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Introduction
Yoga envisages a balance between physical, 
psychological, mental, and spiritual domains 
in life. National Institutes of Health 
Groups Yoga under complementary and 
alternative medicine.[1] The focus on breath 
control, mindfulness, and maintenance of 
posture differentiates it from other physical 
exercises.[2] Various yoga practices have 
been explored in a wide range of diseases 
for their efficacy in mitigating symptoms.

Multiple studies have analyzed the 
effect of yoga in improving the clinical 
symptoms in various illnesses. Yoga‑based 
lifestyle intervention has been shown 
to impact remission in patients with 
major depressive disorder, irrespective 
of their response to the antidepressant 
treatment.[3] In rheumatoid arthritis patients, 
the practice of yoga decreased the levels 
of inflammatory cytokines and improved 
the clinical symptoms.[2] Yoga has also 
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Abstract
Background: Yoga is a multifaceted spiritual tool that helps in maintaining health, peace of mind, 
and positive thoughts. In the context of asana, yoga is similar to physical exercise. This study aims 
to construct a molecular network to find hub genes that play important roles in physical exercise and 
yoga. Methodology: We combined differentially expressed genes (DEGs) in yoga and exercise using 
computational bioinformatics from publicly available gene expression omnibus (GEO) datasets and 
identified the codifferentially expressed mRNAs with GEO2R. The co‑DEGs were divided into four 
different groups and each group was subjected to protein–protein interaction (PPI) network, pathways 
analysis, and gene ontology. Results: Our study identified immunological modulation as a dominant 
target of differential expression in yoga and exercise. Yoga predominantly modulated genes affecting 
the Th1 and NK cells, whereas Cytokines, Macrophage activation, and oxidative stress were affected 
by exercise. We also observed that while yoga regulated genes for two main physiological functions 
of the body, namely Circadian Rhythm (BHLHE40) and immunity (LBP, T‑box transcription factor 
21, CEACAM1), exercise‑regulated genes involved in apoptosis (BAG3, protein kinase C alpha), 
angiogenesis, and cellular adhesion (EPH receptor A1). Conclusion: The dissimilarity in the genetic 
expression patterns in Yoga and exercise highlights the discrete effect of each in biological systems. 
The integration and convergences of multi‑omics signals can provide deeper and comprehensive 
insights into the various biological mechanisms through which yoga and exercise exert their 
beneficial effects and opens up potential newer research areas.
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been shown to bring about a modest 
reduction in blood pressure in hypertensive 
individuals.[4] The evidence from different 
randomized controlled trials (RCTs) 
demonstrates yoga to have beneficial 
effects on diastolic blood pressure, HDL 
cholesterol, and triglycerides.[5] Further, 
sustained yoga practice had a beneficial 
impact in adults with metabolic syndrome 
by decreasing waist circumference. It 
also improved physical functions, central 
obesity, and alterations in the ghrelin axis.[6]

Recently, multiple studies have explored 
the molecular alterations and changes in 
the plasma levels of various biomarkers 
in Yoga. Yoga has been shown to 
downregulate pro‑inflammatory genes.[7] 
The pro‑inflammatory transcription factor 
NF‑κB was downregulated in individuals 
practicing yoga.[8] A 12‑week practice of 
yoga in breast cancer survivors reduced the 
expression of inflammation‑related genes, 
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including nuclear factor kappa B (NF‑κB) and cAMP 
response element‑binding protein family transcription 
factors.[9] In a study conducted among women with chronic 
stress, women practicing yoga had reduced methylation 
of the tumor necrosis factor gene when compared with 
controls.[10] The decrease in the systemic inflammation 
observed in yoga‑practicing rheumatoid arthritis patients 
was attributed to its effect on the psycho‑neuro‑immune 
axis.[11] Recently, Qu et al. have demonstrated that yoga and 
related practices lead to changes in gene expression profiles 
in peripheral blood mononuclear cells (PBMCs).[12]

Yoga has also been postulated to have a role in halting 
cellular aging in healthy populations. A significant 
decrease in various biomarkers of aging, including 
8‑hydroxy‑2′‑deoxyguanosine and total antioxidant capacity, 
was observed as an effect of yoga and meditation‑based 
lifestyle intervention.[12] Furthermore, yoga in infertile 
individuals had been shown to bring about epigenetic 
changes in spermatozoa. Hypomethylation at the promoter 
sites of genes having a crucial role in male fertility and 
embryo implantation was identified after yoga‑based 
lifestyle intervention. Further, the practice of yoga also 
leads to a reduction in DNA damage and a decrease in 
seminal oxidative stress in spermatozoa.[13,14]

Many of the effects attributed to yoga has also been 
observed in people who undergo physical exercise. Physical 
exercise has been shown to positively impact the quality of 
life and cardiopulmonary fitness.[15] It reduces the incidence 
of hypertension in the community. Both yoga and physical 
exercise reduced the odds of developing diabetes.[16] In 
addition, the exercise was found to be noninferior to 
pharmacologic prophylactic interventions in the prevention 
of migraine.[17] Further, aerobic exercise was demonstrated 
to be effective in alleviating cancer‑related fatigue in breast 
cancer patients.[18]

Different studies have compared the efficacy of yoga 
to exercise. In an RCT among patients with unipolar 
depression, yoga has been shown to have comparable 
efficacy to aerobic exercise in alleviating negative 
thinking.[19] In a recent meta‑analysis by So et al., yoga 
was more effective in reducing anxiety than nonmindful 
exercise.[20] Guo et al. had demonstrated yoga to be more 
effective than other physical activities in alleviating 
depression symptoms in college students.[21] Contrastingly, 
in patients with chronic low back pain, the effectiveness 
of yoga was limited to short‑term gains, whereas physical 
exercises brought about intermediate‑term gain in pain 
relief.[22] Interestingly, yoga was found to have more 
effective when compared with physical exercise in 
improving glycemic control, anxiety, and depression.[23]

Methodology
Data collection

We have searched in the gene expression omnibus (GEO) 
database by several keywords including “Yoga,” 
“Exercise,” “Blood,” “Homo sapiens,” “Expression 
profiling by array,” “PBMC” from January 01, 2012 
to December 17, 2020. Selected Two gene series 
expressions (GSEs) data were for further study. GSE44777 
contains PBMCs and lymphocytes of 10 samples before 
yoga and 10 samples after yoga, while GSE6053 contains 
PBMCs and lymphocytes three samples before exercise 
and three samples after exercise [Figure 1].

Identification of codifferentially expressed mRNAs

GEO2R is an online interactive web tool used to 
compare two or more groups of samples in a GEO 
Series to identify genes that are differentially expressed 
across experimental conditions. We obtain differentially 
expressed genes (DEGs) from two datasets (GSE44777 
and GSE6053) of yoga and exercise with the help of 
GEO2R with the cutoff criteria of P < 0.05. Common 
genes in both datasets were identified and isolated with the 
use of the Venn diagram.

The assortment of codifferentially expressed mRNAs in 
the four groups

All the assorted differential expressions of genes were 
divided into four groups. Group 1: Upregulated DEGs in both 
yoga and exercise, Group 2: Down‑regulated DEGs in both 
yoga and exercise, Group 3: Upregulated DEGs in exercise 
and downregulated DEGs in yoga, Group 4: Downregulated 
DEGs in exercise and upregulated DEGs in yoga. A heat 
map was generated for DEGs in all four groups based on the 
gene expression level of each group and was compared with 
a whole‑body gene expression heat map [Table 1].

Protein–protein interaction network analysis and hub 
gene identification

STRING, a biological‑Interactomic database and 
web resource of known and predicted protein‑protein 
interactions (PPIs), was used for the Retrieval of Interacting 
Genes or Proteins. We separated the genes of the four 
groups and uploaded the gene list of each group in the 
STRING software. Thereafter, STRING (http://string‑db. 
org/)[24] was used to construct a PPI network using only 
common DEGs with other interacting genes and more 
significant than 0.4 confidence score cutoffs. Cytoscape 
built the interaction networks for each group.[25]

Functional enrichment and Reactome pathway analysis

Functional enrichment analysis is a specific method to 
identify the various classes of over‑represented genes in 
a large set of genes and may be associated with particular 
disease phenotypes. The functional gene enrichment 
analysis of all codifferential genes of four groups was 



Figure 1: Workflow of methodology
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performed by string database and the functional features 
of each group were divided into three categories of gene 
ontology (GO) (1) biological process (BP), (2) molecular 
function (MF), (3) cellular components (CC). Reactome,[26] 
an online biological database for pathways analysis, has 
been used to identify the role of all genes in all four 
categories.

Gene disease relationship analysis

Gene Disease relationship has been used to understand 
complex diseases, multiple composite interactions 
between different phenotype‑genotype relationships and 
gene‑disease mechanisms. We have identified the Gene 
Disease relationship of all four groups by OMIM Disease, 
Jensen Disease, DisGeNET,[27,28] the database related to 
human gene‑disease associations, and variant‑disease 
associations.

Results
Identification of differential expression of genes in both 
yoga and exercise

The two human PBMC and Lymphocytes mRNA 
expression profiles datasets included in this study were 
GSE44777, which included 10 samples before yoga and 
10 samples after yoga, and GSE6053 having three samples 
before exercise and three samples after exercise. Using 

P < 0.05 as a cutoff criterion, we extracted 1443 and 1122 
DEGs from the expression profile datasets GSE44777 and 
GSE6053, respectively. We used the Venn diagram tool to 
overlap identified and found 97 overlapping DEGs of two 
profile datasets, GSE44777, and GSE6053.

Classification of differentially expressed genes in four 
groups

We have classified common DEGs of yoga and exercise 
into four groups based on fold change expressions. 
Group 1: Upregulated DEGs in both yoga and exercise (33 
DEGs); Group 2: Downregulated DEGs in both yoga 
and exercise (37 DEGs); Group 3: Upregulated DEGs in 
Exercise and downregulated DEGs in yoga (13 DEGs); 
Group 4: Downregulated DEGs in exercise and upregulated 
DEGs in yoga (16 DEGs) [Table 1].

Identification of hub genes through protein–protein 
interaction network

PPI complex networks are formed as a result of biochemical 
or electrostatic forces.[25] PPI network is crucial for the 
molecular mechanism of the metabolic process. Using 
STRING human gene or protein database[29] and Cytoscape 
software, DEGs for all four groups were used to establish 
the PPIs network.

In Group 1, 33 common DEGs of GSE44777 and 
GSE6053 and 10 other interacting genes were used to 
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establish the PPI network by STRING which constituted 
of 43 nodes, 32 edges and PPI enrichment P = 0.001 at 
medium confidence (0.400). 15 Hub genes aquaporin 
9 (AQP9); aquaporin 7; caspase 9 (CASP9); epithelial 
cell transforming 2 (ECT2); interleukin 1 receptor 

type 1 (IL1R1); kynureninase (KYNU); neutrophil 
cytosolic factor 4 (NCF4); phosphodiesterase 4D 
interacting protein (PDE4DIP); solute carrier family 
11 member 1 (SLC11A1); TEA domain transcription 
factor 4 (TEAD4); triggering receptor expressed on 

Table 1: Classification of four different types of differential gene expressions in yoga and exercise
Gene Exercise↓ Yoga↓ Gene Exercise↑ Yoga↑ Gene Exercise↑ Yoga↓ Gene Exercise↓ Yoga↑

FCE FCE FCE FCE FCE FCE FCE FCE
BCL2 0.59 0.95 ABHD5 1.43 1.25 BAG3 1.48 0.85 ABCC2 0.28 1.06
CA12 0.47 0.96 AQP9 1.61 1.25 CBR3 2.05 0.86 AGTPBP1 0.76 1.11
CACNA1I 0.56 0.74 BASP1 1.58 1.18 EPHA1 1.61 0.87 ATP4B 0.52 1.05
CAPN5 0.71 0.91 BTC 2.91 1.06 GABRB3 5.62 0.94 BHLHE40 0.69 1.14
CD160 0.32 0.77 CASP9 1.5 1.09 GAMT 4.75 0.91 CEACAM1 0.61 1.29
CD69 0.73 0.81 CRISPLD2 1.53 1.31 GRM5 2.35 0.94 CLDN18 0.59 1.05
COL5A2 0.58 0.92 DNAJB6 1.71 1.13 MBNL2 1.95 0.93 DAAM2 0.32 1.14
DBP 0.52 0.9 ECT2 1.85 1.14 PRKCA 4.65 0.84 DBT 0.53 1.04
DDIT4 0.6 0.72 EYA3 2.07 1.06 SCNN1G 2.26 0.96 IGF2R 0.69 1.22
DRD2 0.25 0.95 IL1R1 4.36 1.11 SLC17A7 2 0.96 JAKMIP2 0.62 1.06
ESR1 0.28 0.94 KIAA0513 1.46 1.14 ZBED2 3.23 0.96 LBP 0.47 1.06
FARSA 0.75 0.95 KYNU 1.81 1.16 PGPEP1 0.72 1.05
FEZ1 0.38 0.81 LILRB3 1.43 1.19 SLC35A2 0.65 1.07
FKBP5 0.47 0.8 MLF2 1.34 1.09 SLC5A4 0.24 1.04
GADD45GIP1 0.2 0.94 NCF4 1.48 1.23 TAF5L 0.69 1.06
GPM6B 0.32 0.96 NFE2 1.47 1.26 TBX21 0.41 1.07
GRIP2 0.54 0.94 PADI4 1.81 1.26
HOPX 0.51 0.95 PAPSS2 2.04 1.12
HSD17B8 0.68 0.9 PDE4DIP 4.76 1.09
ICA1 0.55 0.91 PLOD1 1.44 1.17
IDH2 0.72 0.87 RNF24 2.01 1.19
IQCK 0.62 0.9 S100A11 1.55 1.19
KLHL3 0.71 0.87 SLC11A1 1.51 1.16
KLK12 0.43 0.95 SNX27 1.5 1.1
LDLR 0.3 0.82 SPAG11A 1.91 1.06
MCF2 0.22 0.94 TEAD4 1.71 1.05
NOVA2 0.56 0.94 TMEM70 1.9 1.07
NUP107 0.75 0.92 TREM1 2.48 1.21
PRDM1 0.72 0.85 TREML2 2.45 1.19
RAB17 0.44 0.95 TRIB1 1.79 1.35
RSG1 0.64 0.93 VDR 3.25 1.09
SIRT3 0.75 0.94 VNN2 1.58 1.18
SLC1A4 0.35 0.91 VNN3 1.58 1.27
SLC25A15 0.7 0.9
SOCS1 0.27 0.86
TSEN2 0.7 0.91
TXK 0.64 0.85
*FCE=Fold change expression, ↑=Up‑regulation, ↓=Down regulation. ESR1=Estrogen receptor 1, LDLR=Low density lipoprotein receptor, 
IDH2=Isocitrate dehydrogenase (NADP[+]) 2, DDIT4=DNA damage inducible transcript 4, FARSA=Phenylalanyl‑tRNA synthetase 
subunit alpha, FKBP5=FKBP prolyl isomerase 5, KLHL3=Kelch like family member 3, PRDM1=PR/SET domain 1, SIRT3=Sirtuin 3, 
SOCS1=Suppressor of cytokine signaling 1, TSEN2=tRNA splicing endonuclease subunit 2, CASP9=Caspase 9, IL1R1=Interleukin 1 receptor 
type 1, KYNU=Kynureninase, NCF4=Neutrophil cytosolic factor 4, PDE4DIP=Phosphodiesterase 4D interacting protein, SLC11A1=Solute 
carrier family 11 member 1, TEAD4=TEA domain transcription factor 4, TREM1=Triggering receptor expressed on myeloid cells 1, 
TREML2=Triggering receptor expressed on myeloid cells like 2, VDR=Vitamin D receptor, VNN2=Vanin 2, VNN3=Vanin 3, ABCC2=ATP 
binding cassette subfamily C member 2, TBX21=T‑box transcription factor 21, IGF2R=Insulin‑like growth factor 2 receptor, SLC35A2=Solute 
carrier family 35 member A2, PRKCA=Protein kinase C alpha, SLC17A7=Solute carrier family 17 member 7, EPHA1=EPH receptor A1, 
GABRB3=Gamma‑aminobutyric acid type A receptor subunit beta 3, GRM5=Glutamate metabotropic receptor 5, DBT=Dihydrolipoamide 
branched chain transacylase E2, TAF5L=TATA‑box binding protein associated factor 5 like
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Figure 2: Up‑regulated common DEGs of two datasets GSE44777, GSE6053 (Group 1). (a) Heat map up‑regulated common DEGs; (the fold change expression 
of genes are displayed in ascending order from blue to red colour) (b) Violin plot shown the entire FCE distribution of up‑regulated common DEGs (Yoga: 
Red colour, Exercise: Blue colour); (c) Jensen disease (represent the multiple composite interactions between phenotype‑genotype relationships and 
gene‑disease mechanisms Gene‑Disease Interaction of Group 1); (d) KEGG pathway (This representing the molecular interaction, reaction and relation 
networks of gene) (e) CC; (f) BP; (g) MF; (h) PPI network.(43 nodes, 32 edges and PPI enrichment P = 0.001 at medium confidence [0.400]). 15 Hub genes (Pink 
Colour) AQP9, AQP7, CASP9, ECT2, IL1R1, KYNU, NCF4, PDE4DIP, SLC11A1, TEAD4, TREM1, TREML2, VDR, VNN2, and VNN3 were identified in the PPI 
network. DEGs = Differentially expressed genes, BP = Biological process, CC = Cellular components, MF = Molecular function, PPI = Protein‑protein 
interaction, AQP9 = Aquaporin 9, AQP7 = Aquaporin 7, CASP9 = Caspase 9, ECT2 = Epithelial cell transforming 2, IL1R1 = Interleukin 1 receptor type 1, 
KYNU = Kynureninase, NCF4 = Neutrophil cytosolic factor 4, PDE4DIP = Phosphodiesterase 4D interacting protein, SLC11A1 = Solute carrier family 11 
member 1, TEAD4 = TEA domain transcription factor 4, TREM1 = Triggering receptor expressed on myeloid cells 1, TREML2 = Triggering receptor expressed 
on myeloid cells like 2, VDR = Vitamin D receptor, VNN2 = Vanin 2, VNN3 = Vanin 3
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myeloid cells 1 (TREM1); triggering receptor expressed 
on myeloid cells like 2 (TREML2); Vitamin D 
receptor (VDR); VNN2 (vanin 2); VNN3 (vanin 3) were 
identified in the PPI network [Figure 2].

In Group 2, 37 common DEGs of GSE44777, GSE6053 
and 10 other interacting genes were used to establish the 
PPI network by STRING, which constituted 47 nodes, 
37 edges, and PPI enrichment P = 0.0317 at medium 
confidence (0.400). Identified 16 Hub genes BCL2 (BCL2 
apoptosis regulator), CD160 (CD160 molecule), 
CD69 (CD69 molecule), DNA damage inducible transcript 
4 (DDIT4), estrogen receptor 1 (ESR1), phenylalanyl‑tRNA 
synthetase subunit alpha (FARSA), FKBP prolyl isomerase 
5 (FKBP5), isocitrate dehydrogenase (NADP[+]) 
2 (IDH2), kelch like family member 3 (KLHL3), low 
density lipoprotein receptor (LDLR), nucleoporin 
107 (NUP107), PR/SET domain 1 (PRDM1), sirtuin 
3 (SIRT3), suppressor of cytokine signaling 1 (SOCS1), 
tRNA splicing endonuclease subunit 2 (TSEN2) in the PPI 
network [Figure 3].

In Group 3, 11 common DEGs of GSE44777, GSE6053, 
and five other interacting genes were used to establish 
the PPI network by STRING, which constituted 
16 nodes, 19 edges, and PPI enrichment P = 0.000 at 
medium confidence (0.400). Identified 5 Hub genes 
gamma‑aminobutyric acid type A receptor subunit beta 
3 (GABRB3); glutamate metabotropic receptor 5 (GRM5); 
protein kinase C alpha (PRKCA); solute carrier family 17 
member 7 (SLC17A7); EPH receptor A1 (EPHA1) in the 
PPI network [Figure 4].

In Group 4, 16 common DEGs of GSE44777, GSE6053, 
and ten other interacting genes were used to establish the 
PPI network by STRING which constituted 26 nodes, 
24 edges, and PPI enrichment P = 0.003 at medium 
confidence (0.400). 06 Hub genes dihydrolipoamide 
branched chain transacylase E2 (DBT); ATP binding 
cassette subfamily C member 2 (ABCC2); solute carrier 
family 35 member A2 (SLC35A2); TATA‑box binding 
protein associated factor 5 like (TAF5 L); insulin‑like 
growth factor 2 receptor (IGF2R); T‑box transcription 
factor 21 (TBX21) were identified in the PPI network 
[Figure 5].

Gene ontology and reactome pathway analysis

Analyzed GO and reactome pathway enrichment through 
DAVID, WebGestalt, FunRich, and STRING database with 
a P < 0.05 as significantly enriched and top lowest false 
discovery rate. GO analysis of DEGs classified them into 
three functional classes: CC, BP, and MF. Pathway analysis 
through Reactome Pathways.

Human gene and disease associations

We also identified changes of expression of hub genes and 
its relation with various types of metabolic and genomic 
disorders of all four groups.

Group 1: The dysregulation of expression of 
VDR (hyperparathyroidism, rickets, alopecia, periodontitis), 
NCF4 (orthosis and atopic dermatitis), IL1R1 (ulcerative 
colitis, carcinoma), ABHD5 (Ectropion, cataracts).

Group 2: COL5A2 (ehlers‑danlos), ESR1 (migraine, 
myocardial infarction, breast cancer), DRD2 (dystonia), 
BCL2 (lymphoma and leukemia).

Group 3: GRM5 (toxic encephalopathy, attention deficit 
hyperactive disorder, alcohol dependence, major depressive 
disorder, acquired immunodeficiency syndrome), 
EPHA1 (placenta praevia, craniofrontonasal syndrome, 
Alzheimer’s disease, and cancer), BAG3 (cardiomyopathy, 
cancer).

Group 4: SLC35A2, ABCC2, AGTPBP1, DAAM2, TBX21, 
BHLHE40, CLDN18, LBP, IGF2R, SLC5A4, TAF5 L, 
JAKMIP2 (Carcinoma), SLC35A2, ABCC2 (Bilirubin 
metabolic disorder) [Figures 2c, 3c, 4c and 5c].

Discussion
Low‑ and moderate‑intensity exercises such as walking and 
yoga enhance immune function and prevent infections.[30] 
Yoga and rhythmic breathing (Sudarshan Kriya) have been 
put forward as a practical and effective tool to improve 
health, alleviate stress, and increase wellness.[31] In 
the present study, we observed the T‑box transcription 
factor (Tbx21) and IGF2R to be upregulated in yoga, while 
a downregulation is followed in exercise. Tbx21 encodes 
T‑bet, which is an immune cell‑specific member of the 
T‑box family of transcription factors and has a significant 
role in cells of both adaptive and innate immune systems.[32] 
Further, Tbx21 expression in B cells has been demonstrated 
to have major roles in both protective and pathogenic 
immune responses.[33] In addition, T‑box transcription factors 
also control neuronal development in the brain.[34] IGF2R 
hub plays a significant role in growth, development, and 
energy homeostasis.[35] Apart from the above mentioned two 
genes, important genes like DBT E2, ABCC2, SLC35A2, 
and TAF5 L have also been observed to be upregulated in 
yoga and downregulated in the exercise group.

In contrast, GABRB3, GRM5, PRKCA, SLC17A7, and 
EPHA1 were observed to be upregulated in exercise while 
they were downregulated in Yoga. GABRB3, encoding the 
β3 subunit of GABAA receptor, has a significant role in 
neurodevelopmental gene and is regulated by non‑Mendelian 
processes and epigenetic modulation.[36] After exhaustive 
exercise, an increase of 2.66 fold was observed in GABRB3 
expression in peripheral blood.[37] Deep RNA‑seq analysis 
has demonstrated GABRB3 to be one of the important 
genes involved in Neuromuscular‑junction development, 
maintenance, and maturation.[38] GABRB3 genes have 
also been associated with a wide spectrum of seizure 
syndromes.[39] Interestingly, Yoga has been demonstrated to 
have beneficial effects among people with epilepsy.[40]
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Figure 3: Down‑regulated common DEGs of two datasets GSE44777, GSE6053 (Group 2). (a) Heat map (The fold change expression of genes are displayed 
in ascending order from blue to red colour) of common dDown‑regulated common DEGs; (b) Violin plot shown the distribution of common dDown‑regulated 
common DEGs (Yoga: Red colour, Exercise: Blue colour); (c) OMIM Disease (Gene‑Disease Interaction of Group 2); (d) KEGG pathway (e) CC; (f) BP; (g) MF; (h) 
PPI network, (0.47 nodes, 37 edges, and PPI enrichment P = 0.0317 at medium confidence [0.400]). Identified 16 Hub genes (Pink Colour) BCL2, CD160, CD69, 
DDIT4, ESR1, FARSA, FKBP5, IDH2, KLHL3, LDLR, NUP107, PRDM1, SIRT3, SOCS1, and TSEN2 in the PPI network. CD160 = CD160 molecule, CD69 = CD69 
molecule, DEGs = Differentially expressed genes, BP = Biological process, CC = Cellular components, MF = Molecular function, PPI = Protein‑protein 
interaction, Bcl‑2 = Bcl‑2 apoptosis regulator, DDIT4 = DNA damage inducible transcript 4, ESR1 = Estrogen receptor 1, FARSA = Phenylalanyl‑tRNA 
synthetase subunit alpha, FKBP5 = FKBP prolyl isomerase 5, IDH2 = Isocitrate dehydrogenase (NADP[+]) 2, KLHL3 = Kelch like family member 3, LDLR = Low 
density lipoprotein receptor, NUP107 = Nucleoporin 107, PRDM1 = PR/SET domain 1, SIRT3 = Sirtuin 3, SOCS1 = Suppressor of cytokine signaling 1, 
TSEN2 = tRNA splicing endonuclease subunit 2
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GRM 5 is an excitatory G protein‑coupled receptor[41] 
predominantly expressed on the postsynaptic sites of 

neurons[42] demonstrated to have a role in psychological 
disorders, addiction,[43] and anxiety.[44] GRM5 

Figure 4: Exercise up‑regulated and yoga down‑regulated common DEGs of two datasets GSE44777, GSE6053 (Group 3). (a) Heat map (The fold change 
expression of genes are displayed in ascending order from blue to red colour) of Exercise up‑regulated and yoga down‑regulated common DEGs; (b) 
Violin plot shown the entire FCE distribution violin plot of exercise up‑regulated and Yoga down‑regulated of common DEGs (Yoga: Red colour, Exercise: 
Blue colour); (c) OMIM disease (gene‑disease interaction of group 2); (d) KEGG pathway (e) CC; (f) BP; (g) MF; (h) PPI network (The 16 nodes, 19 edges, 
and PPI enrichment P = 0.000 at medium confidence [0.400]) identified 5 hub genes (Pink colour) GABRB3, GRM5, PRKCA, SLC17A7, in the PPI network. 
DEGs = Differentially expressed genes, BP = Biological process, CC = Cellular components, MF = Molecular function, PPI = Protein‑protein interaction, 
GRM5 = Glutamate metabotropic receptor 5, PRKCA = Protein kinase C alpha, SLC17A7 = Solute carrier family 17 member 7, EPHA1 = EPH receptor A1, 
GABRB3 = Gamma‑aminobutyric acid type A receptor subunit beta 3
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Figure 5: Yoga up‑regulated and exercise down‑regulated common DEGs of two datasets GSE44777, GSE6053 (Group 3). (a) Heat map (the fold change 
expression of DEGs are displayed in ascending order from blue to red colour) of yoga up‑regulated and exercise down‑regulated common DEGs; (b) 
Violin plot of shown the entire FCE distribution of yoga up‑regulated and exercise down‑regulated common DEGs (Yoga: Red colour, Exercise: Blue 
colour); Yoga up‑regulated and exercise down‑regulated common DEGs; (c) OMIM disease (gene‑disease interaction of group 2); (d) KEGG pathway (e) 
CC; (f) BP; (g) MF; (h) PPI (PPI) network (26 nodes, 24 edges and PPI enrichment P = 0.003 at medium confidence [0.400]), 06 Hub genes (Pink colour) DBT, 
ABCC2, SLC35A2, TAF5 L, IGF2R, TBX21 were identified in the PPI network. DEGs = Differentially expressed genes, BP = Biological process, CC = Cellular 
components, MF = Molecular function, PPI = Protein‑protein interaction, ABCC2 = ATP binding cassette subfamily C member 2, SLC35A2 = Solute carrier 
family 35 member A2, TAF5 L = TATA‑box binding protein associated factor 5 like, IGF2R = Insulin‑like growth factor 2 receptor, TBX21 = T‑box transcription 
factor 21, DBT = Dihydrolipoamide branched chain transacylase E2
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overactivation plays an important role in the inhibition 
of autophagy and can result in impaired clearance of 
neurotoxic aggregates in various neurodegenerative 
diseases such as Alzheimer’s disease and Huntington’s 
disease.[45] Further, the suppression of GRM5 and 
downstream signaling pathways culminated in 
neuroprotective effects in Parkinson’s disease animal 
models.[46] The multitude of beneficial effects of 
GRM5 suppression is attributed to the activation of 
the mTOR pathway.[47] The activation of the mTOR 
pathway has been demonstrated to have a crucial role in 
neurodevelopment and synaptic plasticity.[48] Intriguingly, 
the beneficial effect of Yoga on neurodevelopment 
has been demonstrated by Chantal et al. by changes 
in the gray matter using magnetic resonance 
imaging.[49] The cumulative suppressive effect of Yoga on 
genes such as GABRB3 and GRM5 highlights the possible 
neuroprotective effects of Yoga when compared with 
exercise, as evidenced from the positive outcomes with 
respect to neurodevelopment and epilepsy management.

The paradoxical nature of the differential expression of 
these genes in yoga, when compared with exercise, opens 
up potential areas of future research and will help in better 
understanding the differing effects of Yoga and exercise in 
humans.

Apart from the above‑mentioned genes, the genes that were 
upregulated in both yoga and exercise included NCF4, 
VNN2, VNN3, AQP9, IL1R1, TREM1, TREML2, IL1R1, 
CASP9, KYNU, ECT2, SLC11A1, VDR, PDE4DIP, and 
TEAD4. The NCF4 forms NADPH oxidase essential for 
immune regulating cells, phagocytes for combating bacteria 
and fungi.[50] VNN2 (vascular noninflammatory molecule 2) 
participates in hematopoietic cell trafficking and oxidative 
stress while[51] AQP9 stimulates urea transport and 
osmotic water permeability.[52] IL1R1 (interleukin‑1 alpha 
receptor alfa‑1) an important mediator involved in many 
cytokine‑induced immune and inflammatory responses, 
binds to the agonist ligands IL‑1 and is inhibited by 
the antagonist IL‑1Ra. Natural resistance‑associated 
macrophage protein 1, encoded by the SLC11A1 gene, 
regulates macrophage activation and has been associated 
with infectious, autoimmune diseases and tuberculosis 
susceptibility.[53] Several of the aforementioned genes have 
been associated with various diseases in their suppressed 
state. The inverse relation of PBMC VDR expression with 
disease activity in systemic lupus erythematosus (SLE) 
patients highlights the possible beneficial role of Yoga and 
exercise in combating inflammation in SLE patients.[54]

Similarly, the possible positive outcome of Yoga and 
exercise in cancer may be attributed to the increased 
expression of IL1R1, which has been demonstrated to 
have a tumor‑suppressive role in breast cancer models, 
as well as caspase‑9, which has a dominant role in 
the prognosis of colorectal cancer.[55,56] In addition, the 
de‑repression of AQP9 by Yoga and exercise may lead to 

various neuroprotective effects as the suppressed AQP9 
is associated with beta‑amyloid‑induced neurotoxicity in 
Alzheimer’s disease models.[57]

The following genes were observed to be downregulated 
in exercise and Yoga: BCL2, CA12, CACNA1I, CAPN5, 
CD160, CD69, COL5A2, DBP, DDIT4, DRD2, ESR1, 
FARSA, FEZ1, FKBP5, GADD45GIP1, GPM6B, GRIP2, 
HOPX, HSD17B8, ICA1, IDH2, IQCK, KLHL3, KLK12, 
LDLR, MCF2, NOVA2, NUP107, PRDM1, RAB17, 
RSG1, SIRT3, SLC1A4, SLC25A15, SOCS1, TSEN2, 
and TXK. B‑cell lymphoma 2 (Bcl‑2), located on the 
outer membrane of mitochondria, plays an important 
role in promoting cell survival and inhibiting the actions 
of pro‑apoptotic proteins. Bcl‑2 and Beclin 1 exist as 
heterodimer complexes in the cytosol, and the dissociation 
of beclin 1 from Bcl‑2 during cellular stress permits 
autophagy induction.[58,59] The dissociation, triggered by 
the phosphorylation of Bcl‑2, subsequently leads to the 
formation of the autophagosome.[60] Exercise induces 
autophagy, via regulation of Bcl‑2, culminating in beneficial 
metabolic effects, especially in carbohydrate metabolism.[60] 
Our study demonstrates Yoga to be superior to exercise in 
downregulating Bcl‑2. This may translate to Yoga having 
better beneficial metabolic effects when compared with 
exercise. Mitogen‑activated protein kinase 8 activation by 
AMPK has been associated with Bcl‑2 phosphorylation 
in cardiomyocytes.[61] Further, c‑Jun N‑terminal kinase 
1 also was observed to induce Bcl‑2 phosphorylation 
and is linked to autophagy induction under starvation 
conditions in noncardiac cells.[62] However, neither 
JNK nor MAPK was associated with exercise‑induced 
Bcl2‑phosphorylation.[60] Although protein kinase C has been 
suggested to phosphorylate Bcl‑2 and promote cell survival 
by suppressing apoptosis[63,64] it role in EICA is yet not clear.

Mutations in genes encoding T‑type, low‑voltage 
activated, calcium channels (Cav3) channels (CACNA1G, 
CACNA1H, and CACNA1I) have been linked to 
a variety of neurodevelopmental, neurological, and 
psychiatric diseases commonly known as neuronal Cav3 
channelopathies.[65] CD160, a marker of lymphocyte 
populations, has been demonstrated to decrease after 
2 h postexercise and correlated with the decrease in 
lymphocyte count after exercise.[66] The suppression of 
various tumor‑promoting genes such as Bcl‑2, NOVA2, and 
MCF2 again highlights the possible beneficial role of yoga 
and exercise in various cancers.

Drd1/Drd2 expression in different brain regions had been 
associated with the stress response. A negative correlation has 
been demonstrated with elevated levels of Drd1/Drd2 gene 
expression and the ability to adapt to stress.[67] The decrease 
in Drd1/Drd2 gene highlights the possible role of Yoga and 
exercise in better adaptation to stress. The FK506‑binding 
protein 51 (FKBP5), a co‑chaperone of the Hsp90 and 
component of the chaperone‑receptor heterocomplex, 
reduces ligand sensitivity to the glucocorticoid receptor. The 
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decreased expression of FKBP5 in Yoga and exercise points 
to its probable usefulness in chronic stress by rectifying the 
resultant alterations of the HPA axis.[68]

Our study demonstrates that there is an overlap between 
Yoga and exercise with respect to the differential expression 
of genes. This leads to the presence of multiple comparable 
physiological effects for Yoga and exercise. Major 
physiological functions such as ion transport (ATP4B, 
ABCC2, SLC5A4, ATP4B, SCNN1G, SLC17A7), 
neural development (JAKMIP2, AGTPBP1, DAAM2, 
SCNN1G, SLC17A7), metabolic regulation (IGF2R, 
DBT, PGPEP1, ATP4B, SCNN1G, SLC17A7), epilepsy 
management (SLC35A2, GABRB3) were observed to be 
affected by both yoga and exercise. However, our analysis 
also throws light onto certain physiological functions 
whose alterations can be specifically attributed to either 
yoga or exercise [Figure 6].

We observed that yoga regulated genes for two main 
physiological functions of the body, namely Circadian 
Rhythm (BHLHE40) and immunity (LBP, TBX21, 
CEACAM1). The circadian rhythm creates a sense of 
harmony between the daily functions of the body and mind 
and is crucial in the overall wellbeing of an individual. 
BHLHE40 is a transcriptional repressor involved in the 
regulation of the circadian rhythm by negatively regulating 
the activity of the clock genes and clock‑controlled 
genes.[69,70] Our study observed a higher expression of the 
BHLHE40 gene in yoga when compared with exercise 
highlighting the beneficial effect of yoga in maintaining the 
circadian rhythm.

Yoga had been found to reverse the expression of 
inflammatory mediators and help in maintaining homeostasis. 
Yoga practices have been shown to down‑regulate the 
expression of various regulators of inflammation and 
influence the production of pro‑inflammatory cytokines 

Figure 6: Physiological consequences of yoga or exercise, (a) physiological function of upregulated genes of yoga and down‑regulated genes of exercise, 
all physiological function divided into six classes Circadian rhythm (BHLHE40); Neural development (JAKMIP2, AGTPBP1, DAAM2); Increase Immunity 
(LBP, TBX21, CEACAM1); Metabolic regulation (IGF2R, DBT, PGPEP1, ATP4B); Epilepsy Management (SLC35A2); Ion Transport (ATP4B, ABCC2, SLC5A4, 
ATP4B); (b) Physiological function of upregulated genes of exercise and down‑regulated genes of yoga, all physiological function divided into seven 
classes; Apoptosis (BAG3, PRKCA); Neural development (GAMT, GRMS); Angiogenesis and cell adhesion (EPHA1); Metabolic regulation (MBNL2); Epilepsy 
management (GABRB3); Ion transport (SCNN1G, SLC17A7). (c) Venn‑diagram between Upregulated differentially expressed genes (DEGs) of yoga and 
upregulated DEGs of exercise based on physiological consequences. TBX21 = T‑box transcription factor 21, IGF2R = Insulin‑like growth factor 2 receptor, 
SLC35A2 = Solute carrier family 35 member A2, ABCC2 = ATP binding cassette subfamily C member 2, PRKCA = Protein kinase C alpha, SLC17A7 = Solute 
carrier family 17 member 7, EPHA1 = EPH receptor A1, GABRB3 = Gamma‑aminobutyric acid type A receptor subunit beta 3, DBT = Dihydrolipoamide 
branched chain transacylase E2
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in various chronic stress‑induced diseases.[71] Our study 
identified three genes (LBP, TBX21, and CEACAM1), 
involved in maintaining immune homeostasis, that is 
upregulated as a result of yoga. LBP binds to the lipid A 
moiety of bacterial lipopolysaccharide (LPS) present in 
the outer membrane of all Gram‑negative bacteria, plays a 
crucial role in the innate immune response.[72] It acts as an 
affinity enhancer for CD14, facilitating its association with 
LPS and promoting the release of cytokines in response 
to bacterial LPS.[72] Tbx21 protein is a Th1 cell‑specific 
transcription factor that controls the expression of the 
hallmark Th1 cytokine, interferon‑gamma, and initiates 
Th1 lineage development from naive Th precursor cells.[73] 
The protein encoded by CEACAM1 have been attributed 
has been attributed with multiple functions including 
roles in the differentiation and arrangement of tissue 
three‑dimensional structure, angiogenesis, apoptosis, tumor 
suppression, and the modulation of innate and adaptive 
immune responses.[74]

Contrary to the yoga‑regulated physiological processes, 
the exercise was observed to regulate genes involved in 
apoptosis (BAG3, PRKCA), angiogenesis, and cellular 
adhesion (EPHA1).

Exercise‑induced apoptosis has been shown to remove 
damaged cells without pronounced inflammatory responses.[75] 
The gene BAG3 is involved in chaperone‑assisted selective 
autophagy and stimulates the expression of cytoskeleton 
proteins in response to mechanical tension via activation of 
the transcription regulators YAP1 and WWTR1.[76] BAG3 
enables the balancing of protein synthesis and degradation 
under mechanical stress.

The gene EPHA1 belongs to the subfamily ephrin 
receptors of the protein‑tyrosine kinase family. The 
ephrin receptors are divided into two groups based on 
the similarity of their extracellular domain sequences and 
their affinities for binding ephrin‑A and ephrin‑B ligands. 
EPH and EPH‑related receptors have been implicated 
in mediating developmental events, particularly in the 
nervous system, and have roles in angiogenesis and cell 
adhesion.[77]

Conclusion
The differential expression of multiple genes in Yoga 
and exercise reveals the unique effect that each has on 
the genetic expression patterns in individuals. Both Yoga 
and exercise demonstrated immunomodulation capacity 
based on the data obtained from the DEGs. However, the 
modulation of the immune system happens at different 
levels in Yoga and exercise. The genes modulated 
in Yoga predominantly affect the Th1 and NK cells, 
whereas Exercise regulated the expression of cytokines, 
macrophages activation, and oxidative stress. Our study 
also demonstrated the significant effect of Yoga on genes 
encoding and regulating transporter channels. Interestingly, 

Exercise was found to regulate the genes involved in neural 
regulation and development. In addition, our analysis 
also shed light on certain physiological functions whose 
alterations can be specifically attributed to either Yoga 
or Exercise. We observed that yoga regulated genes for 
two main physiological functions of the body, namely 
circadian rhythm (BHLHE40) and immunity (LBP, TBX21, 
CEACAM1). In contrast, exercise‑regulated genes are 
involved in apoptosis (BAG3, PRKCA), angiogenesis, 
and cellular adhesion (EPHA1). The contrast in the effect 
of Yoga and Exercise on certain gene expressions brings 
forth the specific beneficial effect of one over the other. 
Future research in these emerging areas will help us to 
better understand the unique effect of Yoga and exercise on 
human physiology.
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