied chi-square tests and student t tests to distinguish the
differences between groups. When continuous data was not
normal distributed, Wilcoxon sum rank tests and ANOVA
were utilized. The Pearson correlation test was used to find
linear connections between two groups of observations. A p-
value<0.05 was considered statistically significant except for
emphasis. To account for multiple-testing, the p-values were
adjusted using the Benjamini-Hochberg FDR correction. All
statistical analyses were two-tailed and done by Python
(Python Software Foundation, version 3.8.2) and R (R
Foundation, version 3.7.0).
RESULTS

Neuroblastoma Genomic Atlas Was
Depicted by 172 Features
The overall workflow is shown in Figure 1. After implementing
the chi-square test into each feature and the survival in
GSE49710, 172 features were selected (Figure 2A). The
consensus clustering method determined the best k value as 2
to partition the features based on the expression matrix
(Supplementary Figure 1). After that, K-means method was
used to cluster the features and patients into 2 groups. Fifty genes
were the markers of subgroup 1 of 336 patients (for short, S1),
Frontiers in Oncology | www.frontiersin.org 5
whereas the other 122 genes were the markers of subgroup 2 of
162 patients(S2). Basic characteristics were distributed diversely
between the two subgroups except for gender (Supplementary
Table 1). It is noteworthy that no MYCN amplification was
detected in S1 and 92 were detected in S2 in the GSE49710 cohort
while only 1 such case was detected in S1 and 45 in S2 in the
EMTAB cohort, suggesting that these 172 features and the
corresponding subgroups were MYCN-relevant (chi-square test
p < 0.001, Supplementary Table 1). Also, these subgroups
exhibited significant differences in overall survival and event-
free survival (both log-rank test p < 0.001, Figures 2B, C and
Supplementary Figure 2).

To understand the potential biological functions of the genes in
each group, we performed GO-enrichment analyses. Notably, many
features in group 1 (F1) are related to the JAK-STAT signaling while
features in group 2 (F2) aggregated in the cell migration, bone
morphogenesis and ubiquitin-protein transferase activities
(Figures 2D, E). The JAK-STAT pathway promotes tumor cell
proliferation, invasion and immunosuppression through a
membrane-nucleus cascade (45). A Previous study has shown
that the JAK1/2 inhibitor, AZD1480, could abate neuroblastoma
tumor cells growth and extend survivals, suggesting that S1 patients
not only maintained better survivals with neuroblastoma, but also
might potentially respond to drugs such as AZD1480 to recover
(46). Next, the GSEA analysis revealed that S1 showed a higher level
of metabolism compared to S2 and S2 developed an intensive
immune response (Supplementary Figure 3). This might be
attributed to the mild symptoms in S1 where patients kept a
normal or slightly elevated metabolism. However, accompanying
the progression of tumors in S2, the patients started a fierce
immune reaction and finally exhausted. These findings suggest
that the subgrouping method could help to understand the
molecular pathology underlying the differences in prognoses of
neuroblastoma patients.

The Neural Network Model Manifested
Great Performance in Classifying
Neuroblastoma
An encoder-decoder model was then trained on the GSE49710
dataset to predict survivals (Figure 1). Since F1 and F2
contributed unequally to the body responses and outcomes,
two neural networks were created for them separately in the
encoder. In this encoder, a widely used activation function, the
ReLU function in the hidden layer; and a binary classification
function, the sigmoid function (or say logistic function), in the
output layer were employed. The attention mechanism, inspired
by human physiology that people would only concentrate on
tasks at hand to improve the efficacy of the encoder-decoder
framework with rich information, was used to combine the two
encoder parts into the decoder (47). The sigmoid function was
also used in the final layer, which outputted survival
probabilities. If the probability is less than 0.5, we predicted
this patient as alive and vice versa (Supplementary Table 2).

To assess the prediction quality of the overall survival status,
we calculated the accuracy, sensitivity, specificity and F-score of
our model, which reflected the proportion of correct predictions
July 2021 | Volume 11 | Article 653863
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in all samples, true positives in all positives, true negatives in all
negatives and the harmonic mean of precision and recall. In the
training set, the accuracy (0.918), sensitivity (0.913) and
specificity (0.944) were all greater than 0.9, suggesting that it
could efficiently forecast whether a patient would be alive or dead
using 172 features. Moreover, a descent efficacy was achieved in
the test set (accuracy: 0.852, sensitivity: 0.911, specificity: 0.605),
however, F1 score was slightly higher (GSE49710: 0.881,
EMTAB: 0.886), indicating that the model was suitable for
cohorts of various genetic background. The ROC and tROC
Frontiers in Oncology | www.frontiersin.org 6
curves were then generated which further demonstrate the
eminence of the neural network (Figures 3A–C and Table 1).
The AUCs of the training set and the test set achieved 0.968 and
0.891 respectively (Figure 3A), alluding the robustness of our
neural network prediction model. Adding survival time into
ROC curves, we found that the 5-year-survival AUCs could be
boosted to 0.974 in GSE49710 (Figure 3B) and 0.896 in EMTAB
(Figure 3C), which validated that our neural network could
classify patients with high precision. Twenty times of 10-fold
cross validation showed the stability and robustness of our neural
A

B

D E

C

FIGURE 2 | The genomic atlas of neuroblastoma was characterized by 172 genes. After implementing the chi-square test between gene expressions and survival
status, a total of 172 genes were selected for following investigations. Patients were clustered into two groups, named subgroup 1 (S1) and subgroup 2 (S2), which
owned 50 and 122 markers respectively. (A) The heatmap portraited the neuroblastoma genomic landscape in GSE49710. Gene expressions were normalized
among samples. The higher expressions reached red while lower reached white. Corresponding clinical information, including age, stage, vital status, survival time,
MYCN amplification, gender, INSS risk and subgroups, was attached on the top of the heatmap. (B, C) Kaplan-Meier (KM) curves showed distinct survivals between
S1 (coralline line) and S2 (atroceruleous line) in overall survival (OS) (B) and event-free survival (EFS) (C) (log rank test p < 0.001 for each). (D, E) GO-enrichment
analysis for feature 1 (F1) and feature 2 (F2) showed that S1 was up-regulated in the JAK-STAT pathway (D) and S2 was up-regulated in bone morphogenesis (E).
July 2021 | Volume 11 | Article 653863
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network architecture, suggesting that our attempts of the
attention mechanism would be extended into more datasets.

Performance Comparison With
Alternative Methods
Next, we compared the performance of alternative methods
which varied in either feature selection or model construction
with our model. To demonstrate that our feature selection was
more closely related to prognoses, a broadly used dimension
Frontiers in Oncology | www.frontiersin.org 7
reduction and feature selection method, PCA, was utilized to
select features on GSE49710. Kaiser-Harris Criterion suggests
that those principal components whose eigenvalue were more
than 1 would be retained. In our study, all components had an
eigenvalue greater than 1. Variances explained in each
component were similar (Supplementary Figure 4). The top
200 principal components were chosen with cumulative variance
percent at 89.532% for further analyses. Since the survival data
has not been utilized, a univariable cox regression model was
implemented to principal components, resulting in 17
components being selected with p < 0.05. The Consensus
cluster determined the best k=value as 3 using K-means
clustering (Supplementary Figure 5). However, the 3
subgroups were not significantly different in OS (Figure 4A,
log-rank test p = 0.088) but in EFS (Figure 4B, log-rank test p =
0.029), which indicated that our chi-square-based feature
selection could highlight the hub genes in neuroblastoma and
partitioned patients into high and low risk groups.

We then compared the performance of our model with
several existing models. In order to reduce the biases between
the cohorts used in this study and in the literatures, the
expression data was normalized before calculating risk scores.
We selected two previously published models as well as the ‘gold
standard’,MYCN status, and then performed survival prediction
in the GSE49710 and EMTAB cohorts (Supplementary Table 2)
(31, 32). Our DL-model generated the highest AUC in 5-year
tROC curves in both GSE49710 and EMTAB cohorts
(Figures 4C, D), indicating that our model outperformed the
existing model in survival prediction.

DL-Model Probabilities Were of
Clinical Significance
To test whether the DL-based prediction model is widely useful
for patients of various background conditions, we implemented
the univariable cox regressions among the age, MYCN status,
gender, diagnostic stage, risk and our output probability. All
variables were converted to binaries in this test (Supplementary
Figure 6). Only gender failed in this test as p > 0.05, which was
discarded in the multivariable regression. In the multivariable
cox model, the probability risk was still significant (Figure 5A),
indicating that our DL-based model had a broad prognostic
ability regardless of clinical covariates.

We further used the decision curve analysis (DCA) to evaluate
the net benefit of different models (48). We constructed 3 models:
only DL-probabilities, only clinical covariates in multivariable cox
analysis as well as a combined model. The combined model
achieved the highest net benefit no matter how risk threshold was
set (Supplementary Figure 7). The data implied that combining
DL-model and clinical information could be profitable for clinicians
to diagnose and to predict survivals. Therefore, we build up a
nomogram which could help clinicians to predict the potential
outcomes of the patients beforehand the medical treatments
(Figure 5B and Supplementary Table 3). A C-index 0.889 of the
nomogram along with the calibration curve predicted 5-year-
survival, demonstrated that this scoring system would be handy
and practical in the first-line diagnosis (Figure 5C).
A

B

C

FIGURE 3 | Receiver operating characteristic (ROC) curves demonstrated
the superiority of our model. X-axis represented false positive rate (1-specificity)
and y axis represented true positive rate. (A) The ROC curves of the EMTAB
(coralline line) and GSE46960 (atroceruleous line) cohort. (B, C) 3-year, 5-year
and 10-year time-dependent ROC curves of the GSE46960 (B) and EMTAB
(C) cohort.
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TABLE 1 | AUCs of ROCs, 3-year-ROC, 5-year-ROC and 10-year-ROC with 20 times 10-fold cross validation.

Dataset AUC AUC of 3-year-ROC AUC of 5-year-ROC AUC of 10-year-ROC

Train 0.996 ± 0.009 0.963 ± 0.009 0.991 ± 0.006 0.993 ± 0.007
Test 0.878 ± 0.024 0.879 ± 0.028 0.907 ± 0.021 0.904 ± 0.030
Validation 0.862 ± 0.088 0.867 ± 0.076 0.895 ± 0.066 0.910 ± 0.095
EMTAB 0.865 ± 0.017 0.838 ± 0.022 0.863 ± 0.021 0.853 ± 0.032
Frontiers in Oncology | www
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The GSE49710 cohort was split at 7:3 into train and test cohort to perform 20 times 10-fold cross validations. In each calculation, 10% of the train cohort was randomly chosen into the
validation group. The best model with the most AUCwas further validated in EMTAB cohort. The probabilities of patients from the output layer were used in time-dependent ROC analyses.
If the probabilities were less than 0.5, we predicted corresponding patients would be alive and if were greater than 0.5, they would be dead. These binary predictions would be compared
with true labels in ROC analyses. All AUCs were expressed as mean ± standard deviation.
A B

D

C

FIGURE 4 | The Deep-learning-model (DL-model) outperformed alternatives in two aspects. (A, B) We employed the Principal component analysis (PCA) method to
cut features down to 200. Using 200 PCA dimensions, we distributed patients into 3 groups, which was determined by the consensus clustering method. These
groups did not show prognostic value in overall survival (OS) (A, log-rank test p = 0.088, n = 498) but event-free survival (EFS) (B, log-rank test p = 0.029, n = 498).
(C, D) Compare with other models (MYCN status, 4-gene-signature by Zhong et al. and 42-gene-signature by De Preter et al.), our DL-model received the highest
AUCs of 5-year-survival ROC curves in GSE49710 (C) and EMTAB (D) cohorts.
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The alluvial diagram summarized the samples in our study
(Figure 5D). 69.07% (67/97) ofMYCN-amplified patients would
be at stage 4 and this tendency was notable (chi-square test: p <
0.001). Only 21 patients diagnosed INSS low risk were classified
into S2 and 35 with high risk into S1, showing that our
prognostic subgroups were highly clinical-relevant (chi-square
Frontiers in Oncology | www.frontiersin.org 9
test p < 0.001). Subgroups and probabilities were also correlated
(chi-square test p < 0.001). In the alluvial diagram, we observed
that if patients had MYCN amplified, whether they were old or
young, male or female, most of them would be at stage 4, INSS
high risk, Subgroup 2. Whereas MYCN was not amplified, an
antithetical conclusion would be drawn.
A

B

D

C

FIGURE 5 | The DL-model was independent of clinical covariates and could aid to diagnose. (A) The DL output probability was significant in the multivariable cox
regression with clinical covariates (p < 0.001). (B) A nomogram could be beneficial for survival time prediction. (C) The calibration curve of the nomogram with a
C-index: 0.889. (D) The alluvial diagram visualized the general conditions of patients. Coralline lines represented patients without MYCN amplified and atroceruleous
lines represented those with MYCN amplified.
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A CCNB1-Associated ceRNA Network Is
Related to the Survivals of Neuroblastoma
Patients
In order to isolate the hub genes of these 172 features, we first
retrieved their PPI on the String website (Figure 6A). We then
input them into Cytoscape software, and used the cytoHubba
module to uncover hub genes by using 12 different algorithms.
We summed up the top 5 genes in each algorithm and finally
selected 18 genes as pivotal molecules in the network.

Next, we aimed to identify lncRNAs that could participate in
the regulation of hub genes. GSE49711 is the RNA-seq of the
Frontiers in Oncology | www.frontiersin.org 10
same sample with GSE49710 and was used to uncover potential
lncRNA-mRNA pairs. Subsequently, 5 mRNAs (FBXO17,
GNG11, CCNB1, KLF2 and CD9) were highly connected with
17 lncRNAs (Figure 6B and Supplementary Table 4). We
noticed that both CCNB1 and CD9 could interact with 4
lncRNAs (MYCNOS, TERC, SNHG1, MIR17HG), along with
positive coefficients between CCNB1 and lncRNAs and
opposite trends on CD9. CCNB1, an oncogene that controls
the cell cycle at G2/M, had been found to be overexpressed in
hepatocellular carcinoma and pancreatic cancer (49, 50). CD9 is
a tetraspanin involved in cell adhesion, metastasis and
A

B

DC

FIGURE 6 | Underlying hub genes and associated interactions in neuroblastoma. (A) The protein-protein-interaction (PPI) network was constructed by String
website. (B) Mutual correlations among 18 hub genes filtered by cytoHubba module in Cytoscape software. The dots are colored red when Pearson correlation
coefficients approach 1 and dots are colored blue when coefficients reach -1. (C, D) KM curves for CCNB1 and CD9 (D). Expressions were cut by median levels.
(both log-rank test p < 0.0001, n = 498).
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inflammation in cancer (51, 52). CCNB1 curtailed and CD9
increased survivals in GSE49710 and R2 (https://hgserver1.
amc.nl/cgi-bin/r2/main.cgi), which were consistent with
previous reports (both p < 0.001, Figures 6C, D) (49–52).

The ceRNA theory proposed that lncRNAs and mRNAs
competed to interact with shared miRNAs, up-regulating
downstream RNAs by impairing miRNA activities (53). We
created a CCNB1-associated ceRNA network as described in
Methods. (Supplementary Figure 8, Supplementary Table 5).
Of note, the mir-302 family (hsa-mir-302-a, -b, -c and -d) which
was highly expressed in embryonic stem cells, was associated
with CCNB1 and MIR17HG. This indicated that mir-302 might
reduce the proliferation of neuroblastoma as it did in other
cancers (54, 55).

Inhibitory Cells and Cytokines
Increased in S2
Since distinct immune response patterns were observed between
the two subgroups in GO-enrichment analysis and GSEA
(Supplementary Figure 3), we further analyzed the immune
microenvironment in neuroblastoma. The ESTIMATE
algorithm was used to infer the purity of the microenvironment
by scoring immune and stromal cells (56). Two groups did differ
in stromal scores but not in immune scores, suggesting that S1
might preserve more normal stromal cells (Supplementary
Figure 9). We used the ssGSEA algorithm to convert gene
expression data into relative cell proportions (Supplementary
Figure 10A). The numbers of the T regulatory cells (Tregs),
Natural Killer (NK) cells, Monocytes, MDSCs, Eosinophils and
central memory CD4 T cells were up-regulated in S2 compared to
S1, while the Memory B cells, Macrophages, Gamma Delta T cells
and central memory CD8 T cells exhibited opposite trends.
Despite a rich amount of innate cytotoxic NK cells in S2,
inhibitory immune cells like Tregs and MDSCs might
contribute to deficient cytolytic activities. Since GZMA*PRF1
could represent tumor microenvironment cytolytic activities
(57), these data indicated that S1 may possess superior cytolytic
activities which might eliminate tumor cells conspicuously
(Supplementary Figure 11A). In addition, only activated CD8+
T cells were connected with survival events in two subgroups at
p < 0.05, however, they anticipated contradicting outcomes
(Supplementary Figure 10B, Supplementary Table 6). This
implied that CD8+ T cells might play dual roles in
neuroblastoma patients, i.e., CD8+ T cells functioned as a
normal beneficial factor in malignant tumors in S2, however,
impeding patients of S1 from recovering.

Then, we examined the intrinsic immune escape mechanism
in neuroblastoma. Down-regulations of interferon signals and
droppings of two g-IFN receptors were observed in S2
(Supplementary Figures 3, 11B), whereas IL-2 was increased
in S1 which might stimulate T cell differentiation. A loss of HLA-
class I/II can aid tumor cells to escape from immune monitoring.
HLA-A and HLA-C were lower in S2, making the tumors prone
to survive (Supplementary Figure 11C) (58, 59). The expression
levels of PDCD1, PDL1 and CTLA4, which are critical immune
checkpoint genes, were also affected in S2 (60). Overall, these
Frontiers in Oncology | www.frontiersin.org 11
data suggest that disturbance of the immune system may be
underneath the poor outcomes of the patients in S2.
DISCUSSION

One of the cruxes for neuroblastoma treatments is the
heterogeneity. MYCN amplification and INSS risk classification
have improved the efficacy to herald survivals, which many
studies have unraveled genetic polymorphisms among.
However, the current staging and grading systems are mainly
based on clinical phenotypes, while it is steadily accepted that
patients should be categorized by genetic associations.

Machine-learning and deep-learning methods have been used
in medicine for many years. Generally, a deep-learning model
receives multi-omics data and predicts outcomes by one or more
neural networks. Chaudhary et al. used RNA-seq, miRNA-seq
and DNA methylation data to train an autoencoder and partition
patients into two prognostic groups (20). Chabon et al. sequenced
SNV and CNV data of cell-free DNA in patients with lung
cancers and controls. They established a ‘Lung-CLip’ machine-
learning model to score each patient and determined whether a
patient got lung cancer by the relative score (19). In this study, we
used a DL-based classifier to significantly improve the prediction
of neuroblastoma outcomes. We fed 172 genes expression data to
the neural network and enrolled the attention mechanism into the
survival classifier. The output probability could tell whether a
patient could be dead or alive. Moreover, the 172 features selected
for survival prediction could help characterize the genetic
heterogeneities among the neuroblastoma patients.

A special attention mechanism was employed to combine two
different parts of RNAs together (23). The attention mechanism
is firstly presented by Vaswani et al. and widely used in computer
vision and natural language processing (61), which is helpful to
find interactions among different features, such as importance,
relationship and so on. The attention mechanism can help the
network learn how these two different groups of genes interact
with each other. Information learned by the network can help it
achieve a better performance. Indeed, our model outperformed
traditional cox models, gaining a 5-year-survival AUC 0.974 and
0.896 in GSE49710 and EMTAB cohorts respectively. Besides,
the PCA method failed to partition patients into appropriate
prognostic groups, suggesting the superiority of our methods.
Finally, we ran the gamut from all the samples in two cohorts,
showing the robustness of our DL-based model.

For a long period, lncRNAs have been thought fruitless until
recent advances that they might participate in chromosome
stabilization, transcriptional initiation, localization, etc., thus
broadening the cancer epigenetic network and making it
possible for new drugs (62–64). Here, we identified four critical
lncRNAs: MYCNOS, TERC, SNHG1 and MIR17HG. MYCNOS,
the antisense of MYCN, functions as the regulator of upstream
MYCN promotor to enhance MYCN expressions. TERC, the
telomerase RNA component, part of the telomerase, could
proliferate prostate cancer cells (65, 66). SNHG1 up-regulates
in colorectal, liver, prostate and gastric cancers, which is the
July 2021 | Volume 11 | Article 653863
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biomarker for decreased survivals (67). Also it contributes to the
neuroinflammation in Parkinson’s disease (68). MIR17HG
promotes colorectal as well as gastric cancer progression and
up-regulates PD-L1 expression, which could be inhibited by
g-IFN (69, 70). Investigations about those lncRNAs indicated
that they could be engaged in the oncogenesis of neuroblastoma.

Our DL-based approach evinced a pathbreaking conjecture
for survivals of neuroblastoma patients, still, there are some
caveats should be aware of. First, neural networks are thought to
be uninterpreted for now. We tried to exploit an attention
mechanism to decipher underlying juxtapositions of genes
involved in neuroblastoma, however, we could not declare how
these neural networks work explicitly. Second, we only applied
our model into two datasets that provided high-quality
sequencing results as well as unequivocal labels and clinical
annotations for each patient. We expected to test the reliability
in more large cohorts. Last but not the least, we exerted neural
networks on 172 features, which would be an obstacle for
massive use in clinical examination due to its costs.

In summary, a DL-based model was constructed using 172
gene expressions to forecast survival status of neuroblastoma.
Patients were split into two groups, which presented distinct
microenvironments and clinical denouements. Our work paved
the way for applications of artificial intelligence in medicine, not
only in survival prediction, but also biological interpretations
and associated accurate medicine.
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Supplementary Figure 1 | Consensus clustering results for GSE49710.
(A) Cumulative density functions (CDF) for k=2 to 8. (B) Relative changes in CDF
curves. (C–F) Consensus matrices for k=2 to 5.

Supplementary Figure 2 | KM curves of the EMTAB cohort for OS (A) and EFS
(B). S1 (coralline line) and S2 (atroceruleous line) were determined by the same
procedure as GSE49710 (both log-rank test p < 0.0001).

Supplementary Figure 3 | GSEA plots showed that S1 exhibited higher
biochemical activities (A–E) while S2 owned immune responses (F–I).

Supplementary Figure 4 | Explained variances of each top 10 PCA dimensions.

Supplementary Figure 5 | Consensus clustering results for GSE49710 using
PCA dimensions. (A) Cumulative density functions (CDF) for k=2 to 8. (B) Relative
changes in CDF curves. (C–F) Consensus matrices for k=2 to 5.

Supplementary Figure 6 | The univariable cox regression result of age, MYCN
status, gender, stage, INSS-risk and DL-probability.

Supplementary Figure 7 | Decision curve analysis for 3 models: DL-model (red),
clinical covariates (palm green) and combined model (green).

Supplementary Figure 8 | The ceRNA network associated with CCNB1, CD9,
MYCNOS, TERC, SNHG1 and MIR17HG.

Supplementary Figure 9 | ESTIMATE scores for samples in GSE49710. (A) The
total ESTIMATE scores. (B) Immune socres. (C) Stromal scores.

Supplementary Figure 10 | The immune microenvironment in neuroblastoma.
(A) Relative proportions of cell types in S1 and S2. Wilcoxon rank sum tests were
used to detect differences between two subgroups (n=498). ns, not significant;
*:0.05, **:0.01, ***:0.001, ****:0.0001 (B) Cox regressions for individual cell types in
S1, S2 and the whole cohort. Dots are colored red when hazard ratios are higher
than 1 and are colored blue when hazard ratios are less than 1. Also, a larger circle
means a lower p-value.

Supplementary Figure 11 | Immune microenvironment molecules. Differences
between groups were examined by Wilcoxon rank sum tests. ns: not significant,
*:0.05, **:0.01, ***:0.001, ****:0.0001 (A) S1 owned higher cytolytic activities, which
were calculated by GZMA*PRF1 (Wilcoxon rank sum tests: p < 0.001).
(B) Cytokines in S1 and S2. (C) HLA molecules in S1 and S2. (D) Immune
checkpoint molecules in S1 and S2.
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