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Abstract
Purpose This study was designed to determine safety, tolera-
bility, and radiation burden of a [68Ga]NODAGA-RGD-PET
for imaging integrin αvβ3 expression in patients with hepato-
cellular carcinoma (HCC) and liver cirrhosis. Moreover, met-
abolic stability and biokinetic data were compiled.
Methods After injection of 154–184 MBq [68Ga]NODAGA-
RGD three consecutive PET/CT scans were acquired starting
8.3±2.1, 36.9±2.8, and 75.1±3.4 min after tracer injection.
For metabolite analysis, blood and urine samples were ana-
lyzed by HPLC. For dosimetry studies, residence time VOIs
were placed in the corresponding organs. The OLINDA/EXM
program was used to estimate the absorbed radiation dose.
Results The radiopharmaceutical was well tolerated and no
drug-related adverse effects were observed. No metabolites
could be detected in blood (30 and 60 min p.i.) and urine
(60 min p.i.). [68Ga]NODAGA-RGD showed rapid and pre-
dominantly renal elimination. Background radioactivity in
blood, intestine, lung, and muscle tissue was low (%ID/l
60 min p.i. was 0.56±0.43, 0.54±0.39, 0.22±0.05, and 0.16
±0.8, respectively). The calculated effective dose was 21.5
±5.4 μSv/MBq, and the highest absorbed radiation dose was
found for the urinary bladder wall (0.26±0.09 mSv/MBq).

No increased uptake of the tracer was found in HCC compared
with the background liver tissue.
Conclusions [68Ga]NODAGA-RGD uptake in the HCCs le-
sions was not sufficient to use this tracer for imaging these
tumors. [68Ga]NODAGA-RGD was well tolerated and meta-
bolically stable. Due to rapid renal excretion, background
radioactivity was low in most of the body, resulting in
low radiation burden and indicating the potential of
[68Ga]NODAGA-RGD PET for non-invasive determination
of integrin αvβ3 expression.

Keywords [68Ga]NODAGA-RGD . PET .Metabolic
stability . Dosimetry .Whole-body distribution .

Hepatocellular carcinoma

Introduction

Hepatocellular carcinoma (HCC) is one of the most common
cancers worldwide, and liver cirrhosis is its primary risk factor
[1]. The diagnosis of HCC is based on pathology or, in cir-
rhotic patients, on typical hallmarks in dynamic contrast-
enhanced computed tomography (CT) or magnetic resonance
imaging (MRI) with hypervascularization in the arterial and
wash-out in the portal venous phase [2]. Early diagnosis is
important, as curative treatment options, including resection,
loco-ablative procedures, and liver transplantation are re-
served for patients with early tumor stages without extrahe-
patic spread. Also assessment of treatment response and early
detection of recurrent disease after (loco-)ablative therapy rely
on non-invasive CT and MRI criteria [3].

However, definite diagnosis is not always possible with the
currently available non-invasive methods. Especially in small
lesions <1 cm contrast enhancement can be atypical and difficult
to assess. Furthermore, a clear distinction between vital and
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devitalized tissue after loco-ablative treatment is not always pos-
sible. Therefore, additional functional imaging techniques for
diagnosis and evaluation of treatment response in HCC are
needed.

The use of positron emission tomography (PET) as an alter-
native non-invasive method has not been implemented in routine
HCC diagnostics due to a lack of HCC-specific tracers. Recently,
non-invasive imaging of integrin αvβ3 expression using PET
was introduced. This integrin is highly expressed on activated
endothelial cells during angiogenesis and is involved in tumor
growth and invasiveness [4]. Modified RGD peptides
(RGD=amino acid sequence arginine–glycine–aspartic acid)
are used as radioactive tracers binding to this integrin [5, 6].
One of the most extensively studied derivatives is [18F]Galacto-
RGD [7–10]. Studies in animal models and clinical studies have
demonstrated receptor-specific accumulation, as well as high
metabolic stability and predominantly renal elimination [7, 9].
The routine use of this compound in clinical practice is hampered
by its complex synthesis, preventing an automated production.
An alternative, more easily accessible derivative is
[68Ga]NODAGA-RGD [6, 11, 12], which shows a comparable
receptor-specific accumulation and pharmacodynamics in pre-
clinical studies, but has the advantage of an easy and automatable
production.

[68Ga]NODAGA-RGD has a high binding affinity for
integrin αvβ3, which is upregulated on cytokine-activated en-
dothelia cells and on vascular cells within malignant tumors
[4]. Recent findings from immunohistochemical studies report
integrin αvβ3 expression in 77 % of investigated HCC spec-
imens whereas expression was detectable only in 22 % of
normal liver tissue [13]. Patients with detectable integrin
αvβ3 expression had a significantly worse survival, indicating
a prognostic role of this integrin in patients with HCC.

For evaluation of the safety and diagnostic utility of
[68Ga]NODAGA-RGD PET for HCC, this phase I clinical study
was carried out. To characterize the biological properties of this
novel tracer, whole-body biodistribution, pharmacokinetics, and
metabolic stability of [68Ga]NODAGA-RGD in humans were
determined. From these parameters, radiation dosimetry of a
[68Ga]NODAGA-RGD PET investigation was calculated.

Materials and methods

If not otherwise indicated, reagents were obtained from VWR
International GmbH (Vienna, Austria) or Sigma-Aldrich
Handels GmbH (Vienna, Austria) and were used without fur-
ther purification.

Tracer production via automated synthesis

68Ga-labeling of NODAGA-RGD follows the protocol pub-
lished in Knetsch et al. [11] and was adapted to be carried out

with a remote controlled synthesis unit (Modular-Lab
PharmTracer; Eckert&Ziegler Eurotop GmbH, Berlin,
Germany) with removable cassettes under cleanroom
conditions. For the automated synthesis, a fractionated
elution protocol was used [14]. Briefly, preparation of
[68Ga]NODAGA-RGD starts with the fractionated elution of
the 68Ga/68Ge-generator with 0.1 N HCl followed by reaction
of 68GaCl3 with 20 μg NODAGA-RGD (MW: 960.5 g/mol)
in 1.5 ml acetate buffer (2 M; pH 5.0) at 40 °C for approx.
10 min and subsequent adsorption of the product on a C-18
cartridge. Elution with 50 % ethanol and washing with saline
including sterile filtration using a Millex GS (Millipore
GmbH, Vienna, Austria) sterile filter with 0.22-μm pore size
resulted in the desired radiolabeled product in approx. 8.5 ml
0.9 % saline with max. 10 % ethanol. NODAGA-RGD was
supplied from piCHEM (Graz, Austria) in GMP quality. The
68Ge/68Ga-generator was purchased from Eckert&Ziegler
Eurotop GmbH and eluted with 0.1 N hydrochloric acid
(Rotem Industries Ltd, Arava, Israel).

Patients

The study included nine patients, and was approved by the ethics
committee of the Medical University of Innsbruck and the
Austrian Competent Authority (BASG, EudraCT No. 2013-
003741-42). Informed written consent was obtained from all
patients. Inclusion criteria were untreatedHCC lesions in patients
with liver cirrhosis Child–Pugh classA orB.Diagnosis and exact
number and size of HCC lesions was confirmed by amultiphasic
CT or MRI according to EASL/EORTC guidelines [2].
Exclusion criteria were decompensated liver cirrhosis Child–
Pugh class C, uncontrolled complications of portal hypertension
(refractory ascites, advanced hepatic encephalopathy or large
esophageal varices), and advanced renal insufficiency with an
eGFR below 30 ml/min. Baseline examinations included CT or
MRI scan, physical examination, ECG, and laboratory tests (in-
cluding creatinine, blood count, transaminases, bilirubin, and co-
agulation parameters) not older than 14 days prior to the PET
scan. Physical examination and laboratory tests were repeated on
the day after the PET scan and during further follow-up visits to
assess possible adverse reactions.

PET procedure

For each patient, a total of three PET/CT scans were performed
using a Discovery PET/CT 690 VCT scanner (GE Healthcare,
Milwaukee,WI,USA). The patientswere allowed to urinate after
the second scan and a sample of the urine was collected for
metabolic analysis. For all patients, the region from upper thigh
to the skull/cranium was covered by a seven-bed emission scan
(2 min per bed position; field of view is 15.2 cm with overlap-
ping acquisitions, resulting in a length of 12.3 cm for each bed
position) performed in caudocranial direction. The mean starting
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times of the three scans were 8.3 ± 2.1, 36.9 ± 2.8, and
75.1±3.4min after tracer injection, respectively. Injected activity
ranged from 154 to 184 MBq [68Ga]NODAGA-RGD corre-
spondingwith approx. 10–12μg peptide. X-ray CT transmission
scans were performed twice, before the first and the third scan, to
correct for gamma ray attenuation and to obtain the anatomical
data required for drawing of the volume of interest (VOI). A
second CT scan was required to guarantee the same positioning
of VOIs (as for first and second scan) for image analysis because
of patient movement.

Image analysis and dosimetry

Positron emission data were reconstructed using an ordered-
subsets expectation maximization algorithm. Reconstructions
were performed with two iterations and 24 subsets. The images
were corrected for attenuation using CT data collected over the
same regions as for emission imaging. For image analysis,
Hermes software (Version P5 gold 4.4-B; Hermes Medical
Solutions AB, Stockholm, Sweden) was used. Images were cal-
ibrated to Bq/ml for radiation dosimetry estimates.

To obtain the time activity curves and to calculate the res-
idence times, VOIs were placed in the corresponding organs
(liver, urine bladder, spleen, kidneys, small intestine, muscle,
lung, and left ventricle). The diameter of the VOIs was set to
2.5 cm for all organs with the exception of the liver, where it
was set to 5 cm and placed in the center of the corresponding
organ to avoid underestimated organ radioactivity because of
partial-volume effects. Due to patient movement, the PET/
CTs were fused between second and third scan to guarantee
the identical position of VOIs at different scans.

Because of the limited number of measured time points, a
monoexponential fit based on the decay corrected data was
used for calculation of organ residence times.

For dosimetry calculations, the OLINDA/EXM software
(Version 1.1, copyright Vanderbilt University, 2007) was used.
Radioactivity in the source organs was determined by multiply-
ing the measured radioactivity concentration (Bq/ml) by the or-
ganmasses from theOLINDAadultmen phantom; the datawere
body weight- and lean body mass index-corrected; furthermore,
kidney mass was patient-corrected by CT scan.

Urinary bladder radioactivity was determined from three
VOIs at least 2.5 cm in diameter drawn inside the bladder.
Subsequently, the urinary bladder volume was measured by
drawing freehand ROIs around bladder contour at each of the
three emission scans. The volume was calculated by
HERMES software. The results were used to calculate the
urine bladder content residence time.

Analysis of the metabolic stability in blood and urine

Blood samples were collected 30 and 60min and urine 60min
after tracer injection. Blood samples (approx. 15 ml) were

centrifuged at 2,500 rpm for 5 min. The supernatant was treat-
ed with acetonitrile (1:1) and centrifuged at 3,000 rpm for
3 min. To remove the organic solvent, 1 ml of the supernatant
was treated with an argon stream and approx. 300 μl of the
remaining solution was analyzed. For urine analysis, an aliquot
of 1 ml was passed through a sterile filter (Millex GV, Merck
KGaA, Darmstadt, Germany), washed with 1 ml water (which
was separately collected) and 50μl of the filtrate was analyzed.

Analysis of metabolites was carried out using reversed-
phase high-performance liquid chromatography (RP-HPLC)
systems. For blood sample analysis, a Dionex P680 Pump
(Germering, Germany) with a sample loop of 1 ml and a SRD
Nucleosil 120-3C18 column (150×3 mm; Vienna, Austria)
were used and fractions of 30 s were collected manually and
counted in a 2480 Wizard2 3″ automatic gamma counter
(PerkinElmer, Vienna, Austria). For urine analysis, a Dionex
Ultimate 3000 RS with an ACE 3C18 column (150×3 mm;
Aberdeen, Great Britain) and a raytest Gabi radiometric detector
(raytest Isotopenmessgeraete GmbH, Straubenhardt, Germany)
were used. For both HPLC systems, an acetonitrile/water/0.1 %
trifluoroacetic acid gradient was used (0–2 min 0 % acetonitrile,
2–18 min 0–50 % acetonitrile; flow 1 ml/min).

For determination of the extraction efficiency, aliquots dur-
ing the different working steps were taken, analyzed in the
gamma counter, and radioactivity distribution was calculated.

Results

Tracer production

The automated synthes is a l lowed product ion of
[68Ga]NODAGA-RGD including prearrangement and quality
control within approx. 60 min. All quality control parameters
were within the pre-specified limits. This included half-life,
appearance, pH value, identity, sterility, endotoxin amount,
68Ge-content, and ethanol content (see Table 1). Moreover,
radiochemical purity based on HPLC as well as thin-layer
chromatography (TLC; methanol/ammonium acetate 1:1)
analysis was always >99 %. The specific activity is deter-
mined by the radioactivity eluted from the generator and was
between 12 and 24 MBq/nmol (average 16.2 ± 3.3 MBq/
nmol).

Patients, tolerability, and adverse effects

Nine male patients (mean age, 60 years, range, 52–75 years;
Table 2) underwent a [68Ga]NODAGA-RGD scan. The etiol-
ogy of the underlying liver disease was fatty liver disease in
six patients and chronic hepatitis C in three patients. All pa-
tients had compensated cirrhosis Child–Pugh class A with a
median MELD score of 8 (range, 7–10). The median number
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of HCC lesions was 2 (range, 1–6) and the median size of the
largest lesion was 20 mm (range, 15–34 mm).

Tracer application and PET scanning were well tolerated in
all patients, and no procedure-related adverse reactions were
observed. During follow-up, no significant changes in kidney,
liver, or heart function were revealed by clinical and biochem-
ical investigations. All patients were alive at the end of the
study period.

Metabolite analysis

No metabolites were detected by HPLC analysis of the blood
samples drawn at 30 and 60 min (n = 3) and urine samples at
60 min (n=6) after tracer application (Fig. 1). Extraction

efficiency for the analysis of the blood samples was approx.
95 % and for the analysis of the urine samples greater than
99.5 %.

Due to the low radioactivity concentration in blood, HPLC
radiodetectors were not able to analyze the samples, thus 30-s
fractions were collected and radioactivity in the fractions was
analyzed using a gamma counter.

Pharmacokinetics and tumor accumulation

Figure 2 shows representative maximum intensity projections
of three static scans from patient no. 3 starting 13, 40, and
76min p.i., respectively. The images indicate rapid and predom-
inantly renal elimination of [68Ga]NODAGA-RGDwith highest
radioactivity concentration in bladder, kidneys, spleen, and liver
(median SUV 60 min p.i. = 31.0, 4.5, 3.8, and 2.9, respectively).
Radioactivity in other tissue and blood is low (e.g., median SUV
60 min p.i. in intestine, blood, lung and muscle is 0.88, 0.72,
0.39, and 0.26, respectively). This is confirmed by quantitative
analysis of the organ distribution as well as the time activity
curves. Figure 3 summarizes the percentage injected dose per
liter (%ID/l) for the various organs determined and averaged over
all patients. Additionally, averaged time activity curves including
all nine patients were calculated (Fig. 4). Again, the areas of
highest radioactivity were the urogenital tract (kidneys and
urinary bladder), followed by the spleen, liver, and gut. Blood-
pool radioactivity was low and declined rapidly over time.
Background radioactivity in the muscles and lungs was also low.

There was no increased radioactivity concentration in any
of the HCC lesions identified by CT/MRI scan compared to
the background radioactivity in the liver. In contrast, two out
of nine patients showed a lower tracer accumulation in the
HCC lesion as compared to the remaining liver parenchyma.

Table 2 Patient data (ES = emission scan)

Patient
no.

Age
[years]

Weight
[kg]

Underlying
liver disease

MELD
score

No. of HCC
lesions

Max. diameter
[mm]

Injected activity
[MBq]

Time after injection [min]

ES 1a ES 2 ES 3

1 61 73 Fatty liver 10 2 20 167 8 37 72

2 55 96 Fatty liver 7 6 18 154 8 34 78

3 56 72 Fatty liver 9 3 28 173 13 40 76

4 (-)b 56 91 Fatty liver 10 2 33 167 8 34 72

5 63 89 Hepatitis C 8 1 34 175 7 35 70

6 75 133 Fatty liver 8 1 15 155 8 35 80

7 70 65 Fatty liver 8 3 20 184 10 40 77

8 52 97 Hepatitis C 10 2 20 159 7 36 78

9 (-)b 52 80 Hepatitis C 7 3 31 167 6 41 73

mean 60 88 167 8 37 75

SD 8 20 10 2 3 4

a Start of corresponding emission scan
b Indicates patient with lower uptake in HCC than surrounding liver tissue

Table 1 Quality control data from a representative synthesis run

Determined parameter Defined range Found value

Half life 61.2–74.8 min 66.2 min

Appearance Clear colorless ok

Volume 7–12 ml 8.5 ml

Particle Free of particle ok

pH 4.5–7.0 6

Radiochemical purity TLC >98 % 99.7 %

Radiochemical purity HPLC >92 % 99.4 %

Identity HPLC (retention time) 6.7–7.3 min 7.0 min

Peptide amount (HPLC) <25 μg 14 μg

Sterility testa Sterile ok
68Ge contenta <100 Bq/ml 0.02 Bq/ml

Endotoxin <14.6 EU/ml <0.25EU/ml

Ethanol content (GC)a <10 % 2.7 %

aHas been carried out after release of the radiopharmaceutical
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Figure 5 shows representative images of two patients, one
with comparable tracer accumulation in tumor and liver (panel
A) and one with decreased tracer accumulation in the tumor
compared to the rest of the liver (panel B).

Dosimetry calculations

Table 3 lists the average absorbed radiation dose for all organs
using individual residence times. Average residence times are
listed in Table 4. The maximum residence time for 68Ga is
1.64 h, and the sum of the mean residence time is 1.11 h.
The difference accounts for radioactivity excreted via the kid-
neys and urinary bladder by voiding after the second scan. The
effective absorbed radiation dose was 21.5±5.4 μSv/MBq
with the highest absorbed dose (0.26±0.09 mSv/MBq) found

in the urinary bladder wall. Further organs with values of
>0.10 mSv/MBq were kidneys, spleen, liver, and small intes-
tine. Using a 30-min bladder voiding model the effective dose
was reduced to 10.9±1.9 μSv/MBq.

Discussion

Th i s phase I c l i n i c a l s t udy demons t r a t e s t ha t
[68Ga]NODAGA-RGD is well tolerated without drug-related
adverse effects in patients with liver cirrhosis and HCC. The
good tolerability of this compound is in accordance with pre-
viously reports of RGD-based tracers [15, 16].

[68Ga]NODAGA-RGD showed high metabolic stability.
Nometabolites could be detected in blood or in urine samples.
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Fig. 1 Metabolite analysis via HPLC. Left Analysis of the blood via fractionation and subsequent measurement of the fractions in a gamma counter.
Right Analysis of the urine directly with the radiodetector of the HPLC system
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Fig. 2 Maximum intensity projections from static [68Ga]NODAGA-
RGD PET scans of a male patient (no. 3) with HCC starting at 13 min
(a), 40 min (b), and 76 min (c) after tracer injection. The tracer shows
rapid predominant renal elimination with highest radioactivity in bladder,

kidneys, liver, spleen, and intestine. Low background radioactivity is
found in brain, thorax, and extremities. For all three images, gray scale
is set to the same values
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This indicates that the radioactivity accumulation solely cor-
relates with [68Ga]NODAGA-RGD distribution. Our findings
suggest superior stability compared to some other RGD-based
tracer such as e.g., [18F]Fluciclatide, which showed only 74%
intact tracer in blood 60 min after injection [15]. Additionally,
[68Ga]NODAGA-RGD showed rapid, predominantly renal
elimination with low radioactivity concentration in almost
all organs, resulting in an effective radiation dose similar to
a standard [18F]FDG PET scan. Therefore, [68Ga]NODAGA-
RGD can be used safely for non-invasive determination of
integrin αvβ3 expression in humans.

The dosimetry calculations showed an estimated effective
dose of 21.5 μSv/MBq. The urinary bladder received the
highest absorbed radiation dose (262 μSv/MBq). Other or-
gans receiving more than 10 μSv/MBq were the small intes-
tine, liver, spleen, and kidneys. In accordance with the data for
[18F]Galacto-RGD, no time-dependent increase in radiation
dose was present in the intestine. This indicates that the tracer
uptake in the intestine is not due to hepatobiliary excretion,
but rather due to receptor expression on intestinal smooth
muscle cells as proposed by Beer et al. [10].

The radiation dose estimates from this study indicate low
radiation burden for patients during a [68Ga]NODAGA-RGD

PET scan. The total effective dose was in the range of other
radiolabeled RGD-peptides used in clinical studies (e.g.,
[18F]Galacto-RGD, Fluciclatide, and RGD-K5; for overview
see [6]) as well as other commonly used oncologic PET
tracers such as [18F]FDG (between 20 and 30 μSv/MBq
[17]). Even if 200 MBq [68Ga]NODAGA-RGD (average in
this study was 167±10 MBq) would have been injected, the
effective dose would have only been 4.3 mSv. This is well
within the limits of risk category IIB as defined by the
International Commission on Radiological Protection (minor
to intermediate level of risk, appropriate for intermediate to
moderate social benefit) [18]. To further reduce exposure to
the bladder, patients were allowed to void between the second
and third static scan in this study (corresponding to a voiding
interval of 60 min p.i.). This reduces radioactivity concentra-
tion in the bladder to approx. 20 % of the value found before
voiding (see Fig. 3). The time–activity curves from other or-
gans indicate that their radioactivity elimination is unim-
paired, because no unpredicted curve progression between
the second and third time point was observed. The radiation
burden could be further reduced by using only one static scan
after approximately 1 h in a routine application of
[68Ga]NODAGA-RGD, which allows voiding already
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30 min after tracer injection. Based on a corresponding
voiding model, this would result in an effective dose which
is approx. 50 % of that found in this study.

Analysis of biodistribution revealed predominantly renal
elimination with highest radioactivity concentration in bladder
followed by the kidneys. Due to the high radioactivity con-
centration in the urine, image analysis adjacent to urinary tract
and the bladder might be slightly impaired especially in early
scans. However, in the latest scan, due to rapid elimination
and voiding, this is much less pronounced, indicating that in

the clinical routine, scans should start approx. 60 min after
tracer injection.

In contrast, background radioactivity in muscle, lung,
blood, and brain is very low, indicating high sensitivity of
[68Ga]NODAGA-RGD in integrin αvβ3 detection in brain,
thorax, and extremities. In contrast, higher background radio-
activity was found in the spleen and liver and to a lesser extent
in the intestine. However, compared with the data for
[18F]Galacto-RGD [10], these values are even lower, poten-
tially enabling better imaging contrasts for [68Ga]NODAGA-
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RGD. Moreover, the mean SUV in the liver (average of all
patients) was between 3.8 (first image) and 2.9 (last image),
which is comparable with liver background radioactivity of a
routine [18F]FDG scan.

Radioactivity accumulation was not increased in HCC le-
sions identified by CT or MRI scan as compared to the back-
ground liver uptake. In two patients, even reduced uptake in
the lesions was found. This finding is surprising, as integrin
αvβ3 expression has been shown to be present in the majority
of HCCs [13]. Similar to our finding, a deficit uptake of
[18F]Fluciclatide in liver metastases in breast cancer patients
has been reported [15]. In accordance with this finding, the
angiogenic potential of breast adenocarcinoma liver metasta-
ses is low. In contrast, HCC is a highly vascularized tumor and
integrin αvβ3 expression is upregulated in vascular cells in
tumors [4]. Therefore, we expected high [68Ga]NODAGA-
RGD uptake in HCC. One potential limitation is that no biop-
sy samples for histochemical analysis were available from
HCC patients included in this study. Hence, we cannot con-
firm the actual integrin αvβ3 expression of the HCCs investi-
gated in this series.

In conclusion, imaging of HCC tumors might not be pos-
sible with [68Ga]NODAGA-RGD. If this is based on low re-
ceptor expression and/or to higher background radioactivity in
the cirrhotic liver remains unclear. Future studies in tumor
entities with known high integrin αvβ3 expression either on

the tumor cells or the endothelial cells of the tumor vasculature
are under way to further explore the diagnostic utility of
[68Ga]NODAGA-RGD for non-invasive imaging of integrin
αvβ3 expression.
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Fig. 5 Transaxial PET/CT images of the tumor region. a Patient 7: Tracer
uptake in the tumor is comparable with background radioactivity of the
liver. b Patient 4: A deficit uptake is found in the lesion compared to the
background radioactivity of the liver. Arrows indicate the position of the
lesions

Table 3 Radiation dose estimates for intravenous administration of
[68Ga]NODAGA-RGD in the order of increasing radiation burden.
Data are given as μSv/MBq

Site Mean Standard deviation

Stomach wall 1.95 1.94

Breast 5.01 1.63

Skin 5.03 1.57

Brain 5.21 1.64

Thyroid 5.39 1.75

Red marrow 5.47 1.66

Thymus 5.57 1.77

Muscle 6.30 1.73

Heart wall 6.33 1.92

Testes 7.15 1.77

Lungs 7.17 1.71

Upper large intestinal wall 7.75 2.01

Adrenals 7.88 2.05

Pancreas 7.99 2.14

Osteogenic cells 8.10 3.05

Gallbladder wall 8.67 2.29

Lower large intestinal wall 8.98 2.09

Small intestinal wall 15.80 5.56

Liver 32.00 10.75

Spleen 48.20 17.12

Kidneys 69.00 17.37

Urinary bladder wall 262.00 92.59

Total body 7.29 2.20

Effective dose 21.50 5.35

Table 4 Mean organ/tissue residence times of all patients given as
(MBq× h/MBq) × 102

Site Mean Standard deviation

Muscle 24.6 8.1

Blood 1.1 0.5

Lungs 1.1 0.2

Small intestine 1.6 0.9

Liver 11.3 3.6

Spleen 1.8 0.6

Kidneys 5.4 1.0

Urinary bladder wall 22.3 8.0

Remainder of body 42.2 13.1

2012 Eur J Nucl Med Mol Imaging (2016) 43:2005–2013



Conclusions

This study demonstrates that [68Ga]NODAGA-RGD is well
tolerated and metabolically stable in humans. Due to rapid,
predominantly renal, elimination of the tracer background,
activity is low in most of the body, which results in low radi-
ation burden and should lead to good tumor/background ra-
tios. Unfortunately, uptake in HCC tumors was not sufficient
to use the tracer for imaging of this tumor type. Further studies
will evaluate the potential of this compound in imaging
integrin αvβ3 expression using PET in other tumor entities.
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