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Abstract
We know little about how forest bats, which are cryptic and mobile, use roosts on a land-

scape scale. For widely distributed species like the endangered Indiana batMyotis sodalis,
identifying landscape-scale roost habitat associations will be important for managing the

species in different regions where it occurs. For example, in the southern Appalachian

Mountains, USA,M. sodalis roosts are scattered across a heavily forested landscape,

which makes protecting individual roosts impractical during large-scale management activi-

ties. We created a predictive spatial model of summer roosting habitat to identify important

predictors using the presence-only modeling program MaxEnt and an information theoretic

approach for model comparison. Two of 26 candidate models together accounted for >0.93

of AICc weights. Elevation and forest type were top predictors of presence; aspect north/

south and distance-to-ridge were also important. The final average best model indicated

that 5% of the study area was suitable habitat and 0.5% was optimal. This model matched

our field observations that, in the southern Appalachian Mountains, optimal roosting habitat

forM. sodalis is near the ridge top in south-facing mixed pine-hardwood forests at eleva-

tions from 260–575 m. Our findings, coupled with data from other studies, suggestM. soda-
lis is flexible in roost habitat selection across different ecoregions with varying topography

and land use patterns. We caution that, while mature pine-hardwood forests are important

now, specific areas of suitable and optimal habitat will change over time. Combining the

information theoretic approach with presence-only models makes it possible to develop

landscape-scale habitat suitability maps for forest bats.
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Introduction
Forests are important to many bat species in North America as both roosting and foraging hab-
itat [1]. However, the high mobility of bats creates a problem for land managers seeking to
identify critical habitat within forests [1–2]. Because locating bat roosts is costly and time con-
suming, it can be difficult to plan timber harvests and prescribed fires that protect or create
habitat for federally endangered species, such as the Indiana batMyotis sodalis [3]. In large
remote areas, such as national forests, there is a critical need for predictive tools that map the
distribution of important habitats for bats. Although many bat species have been tracked to
individual roost sites and important characteristics at the tree and stand scales have been iden-
tified [1], [4], there are few data on characteristics of suitable roosting sites at the landscape
scale (e.g., [5]).Myotis sodalis roost primarily in snags, but protecting all potential roosts is not
a practical management strategy [3], [6–7]. Rather, it is critical to identify important environ-
mental variables that can be used to predict roost locations. Our objective was to develop a
landscape-scale model to predict the location of potentialM. sodalis summer roosting habitat
within our study area in the southern Appalachian Mountains.

Since its listing in 1967, agencies have tried to conserve and manage habitat thought to be
critical toM. sodalis [3], which is widely distributed across much of eastern North America.
Before 1995, most National Forest plans focused on protecting hibernacula and preserving
large diameter mature hardwood trees in riparian areas [3], the latter having been found to be
criticalM. sodalis summer habitat in the Midwest [6]. However, in 1994, aM. sodalis was
tracked to upland habitat in Kentucky [3], leading to more intensive surveys in the southeast-
ern U.S. (e.g. [8]). We now know that in the southern Appalachian Mountains, Indiana bats
maternity colonies typically roost in dead pine trees near a ridge top [9], [this study], which is a
very different from the standard definition of critical habitat based on studies in the Midwest
[5–6]. It is clear thatM. sodalis are not restricted to riparian zones for roosting and that females
are reproducing farther south than previously known [3], [10].

To create a landscape-scale predictive model of the distribution ofM. sodalis summer roost-
ing habitat, it is important to consider forest patch characteristics (e.g., patch size, heterogene-
ity, canopy closure, and snag density), topographic variables (e.g., elevation, aspect, and slope),
and proximity to foraging areas or water [11]. Kalcounis-Rueppell et al. [4] concluded that
proximity to canopy openings, proximity to other snags, and proximity to water were impor-
tant factors in roost site selection for forest bats in North America; however, across our study
area in the southern Appalachian Mountains data are insufficient for mapping canopy gaps
and snag availability. Instead, we used data on forest composition, topographic features, and
proximity to foraging areas or water as predictors of the distribution of roost habitat across the
forested landscape of our study area. Most of the area is heavily forested, with a mix of hard-
wood and pine trees [12]. The topography is mountainous and rugged, and vegetative commu-
nities vary by elevation, aspect, and degree of slope [12]. We considered topographic factors in
our models because reproductive female bats often roost at lower elevations and in areas with
high solar exposure to help ensure stable and warm roost conditions for their young [11, 13].
Distance to foraging areas or water may also be important for reproductive females seeking to
minimize commuting costs to prey-rich areas or to water sources.

To develop a habitat distribution model forM. sodalis, we employed MaxEnt, which is a
presence-only modeling approach that estimates distribution based on known locations and
background sampling of the environment [14–15]. MaxEnt is a hypercomplex regression tech-
nique equivalent to Poisson regression that uses random background absence points for model
calibration [16]. MaxEnt tolerates low sample sizes (i.e.,<100), although larger sample sizes
are desirable when this equates to better coverage of the study area [17]. Outputs can be
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transferred to geographic information systems (GIS), allowing for interpretation of the output in
a simple visual format [18]. MaxEnt has been used for predicting large-scale distributions of
some bat species, including Barbastella barbastellus distribution in Portugal [19] and Italy [20],
and current and potential distribution ofMyotis simus in South America [21]; both species are in
the family Vespertilionidae, as isM. sodalis. Loeb andWinters [22] used MaxEnt to assess the
influence of climate change on the distribution ofM. sodalis across the entire species’ range. Max-
Ent can also be used to model species distributions at more local scales. Baldwin and Bender [23],
for example, input topographic and other environmental variables into MaxEnt to model the dis-
tribution of denning habitat forUrsus americanus in Rocky Mountain National Park, Colorado,
USA. Bellamy and Altringham [24] entered roost records into MaxEnt to create habitat suitabil-
ity models for eight bat species in a ~2,300 km2 area in England. Likewise, we used variables
related to both biotic and abiotic factors [25] in MaxEnt models to predict the distribution of
suitable roosting habitat forM. sodalis in our southern Appalachian study area (~2,800 km2).

MaxEnt has a few weaknesses that are important to consider. First, the final product is not
easily transferred to non-sampled areas or areas where environmental conditions differ signifi-
cantly [15], [18]. However, models created by Maxent can identify important environmental
variables and information obtained during the modeling process may inform models devel-
oped other areas. It can also be difficult to find an appropriate method to evaluate competing
models. To evaluate and compare models, we used an information theoretic (IT) approach to
reduce the likelihood of over parameterization and to avoid problems associated with using
area under the curve (AUC) scores that are output by MaxEnt [26]. AUC scores may be mis-
leading for several reasons [26], and do not account for number of parameters and over fitting
of data [27–28]. Using an IT approach allowed us to compare a suite of plausible yet simple a
priori hypotheses [29]; with the exception of the global model, each model we tested was built
from only a subset of the 10 environmental variables we measured to predict the distribution of
M. sodalis habitat in the southern Appalachians.

Our aim was to create a model ofM. sodalis summer roosting habitat distribution within a
portion of the southern Appalachian Mountains and to identify environmental predictors that
might be important in other landscapes. We sought to generate a GIS layer that could be used
by land managers to understand the probability of presence of Indiana bat roosting habitat
across a 5 county area in the southern Appalachians. Based on 5 years of field observations, we
expected that important areas for summer roosting habitat would be concentrated on south-
facing ridge tops in forests with a pine component and water sources nearby. We used a 30 m
resolution for this modeling effort to best represent the dynamic and rugged topography of our
study area and to make the best use of available landcover data from the National Park Service
and the U.S. Forest Service. In the spatial model we created, forest type and elevation were the
most important predictors of the distribution of suitable and optimal summer habitat forM.
sodalis within our study area.

Materials and Methods

Study Area
The study was conducted in the southern Appalachian Mountains in southeastern Tennessee
and southwestern North Carolina in the Cherokee National Forest (CNF), the Nantahala
National Forest (NNF), and Great Smoky Mountains National Park (GSMNP). The study area
was 281,788 ha of federal land in Monroe and Blount counties, Tennessee, and Swain, Graham,
and Cherokee counties, North Carolina (Fig 1). There were several knownM. sodalis hibernac-
ula in and around the GSMNP [10] and summer colonies ofM. sodalis have been observed in
the region since 1999 [9–10].
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GSMNP and the two National Forests were classified as mixed pine Pinus-hardwood forests
in the Appalachian oak forest region [30]. The primary natural community types used by bats
were pine-oak Quercus heath, hemlock Tsuga canadensis forest, white pine Pinus strobus forest,
lowmountain pine-oak forest, and southern mountain xeric pine-oak woodland [12]. Various
oak and cove forest types also occurred in our study area. The majority of the study area was for-
ested habitat (> 90%), comprised mainly of mid-successional forest (41–80 years old), but also
young and old-growth forests [31]. Elevation ranged from 260–2025 meters above sea level.

Sampling
To locate day roosts for female and juvenileM. sodalis, we conducted mist netting surveys over
trails, roads, and streams, and radio-telemetry from mid-May through mid-August 2008 to

Fig 1. Locations of 76 roosts used byMyotis sodalis. Roosts for adult female and juvenileMyotis sodalis (May to August, 2008–2012) in the study area in
the southern Appalachian Mountains (inset isM. sodalis distribution in eastern North America). A series of caves (star) are thought to be used as hibernation
sites byM. sodalis that form summer colonies in this region. The study area (~281,800 hectares) included portions of the Great Smoky Mountains National
Park (GSMNP), Nantahala National Forest (NNF), and Cherokee National Forest (NNF).

doi:10.1371/journal.pone.0154464.g001
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2012. We banded bats with a unique 2.9 mm aluminum forearm band (Porzana Ltd., East Sus-
sex, UK) for individual identification and fittedM. sodalis of suitable mass (>7 g for adult) with
a 0.32–0.42 g radio transmitter (Holohil Systems Ltd., Ontario, Canada). We targeted adult
females or juveniles due to their tendency to roost in colonies; up to 3 bats were transmittered on
a given night. All bats were released at the capture site. We followed recommended white-nose
syndrome protocols [32] and handling guidelines of the American Society of Mammalogists
[33]. This work was approved by the Clemson University Institutional Animal Care and Use
Committee (protocol 2009–16) and the Indiana State University Institutional Animal Care and
Use Committee (protocol 226895–1). Field work was conducted under permits held by J O'Keefe:
USFWS federal recovery permit TE206872, North Carolina permit ES261, Tennessee permit
3148, and National Park Service Permits GRSM-2009-SCI-0075 and GRSM-2012-SCI-0085.

We tracked bats using a TR5 receiver (Telonics, Mesa, AZ) and Yagi antennae (Wildlife
Materials, Murphysboro, Illinois) the morning following capture and each day thereafter for
the life of the transmitter (8–14 days), or until the bat was lost and unable to be relocated. We
revisited all roost trees after mid-August each year to more extensively characterize and mea-
sure roost trees for comparison with model results and for another study on roost habitat selec-
tion. We recorded roost tree species or genus, tree height, roost height, diameter at breast
height (dbh), and canopy closure directly above the roost to the nearest 25% interval. We
recorded roost locations with a GEO-XT Trimble (Trimble Navigation Ltd., Sunnydale, Cali-
fornia, USA) with sub-meter accuracy.

Environmental data
MaxEnt requires known occurrence data to create distribution models. We corrected raw GPS
roost locations using base station data in Pathfinder v.5.0 [Trimble Navigation Ltd., Sunnydale,
California, USA], and imported points as occurrence data in MaxEnt (v3.3.3K, http://www.cs.
princeton.edu/~schapire/MaxEnt/). To reduce the influence of closely clustered points, we
identified a subset of 54 roosts for analyses by randomly selecting 1 roost from each of the 54
stands containing known roosts; stand boundaries were delineated in GIS shapefiles provided
by the CNF, NNF, and GSM. Stands containing known roosts averaged 19.4 ± 3.2 ha in area.
This method reduced spatial autocorrelation in our dataset and accounted for the fact that
among stands there was often substantial variation in aspect, elevation, forest type, and other
environmental factors as a result of the extremely rugged terrain in our study area.

We entered the following environmental layers into MaxEnt as predictors of the distribu-
tion of summer roosting habitat: elevation, aspect (compass direction), slope, distance-to-
ridge, ridge curvature, distance-to-water, distance-to-major roads, distance-to-trails and closed
roads, and forest type. We chose distance-to features that we thought may be important to bats
as foraging resources, potential travel corridors, or for higher solar exposure (i.e., distance to
ridgetop, [34]). We selected the topographic variables elevation, slope, aspect and curvature
that are often used in landscape analyses for bat habitats (e.g., [8], [35]) and also to represent
potential microclimate variation within the landscape.

All environmental layers were represented at a 30 m resolution in ArcGIS 10 [ESRI, Red-
lands, CA, USA] to maintain a high resolution base layer that would be usable by land manag-
ers with access to the same environmental layers. Forest type was the limiting layer in terms of
area covered (only public lands) and resolution of data (30 m). Thus, we resampled all higher
resolution GIS layers to 30 m to best represent this highly variable landscape. In early mapping
tests, we found that resampling all the environmental layers to> 30 m resulted in a loss of vari-
ation among pixels in layers such as aspect and slope. We used the Euclidean Distance tool to
generate all “distance-to” raster layers.
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The categorical variable forest type was created from information provided by the CNF,
NNF, and GSMNP. Due to differences in coding by agency, we generated unique codes for veg-
etation across the entire study area using primary and secondary vegetation species descrip-
tions in Park Service and Forest Service layers and then merged the two based on the new code
(S1 Table).

Elevation, aspect, slope, distance-to-ridge, and ridge curvature were generated from the digi-
tal elevation models (DEMs) for our study area (http://ned.usgs.gov, 1/3 arc-sec/10 m resolu-
tion). Due to its circular nature, aspect was separated into East/West and North/South by
calculating the cosine and sine values. To measure slope, distance-to-ridge, and ridge curva-
ture, we first removed production artifacts from DEMs through 10 successive smoothing filters
run in Spatial Analyst (ESRI, Redlands, CA). We then generated slope and ridge-curvature
with Spatial Analyst tools. Distance-to-ridge required further processing. Flow tools are typi-
cally used to identify low points in topography; however, we used the tools to identify high
points and peaks (ridge tops) by multiplying outputs by -1. The base layer was filled to remove
sinks, and then high and low values were reversed using Raster Calculator to multiply the field
value by -1. We ran the Flow Direction tool, followed by the Flow Accumulation tool, and then
generated a Stream Order raster to identify ridgelines.

Detailed water body (lakes and ponds) and stream water data were acquired from the
National Hydrography Dataset (http://nhd.usgs.gov). We merged the flowline shapefiles
(streams and rivers) and added a 1 m buffer to transform lines to a polygon feature to merge
with the waterbody shapefile. The resulting vector file was then transformed into a 10 m raster.
Major roads and trails/minor roads layers were developed from spatial data provided by the
Park Service and Forest Service. Gated and closed roads were merged with trails, as these
minor roads have minimal traffic/disturbance; major roads were any roads not included in the
trails/minor roads layer. After clipping each environmental layer to the extent of the federal
lands within our study area, we transformed the data into ascii files, the final data format
required by MaxEnt.

We tested for collinearity amongst our environmental variables using the Band Collection
Statistics Tool in ArcGIS. Due to the irregular shape of our study area (with null data in interior
areas), it was not feasible to do this for the entire raster area. Instead, we clipped out two 1 km
radius circles, one in the most rugged portion and one in the least rugged portion of our study
area. Within each area, we assessed collinearity for the topographic variables in our analysis:
aspect east, aspect north, curvature, distance to ridge, elevation, and slope. In the most rugged
portion of the study area, distance to ridge and curvature were correlated. Curvature did not
appear in any plausible models, but distance to ridge was in one top model. In the least rugged
portion of the study area, distance to ridge was moderately correlated (< 0.7) with both aspect
east and aspect north; these three variables appear together in the top ranked model in our
analysis.

Modeling
To avoid over parameterization of our model and, hence, model uncertainty [29], we used an
information theoretic (IT) model selection procedure to select the most parsimonious model
similar to the approach taken by Meyer et al. [36] and Pie et al. [37]. However, instead of using
the permutation importance values to select variables to include in our models, we developed
26 candidate models, including a global model, for a set of potentially plausible, a priori
hypotheses [29] (Table 1) based on existing information about roost habitat selection byM.
sodalis. All variables were used eight times in total, for a balanced model set (Table 1) [38];
however, in keeping with the principle of parsimony imperative to the IT approach [38], and to
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reduce the risk of overfitting the data with too many parameters, 23 of the 26 candidate models
contained only 1–4 variables. We also used the linear and quadratic features option in MaxEnt
to avoid overfitting and to keep models comparable. We randomly selected 80% of the random
subset of roosts (n = 43) to train each model, while 20% of roosts (n = 11) were used to test
each model’s performance. To limit bias, test roosts were kept as a separate file so that the same
sets of roosts were used to create and test all models. The lambda file (a text file of the

Table 1. Candidate models.

Model Name Hypotheses Variablesa

Corridor 1 Closer to trails TR

Corridor 2 On shallow ridges and closer to major roads MR + C

Corridor 3 Closer to water W

Elevation At lower elevations E

Foraging 1 Closer to water, trails, and major roads for
foraging

W

Foraging 2 Lower slope, and closer to water and trails S +W + TR

Forest Type Uses forests with a pine-hardwood component FT

Global All variables are important to roost selection FT + NS + EW + S + E + W + TR
+ MR + R + C

Humans Near human made corridors TR + MR

Major Roads Near major roads MR

Needs 1 At lower elevations near water E + W

Needs 2 In pine-hardwood forests near water FT + W

Needs 3 Near water, travel corridors, and pine-hardwood FT + W + TR + MR

Pine 1 In conditions that promote pines FT + E

Pine 2 In conditions that promote pines based on ridge
location

FT + NS + EW + E + R

Research Bias 1 Near easy access trails/roads in forest types we
targeted

FT + TR + MR

Research Bias 2 Near easy access trails/roads and ridgetop
telemetry points

TR + MR + R

Ridge 1 South-facing, low slope, and near ridgetop NS + EW + S + R

Ridge 2 Low slope, shallow ridges at lower elevation S + E + C

Ridge 3 Near the ridgetop of shallow ridges in pine-
hardwood forests

FT + R + C

Sun 1 Near ridgetop of shallow ridges with south-
facing

NS + EW + R + C

Sun 2 On gentle slopes of shallow ridges with south-
facing

NS + EW + S + C

Sunny Ridge top Near the ridgetop and south-facing NS + EW + R

Topography 1 Near the ridgetop on shallow, gentle slopes with
south facing

NS + EW + S + E + R + C

Topography 2 Gentle south-facing slopes at lower elevations NS + EW + S + E

Water flow Shallow ridges at low elevations where water
flows seasonally

S + W + C

Models developed to predict probability of presence of roost habitat used by Myotis sodalis in the southern

Appalachian Mountains.
aVariables used in models were: forest type (FT), aspect north/south (NS), aspect east/west (EW), slope

(S), Elevation (E), distance-to-water (W), distance-to-trails/minor roads (TR), distance-to-major roads (MR),

distance-to-ridge (R), and ridge curvature (C).

doi:10.1371/journal.pone.0154464.t001
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parameter estimates) and ascii file from each model output and a text file of their pathways
were input into ENMTools (v1.3) to generate an output of AIC scores corrected for small sam-
ple sizes (AICc) [27]. Models with ΔAICc values< 7 were considered to have some support,
but we also considered model weights relative to the entire candidate set when identifying top
models [29]. For top models, we present AUC accuracy measures; however, we recognize the
limitations of these measures and feel model performance is better assessed via an exploration
of model reliability (agreement between predicted probabilities of occurrence and proportion
of sites occupied [39]) and AICc model weights relative to the entire candidate model set.
Parameter importance values were calculated across the entire candidate model set by sum-
ming the AICc model weights for each model in which a particular parameter appeared.

We used raw map output fromMaxEnt and the following logistic equation to create raster
probability layers for plausible models:

logistic ¼ ðraw � eentropyÞ=ð1þ raw � eentropyÞ ð1Þ

We input raw values for each plausible model into Eq 1 in the Raster Calculator in ArcGIS
to create logistic output maps and then created a weighted average map for the final raster out-
put. Entropy, which is reported for each model, is the level of “choice” in a distribution; a
higher entropy value means fewer constraints on distribution possibilities [15]. We chose a
logistic output with suitability ranging from 0 (lowest) to 1 (highest) so that results would be
easy to interpret and to facilitate comparisons with other habitat suitability models. When
there is uncertainty over which model from the a priori set is the best model, it is good practice
to base inferences on all of the plausible models in the set [29]. To increase the precision of our
estimates [38], we created a final model raster layer using AICc model weights to average logis-
tic outputs for top models with the Raster Calculator tool in ArcGIS. In the final model, areas
where probability of presence was� 0.5 were considered suitable habitat and areas where prob-
ability of presence was� 0.75 were considered optimal habitat based on the definitions given
by MaxEnt [40]. These conservative assumptions should minimize the commission error of
our predictions, thus ensuring that the predicted areas all contain suitable roosting habitat for
M. sodalis.

Results
From 2008 to 2012 we captured and tracked 48 bats (45 adult female and 3 juvenile)M. sodalis
to 76 roosts on federal land within our study area. We found 36 roosts in Tennessee (12 in
Monroe County and 24 in Blount County), and 40 roosts in North Carolina (13 in Swain
County, 4 in Graham County, and 23 in Cherokee County) (Fig 1).

Bats typically roosted under the sloughing bark of dead trees, most of which were ephemeral
and only suitable for 1–2 years before losing all bark or falling to the ground. During the study,
only one roost was used in two consecutive years; we noted fewer bats using this roost during
exit counts in the second year. Roosts were primarily large diameter yellow pine Pinus subge-
nus Diploxylon (67% of roosts) or white pine snags (29% of roosts), of moderate height, and
with low canopy closure (Table 2). We also located 2 hemlock roosts and 1 red maple Acer
rubrum roost in this study. We observed that roosts were generally on south facing ridges,
often on the upper third of the ridge (Table 2).

Pine 2 (forest type + aspect north/south + aspect east/west + elevation + distance-to- ridge)
ranked as the top model and Pine 1 (forest type + elevation) ranked second (ΔAICc = 3.3)
when compared to 24 other candidate models (Table 3). Together Pine 2 and Pine 1 accounted
for> 0.93 of the AICc weights and, therefore, there was a> 93% chance that one of them was
the best approximating model for the occurrence data and candidate models we tested. AUC
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values produced from MaxEnt training and test data, Pine 2 (training AUC = 0.92, test
AUC = 0.79) and Pine 1 (training AUC = 0.90, test AUC = 0.75) also suggested strong perfor-
mance for both models.

The five most important parameters (Table 4) were elevation (importance value = 1) and
forest type (0.93), and aspect north/south (0.85), aspect east/west (0.85), and distance-to-ridge
(0.83). For other variables, parameter importance values were< 0.067. Eight forest types
(parameter estimate value� 1.5; Table 5) were important in predicting the presence of summer
roosting habitat, with 5 of these including a pine component: Hemlock-Hardwood, White
Pine-Upland Hardwoods, Yellow Pine-Hardwoods, Oak-Yellow Pine, White Oak-Black Oak-
Yellow Pine, Yellow Poplar, Oak-Hickory, and Yellow Pine (Fig 2A and 2B). The probability of
presence of roosting habitat was> 0.5 for elevations ranging from 260 to 575 m (Fig 2C and
2D), though 29 of 76 known roost locations occurred at> 575 m in elevation; high elevation

Table 2. Summary data forMyotis sodalis roosts.

Characteristic Mean ± SE or Percentage Minimum Maximum

Tree Height (m) 19.9 ± 0.9 5.2 38.5

Dbh (cm) 39.8 ± 2.3 13.9 137.5

Canopy Closure % 25.5 ± 3.9 0 100

Elevation (m) 554 ± 21 266 1266

Aspect (degree°) 188° ± 9.1° 8° 344°

Slope Position 20% Lower, 45% Mid, 35% Upper - - - -

% Yellow Pine 68.4% - - - -

% White Pine 27.6% - - - -

% Hardwood 1.3% - - - -

% Hemlock 2.6% - - - -

Summary statistics for characteristics of 76 Myotis sodalis roosts located from May to August, 2008–2012 in the southern Appalachian Mountains.

doi:10.1371/journal.pone.0154464.t002

Table 3. Model rankings.

Rank Model AICc Score ΔAICc wi

1 Pine 2 1540.54 0 0.78

2 Pine 1 1543.81 3.27 0.15

3 Topography 1 1546.09 5.56 0.05

4 Topography 2 1548.07 7.53 0.02

5 Elevation 1559.21 18.67 < 0.01

6 Needs 1 1561.9 21.36 < 0.01

7 Global 1570.12 29.58 < 0.01

8 Research bias 1 1583.07 42.53 < 0.01

9 Needs 3 1586.23 45.69 < 0.01

10 Ridge 1 1593.89 53.35 < 0.01

11 Sun 2 1595.68 55.14 < 0.01

- - - - - - - - - - - - - - -

25 Corridor 1 1613.98 73.44 < 0.01

26 Corridor 3 1614.95 74.41 < 0.01

Eleven top-ranked models and the two lowest-ranked models for predicting the presence of Myotis sodalis summer roosting habitat in the southern

Appalachian Mountains, May to August, 2008–2012. Data are for models testing a subset of 54 roosts located from May to August, 2008–2012 in the

southern Appalachian Mountains. Models were ranked based on ΔAICc.

doi:10.1371/journal.pone.0154464.t003
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roosts included two hemlocks (1265 m elevation), one shortleaf pine P. echinata (815 m), one
yellow pine unidentifiable to species (795 m), and one Table Mountain pine P. pungens (765
m). Probability of presence was>0.5 for south-facing slopes, decreasing as aspect became
more north-facing (Fig 3A). The response curve for aspect east/west did not show strong direc-
tionality for probability of presence; it was important merely because it was used in the same
models as aspect north/south. Lastly, the response curve for distance-to-ridge showed that
probability of presence of roosting habitat was> 0.5 at points<125 m from the top of the
ridge, with decreasing probability of presence as distance-to-ridge increased (Fig 3B).

The final probability raster (Fig 4) shows predicted areas of suitable (5% of study area) and
optimal (0.5% of study area) habitat for the period 2008–2012. Suitable and optimal cells were
located in areas with known roosts, but also in areas where no roosts were located (Fig 4).
From the original set of 76 known roosts, 24 roosts were located within areas predicted to be
suitable habitat and 9 roosts were within areas predicted to be optimal habitat.

Discussion
The spatial model was successful in predicting the distribution of habitat important toM. soda-
lis during the time of our study, and made predictions beyond surveyed areas. The final average
model identified forests at elevations 260–575 m on the upper portions of south-facing slopes,
mainly with a pine component, as importantM. sodalis summer roosting habitat in the moun-
tains of southeast Tennessee and southwest North Carolina. This contradicts findings in other
portions of the species’ range whereM. sodalis primarily uses bottomland hardwood forests or
riparian areas (e.g., [5], [41–42]). Distance to water was not a good predictor of suitable habitat
in this study, whereas hydric forests are preferred in the Midwest [5]. Differences between this
study and others with respect to landscape-level roost selection suggest thatM. sodalis is flexi-
ble in roost habitat selection across different ecoregions with varying topography and land use
patterns [1], [42]. The model we produced should be useful within the southern Appalachians,
but will not easily transfer to other ecoregions within the range ofM. sodalis.

Bats often show high fidelity to and switch roosts within areas of suitable habitat, suggesting
that landscape variables may be important in determining the suitability of an area (e.g., [1],
[43–45]). Few studies have investigated roost habitat distribution on a landscape level [1]; most
have focused on land cover data, separating these data into general categories (e.g., bottomland

Table 4. Variable importance values.

Environmental Variables Parameter Importance

Elevation 1

Forest Type 0.93

Aspect East/West 0.85

Aspect North/South 0.85

Distance to Ridge 0.83

Slope 0.07

Curvature 0.05

Distance-to-Major Rds <0.001

Distance-to-Trails/Minor Rds <0.001

Distance-to-Water <0.001

Importance values for variables used in 26 candidate models predicting the presence of Myotis sodalis
summer roosting habitat in the southern Appalachian Mountains, May to August, 2008–2012. Importance

values for each variable were based on the AICc weights for each model in which a variable was included.

doi:10.1371/journal.pone.0154464.t004
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vs. coniferous forest, [41]; pine vs. hardwood and edge vs. open, [45]; and forest vs. wooded
pasture, [42]). In this study, we found that topographical features and detailed data on forest
composition were important predictors of the probability of presence of suitable roost habitat
when considered over a large area (>200,000 ha).

The top models predicted summer roosting habitat to be primarily in forest types with a
pine component, which supports previous work on plot- and stand-scale roost selection byM.
sodalis in this same region [9]. Yellow pine species in this region tend to occur with oaks on
ridgetops and south-facing (SW, S, SE) slopes where soil conditions are driest [12], [46],
thereby providing good solar exposure, which is important for tree-roosting bats [4]. Oaks
were not used in this study, but 96% of known roosts were in yellow or white pine snags. Pine
species used by bats in our study area exhibited similar patterns of decay, with exfoliating bark
remaining attached to the bole of the tree for several months, which is an important character-
istic for Indiana bat roosts [42].

Table 5. Parameter estimates for two top-rankedmodels.

Environmental Variables Pine 2 Parameter Estimate 1 Pine 1 Parameter Estimate 2

White Pine 0.81 0.88

Hemlock-Hardwood 3.31 3.1

White Pine-Upland Hardwood 2.39 2.28

Yellow Pine-Oak -0.12 - - -

Yellow Pine-Hardwoods 2.23 2.50

Upland Hardwoods-White Pine 1.17 0.95

Oak-Yellow Pine 1.54 1.63

White & Black Oak, & Yellow Pine 1.68 1.62

Yellow Poplar 2.77 2.44

Chestnut Oak 1.00 0.91

Oak-Hickory 1.72 1.55

Early Successional Hardwoods 1.22 1.08

Yellow Pine 1.50 1.67

Elevation -3.24 -2.02

Elevation^2 -13.04 -13.93

Aspect North/South - 2.10 - - -

Distance to Ridge -0.63 - - -

Distance to Ridge^2 - - - - - -

Aspect East/West 0.35 - - -

Aspect East/West^2 0.22 - - -

MaxEnt Parameters

Linear Predictor Normalizera 2.22 2.86

Density Normalizerb 235.64 274.42

Entropyc 7.90 8.12

Parameter estimates for each environmental variable in the two top-ranked models predicting the

probability of presence of Myotis sodalis roosting habitat in the southern Appalachian Mountains, May to

August, 2008–2012. These parameter estimates, along with the normalizers and entropy values, were used

to create the final raw and logistic equations for each MaxEnt model. Forest types with parameter

estimates >1.5 and other important environmental variables are bolded.
aConstant chosen so that the exponent is always non-positive (for numerical stability).
bConstant that ensures that all possibilities of distribution sum to one.
cLevel of “choice” in a distribution.

doi:10.1371/journal.pone.0154464.t005
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Elevation influences bat species distributions [47] and roost locations (e.g., [48]). Cryan
et al. [13] suggest variation in temperature and insect availability at different elevation gradi-
ents may impact torpor and energy restrictions. Elevation influences the temperature regimes
that a bat experiences while roosting and, thus, the amount of energy a bat expends for thermo-
regulation. The association with elevation may also be due to the presence of pine forests
within a particular elevation band. Probability of presence of summer roosting habitat was
greatest for elevations between 260–575 m, which includes the elevation gradient ranges for all
of the pine species within the southern Appalachians [49]. Throughout the species’ range,M.
sodalismaternity roosts are most likely to occur between 120 m and 330 m [22]; however, bats
may favor higher elevations for cooler summer temperatures in the southern portion of the
range [8], [this study].

Fig 2. Response curves (red) for forest type (A, B) and elevation (C, D) for top-performingmodels. The observed proportions of roosts in each forest
type or elevation class are plotted as black bars on secondary axes. The best models, Pine 2 and Pine 1, were developed using a subset of 54 female and
juvenileMyotis sodalis roost locations fromMay to August, 2008–2012 in the southern Appalachian Mountains of North Carolina and Tennessee. See S1
Table for vegetation codes.

doi:10.1371/journal.pone.0154464.g002
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While elevation and forest type were important for determining the general locations of
potential suitable roosting habitat, including aspect and distance-to-ridge in the model further
narrowed the range of areas predicted to provide optimal conditions for pine growth and
greater solar exposure/optimal microclimates for reproductive females and their pups. The
topography in the southern Appalachian Mountains can change drastically over short dis-
tances, with sunny ridges adjacent to deep drainages that are visibly cooler and shadier; thus,
topography affects temperature regimes for roost habitat. Furthermore, south-facing aspects
and the upper portion of ridges provide favorable growth conditions for several pine species
[46]. The significance of topographic features in the southern Appalachian Mountains is highly
contextual; this model will not transfer easily to areas with little topographical relief, such as
the Midwestern U.S.

Some spatial and temporal factors were not included in the models we developed, but could
be important for future modeling efforts. The inclusion of snag distribution and forest canopy
closure data, which can be derived from high-resolution LiDAR (Light Detection and Ranging)
data (e.g. [50]), might narrow the spatial scale of predictions. The development of standardized,
high-resolution forest classification data would improve our ability to develop models that
span large spatial scales and properties under management by different entities. Climate
change may be a particularly important temporal factor, as tree species’ ranges and abundance
may shift [51] andM. sodalismay shift the core of their range [22].

Spatial autocorrelation in occurrence points results in disparities in test and training perfor-
mance measures for habitat distribution models and may lead to overfitting model parameters
[35], [52]. Reducing spatial autocorrelation amongst occurrence points is essential when
modeling species’ distributions across large areas where there are potential gaps in species’
occurrence. We did not fully eliminate the spatial clustering in our known occurrence data
because we were hesitant to make predictive models using very few data points in highly vari-
able terrain and because we felt that fully eliminating clustering ignored the biology ofM. soda-
lis. In a preliminary analysis, we determined that randomly eliminating all points that were
spatially autocorrelated (e.g., [20], [24]) would have left us with only 10 presence points> 5
km apart (where clustering began to decline for known roosts in this study) and given more
weight to outlier points (e.g., 1 of 2 high elevation hemlock snags). Due to the ruggedness of
our landscape, a short distance (< 500 m) between roosts typically coincided with a large

Fig 3. Response curves (red) for aspect North/South (A) and distance-to-ridge (B) for Pine 2. The observed proportions of roosts in each aspect or
distance-to-ridge class are plotted as black bars on secondary axes. Pine 2 was one of the two best models developed using a subset of 54 roost locations
for female and juvenileMyotis sodalis roosts fromMay to August, 2008–2012 in the southern Appalachian Mountains of North Carolina and Tennessee.

doi:10.1371/journal.pone.0154464.g003
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change in topographic variables such as slope, aspect, and elevation. It is likely that modeling
habitat distribution with a small sample of points spaced> 5 km apart would yield unstable
predictions because model predictions may be unstable when a small sample does not fairly
represent the environmental variation in the study area [17]. Furthermore, groups ofM. sodalis
in a maternity colony tend to switch amongst roosts in relatively close proximity and to select
for particular habitat conditions within the landscapes they occupy (e.g., wetlands in an agri-
cultural-forest matrix in Michigan) [7], which suggests it may be important to consider areas
where potential roosts are clustered (patches of dead pines in this study) when modeling poten-
tial roosting habitat. Another way to reduce effects of spatial autocorrelation is to use a larger
cell size for models (e.g., [20]). Due to the extremely rugged and variable nature of the terrain
in our study area, using a larger grid cell size for this analysis would render most of our envi-
ronmental variables meaningless (e.g., aspect, elevation, slope, and distance to ridge).

Fig 4. Predicted probability of the presence of summer roosting habitat forMyotis sodalis. Probability map is based on the average logistic model and
shows 76 roosts used by female and juvenileMyotis sodalis fromMay to August, 2008–2012 in the southern Appalachian Mountains of North Carolina and
Tennessee. Areas of importance (dark gray to black areas) are either suitable (� 0.5) or optimal (� 0.75) summer roosting habitat.

doi:10.1371/journal.pone.0154464.g004
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Despite the fact that we used somewhat clustered presence points, we believe that our mod-
els were not highly biased for overfitting for several reasons. First, restricting MaxEnt to use
only linear and quadratic features minimized the likelihood of overfitting because our models
were not overly complex [52]. Second, using the information theoretic approach with a priori
hypotheses gives more parsimonious models (i.e., with fewer parameters) an advantage over
more complex models and reduces concerns about overfitting [29]. Finally, only 43% of known
roosts were in areas predicted to be optimal or suitable and the final model predicted occu-
pancy in many areas where there were no roosts (Fig 4). Indeed, in 2015, we tracked a maleM.
sodalis to 2 roosts located in an area predicted to be optimal habitat by our model that is> 40
km east of the closest roost used to develop the models in this study [O’Keefe et al., unpub-
lished data].

Though this model is static, bat roost choice and habitat selection are dynamic. Thus, spe-
cific areas of suitable and optimal habitat will change over time. Known pine snag roosts are
thought to have died as a result of a southern pine beetle Dendroctonus frontalis outbreak in
the early 2000s [53], but mature yellow pine forests are becoming increasingly rare on the land-
scape [46]. In the absence of preferred roost types,M. sodalis will use other tree species as
roosts [7], [9]. T. canadensis snags are currently readily available due to widespread die-offs
from the invasive wooly adelgid, Adelges tsugae [54]; however, to date, we have observed low
use of these trees. Management practices that promote forests with a pine component on upper
south-facing slopes at elevations from 260–575 m and create or preserve large trees should
yield suitable roosting habitat forM. sodalis. Prescribed fire could be an important tool for
restoringM. sodalis habitat, but it will be important for managers to consider the potential for
regrowth of pine species in burned areas and how to promote large trees with good roosting
conditions in the future.

Mist netting and radio tracking are not always economically and logistically feasible means
to locate bat roosts [55]. Model creation and comparison based on known occurrence data pro-
vides a supplemental, if not alternative, way for managers to identify importantM. sodalis sum-
mer roosting habitat areas and factors important to roost habitat selection. This approach is
proactive in that it will facilitate management for future habitat through the identification of
important environmental conditions. Landscape-scale GIS models predicting the distribution
of suitable habitat may also be useful for other forest bat species [1].

Supporting Information
S1 Table. Vegetation codes for landcover types on USFS and NPS lands. Vegetation codes
for landcover types on USDA Forest Service (USFS) and National Park Service (NPS) lands.
Codes were inputs in models developed using 54 of 76 known roost locations for female and
juvenileMyotis sodalis roosts from 2008–2012 in the southern Appalachian Mountains of
North Carolina and Tennessee. We combined codes because the NPS often grouped forest
types, while the USFS codes were more species-oriented. Blank cells indicate distinct landcover
types found only on either USFS or NPS land, not both.
(DOCX)
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