
RESEARCH ARTICLE

Genetic diversity of the O antigens of Proteus

species and the development of a suspension

array for molecular serotyping

Xiang Yu1,2,3,4, Agnieszka Torzewska5, Xinjie Zhang1,2,3,4, Zhiqiu Yin1,2,3,4,

Dominika Drzewiecka5, Hengchun Cao1,2,3,4, Bin Liu1,2,3,4, Yuriy A. Knirel6,

Antoni Rozalski5, Lei Wang1,2,3,4*

1 Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College,

Nankai University, Tianjin, P. R. China, 2 TEDA Institute of Biological Sciences and Biotechnology, Nankai

University, Tianjin, P. R. China, 3 Tianjin Research Center for Functional Genomics and Biochips, TEDA

College, Nankai University, Tianjin, P. R. China, 4 Tianjin Key Laboratory of Microbial Functional Genomics,

TEDA College, Nankai University, Tianjin, P. R. China, 5 Department of Immunobiology of Bacteria,

Department of General Microbiology Institute of Microbiology, Biotechnology and Immunology, Faculty of

Biology and Environmental Protection, University of Lodz, Lodz, Poland, 6 N.D. Zelinsky Institute of Organic

Chemistry, Russian Academy of Sciences, Moscow, Russian Federation

* wanglei@nankai.edu.cn

Abstract

Proteus species are well-known opportunistic pathogens frequently associated with skin

wound and urinary tract infections in humans and animals. O antigen diversity is important

for bacteria to adapt to different hosts and environments, and has been used to identify sero-

types of Proteus isolates. At present, 80 Proteus O-serotypes have been reported. Although

the O antigen structures of most Proteus serotypes have been identified, the genetic fea-

tures of these O antigens have not been well characterized. The O antigen gene clusters of

Proteus species are located between the cpxA and secB genes. In this study, we identified

55 O antigen gene clusters of different Proteus serotypes. All clusters contain both the wzx

and wzy genes and exhibit a high degree of heterogeneity. Potential functions of O antigen-

related genes were proposed based on their similarity to genes in available databases. The

O antigen gene clusters and structures were compared, and a number of glycosyltrans-

ferases were assigned to glycosidic linkages. In addition, an O serotype-specific suspension

array was developed for detecting 31 Proteus serotypes frequently isolated from clinical

specimens. To our knowledge, this is the first comprehensive report to describe the genetic

features of Proteus O antigens and to develop a molecular technique to identify different

Proteus serotypes.

Introduction

Proteus species are gram-negative bacterial opportunistic pathogens that belong to the Entero-

bacteriaceae family [1]. The genus Proteus is widely distributed in the natural environment

and in the microflora of human and animal intestines [1]. Under favorable conditions, they
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most commonly cause skin wound and urinary tract infections (UTIs) in humans and animals

[2–4], and roles in rheumatoid arthritis have also been reported [5]. Currently, this genus con-

tains seven named species, P. mirabilis, P. penneri, P. vulgaris, P. myxofaciens, P. hauseri, P. ter-
rae, and P. cibarius as well as three unnamed Proteus genomospecies, 4, 5, and 6 [6–9]. Among

these, P. mirabilis, P. penneri, and P. vulgaris are the most common human pathogens, and iso-

lates of P. mirabilis cause UTIs with the highest frequency [4]. P. myxofaciens, P. terrae, and P.

cibarius have no pathogenicity for humans [3, 8, 10].

Proteus species express a series of virulence factors that are associated with infection pro-

cesses and disease, such as fimbria, flagella, hemolysins, urease, proteases, amino acid deami-

nases, lipopolysaccharide (LPS) and capsular polysaccharides (CPSs) [3, 11–13]. LPS is an

endotoxin that constitutes the outer cell membrane of the gram-negative bacteria and is its

most variable component [14]. LPS is thought to play an important role in the process of the

UTIs and to affect both bladder and kidney stone formation [15–17]. Furthermore, LPS con-

fers protection against serum-mediated bactericidal activity to bacteria [18].

LPS consists of three parts: a lipid A anchor, a core oligosaccharide, and an O-specific poly-

saccharide (OPS) [19]. The OPS consists of oligosaccharide repeating units (O units) that usu-

ally contains 2 to 8 sugar residues [20]. The OPS is the most variable component of the LPS,

which defines the serological specificity of gram-negative bacteria [19, 21]. OPS variation is

predominantly determined by the types of sugars present as well as the order of sugar residues

and the linkages between them [21, 22]. The OPS is essential for bacterial survival, and the loss

of OPS causes many bacteria serum-sensitive or affects their virulence in another way [21, 23].

The OPS synthesis related genes usually form a gene cluster that is located at a fixed posi-

tion on the chromosome [19, 21]. For example, in Salmonella, Escherichia coli, and Shigella, the

O antigen gene clusters most commonly map between the galF and gnd genes [19, 21]. One or

more of the genes involved in OPS synthesis may sometimes map outside the gene clusters

[19, 21]. The O antigen gene clusters contain three classes of genes: nucleotide sugar biosyn-

thesis pathway genes, glycosyltransferase (GT) genes, and O antigen processing genes [19, 21,

23]. Sugars commonly found in other polysaccharide structures or involved in metabolism,

such as galactose (Gal), glucose (Glc), and N-acetylglucosamine (GlcNAc), are usually synthe-

sized by enzymes encoded by genes outside the O antigen gene cluster [19, 21]. There are three

different pathways to synthesize and translocate O antigen: the Wzx/Wzy pathway, which is

most frequently utilized; the synthase pathway; and the ATP-binding cassette transporter path-

way (ABC pathway) [19, 21, 24]. In the Wzx/Wzy pathway, the O units are synthesized by ini-

tial transfer of a sugar phosphate, then sequential transfer of the other sugars from their

nucleotide sugars donor to the carrier undecaprenyl phosphate (UndP) [25]. The assembled O

units are flipped across the cell membrane by Wzx and then polymerized by Wzy to form poly-

saccharide chains [25]. In E. coli, Shigella, and Salmonella, the chain-length determinant Wzz

imposes a modal chain-length distribution on the OPS, loss of wzz results in the uncontrolled

polymerization of O-units by Wzy-producing nonmodal chain-lengths ranging from short to

long, the principle is still unknown [26]. The OPS is eventually ligated to the lipid A core to

form LPS [27].

Detection of bacterial serotypes is critical for prevention and control of pathogens. How-

ever, traditional antiserum serotyping methods are laborious and cross-reactive, many molec-

ular and chemical serotyping techniques have been developed. Such as real-time PCR assays

and short sequencing assays based on serotype-specific genes [28–29], or chemometric analy-

sis of attenuated total reflectance infrared spectra based on defined LPS structures [30]. Recent

development of gene chip technology, including solid phase arrays and liquid bead-based sus-

pension arrays, has given us a more sensitive and accurate method to identify bacterial sero-

types [31]. The suspension array system is based on microspheres labeled with a unique dye
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combination. The microspheres are coupled with specific probes for targets which are ampli-

fied from the samples using biotin-labeled primers. The fluorescent emission of the target ana-

lyte is measured by exciting the fluorescent reporter bound to the microspheres [31].

Currently, according to OPS diversity, Proteus species are divided into 80 different sero-

types [32–34]. We previously reported 5 O antigen gene clusters (O3ab, O10, O23ac, O27, and

O47) [35]. In this study, we identified 55 new O antigen gene clusters. Collectively, we have

thus characterized 60 O antigen gene clusters from different Proteus serotypes (O1-O3, O5-

O6, O8-O14, O16-O21, O23-O34, O36-O37, O40-O42, O44-O45, O47-O48, O50-O62, O65,

O67, O69, and O71-O75). All these clusters are located between cpxA and secB and contain

both wzx and wzy genes. They include genes associated with nucleotide sugar biosynthesis,

sugar transfer, O antigen processing, and several other genes. In most cases, the O antigen

gene clusters correspond to known O antigen structures. The wzx and wzy genes in these 60

Proteus strains were polytropic, which provided a basis for rapid molecular serotyping. Using

the wzx and wzy genes, we developed a PCR-based suspension array to distinguish 31 different

Proteus serotypes (O1-O3, O5-O6, O8-O14, O17-O21, O23-O24, O27, O29-O34, O36, O40,

O42, O45, and O47), which are frequently isolated from clinical specimens. More serotypes

can be added to this array in the future by designing new probes based on their wzx or wzy
genes.

Materials and methods

Bacterial strains

All of the Proteus strains used in this study are shown in S1 Table, which were provided by the

Department of Immunobiology of Bacteria and the Department of General Microbiology at

the Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Envi-

ronmental Protection, University of Lodz (Lodz, Poland).

Genomic DNA extraction and O antigen gene cluster amplification

The Proteus strains were grown in Luria Broth and then harvested by centrifugation [36].

Genomic DNA samples were isolated using a Bacteria Extraction Kit (CWBIO Co., Ltd,

China). Primers wl_31262 (5’-GAGTTATTACGHGAAACGGTAAAAGC-3’) and wl_31263

(5’-GTTAACTTTGATGCGTTGTTTATGAACTA-3’) designed based on the cpxA and secB
genes, respectively, were used to amplify the Proteus O antigen gene clusters [35]. The PCR

program used was as follows: an initial denaturation at 95˚C for 3 min, followed by 30 cycles

of denaturation at 95˚C for 45 s, annealing at 55˚C for 45 s, and extension at 68˚C for 15 min

with a final extension at 68˚C for 5 min [35].

O antigen gene cluster sequencing and analysis

The PCR products were fragmented with DNase I, then the fragments were cloned into

pGEM-T Easy vector to construct a library as described previously [37]. Sequencing was per-

formed using an ABI 3730 automated DNA sequencer (Applied Biosystems, Foster City, CA),

with 12–20 fold coverage of the O antigen gene clusters. Sequencing data were assembled

using the Staden package and were annotated by Artemis [38, 39]. Use TBLAST and PSI-

BLAST to search available database, including the Pfam protein database and the GenBank

database, and to identify potential functions of the O antigen synthesis related genes [40]. The

potential transmembrane segments were identified using the TMHMM 2.0 program [40]. The

GT genes were divided into homology groups (HGs) using the OrthoMCL program v2.0 [41]

with a 50% protein sequence identity used as the cut-off. ClustalW v2.0 was used for sequences
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alignment, and JC69 module and phyML v3.0 were used to construct maximum likelihood

trees [42].

Development of PCR system

DNA from different samples was amplified using the Hot Start PCR Kit (Promega, Madison,

WI). PCR primers designed based on specific wzx/wzy genes were used to generate PCR frag-

ments of 100 to 495 bp (S2 Table) [43]. The reverse primer was biotinylated at the 5’-end that

can be combined with microspheres coupling the dye streptavidin-R-phycoerythrin. The

median fluorescence intensities (MFI) were detected using the Bio-Plex 100 suspension array

system (Bio-Rad). A single multiplex PCR system was used to amplify the wzx/wzy genes as

follows: an initial denaturation at 95˚C for 5 min, followed by 30 cycles of denaturation at

94˚C for 45 s, annealing at 50˚C for 1 min, and extension at 72˚C for 1min, and the final exten-

sion was done at 72˚C for 10 min [31]. The PCR products were then used directly in the

hybridization reaction to couple beads.

Probes design and beads coupling

Serotype-specific probes were designed based on the wzx/wzy genes (S3 Table). BioEdit soft-

ware 7.0 version was used for multiple sequence alignments. The carboxylated beads (Bio-Rad,

Hercules, CA) were coupled to specific probes with an amino C-12 modifiication at the 3’-end

(AuGCT, China).

Hybridization and staining

17 μl of the biotinylated amplicon was mixed with 33 μl of the bead mixture containing 2,500

beads in a 1.5× tetramethylammonium chloride (TMAC) solution (Sigma, St. Louis, MO).

Then the mixture was denatured at 95˚C for 5 min followed by hybridization at 55˚C for 15

min. The hybridization product was collected using centrifugation at 8000 rpm and resus-

pended using 75 μl 1× TMAC solution containing 10 ng/mL streptavidin-R-phycoerythrin

(Molecular Probes, Eugene, OR), then incubated at 55˚C for 10 min.

Data acquisition and analysis

The fluorescence intensities of the beads were analyzed using a Bio-Plex 100 suspension array

system (Bio-Rad). The MFIs were calculated from 100 replicate measurements using the digital

signal processor and the Bio-Plex Manager software 4.1. A positive result was defined as an

MFI> 150 and a signal/background (S/B = MFI/Blank) > 6.0 [31].

Results and discussion

In this study, we identified 55 new Proteus O antigen gene clusters. Combined with the 5 previ-

ously published gene clusters (O3ab, O10, O23ac, O27, and O47) [35], we have a total of 60

Proteus O antigen gene clusters characterized. All these clusters are located between cpxA and

secB and contain both wzx and wzy genes, various GT genes, and nucleotide sugar synthesis

genes (Fig 1). The GC content of these O antigen synthesis related genes ranged from 19.5 to

35.7%, which is lower than the rest of the Proteus genome (38.9%) [44], indicating that the O

antigen gene clusters of Proteus species may originate from other bacteria [35].

Comparison of Proteus O antigen gene clusters and structures

Genes related to the biosynthesis of common sugar nucleotide precursors (such as UDP-Glc-

NAc, UDP-Glc, and UDP-Gal) are not located in the O antigen gene cluster [20, 22]. Genes

Genetic diversity of Proteus O antigens and development for molecular serotyping

PLOS ONE | https://doi.org/10.1371/journal.pone.0183267 August 17, 2017 4 / 16

https://doi.org/10.1371/journal.pone.0183267


Genetic diversity of Proteus O antigens and development for molecular serotyping

PLOS ONE | https://doi.org/10.1371/journal.pone.0183267 August 17, 2017 5 / 16

https://doi.org/10.1371/journal.pone.0183267


related to the biosynthesis of rare monosaccharide precursors (such as UDP-QuiN, UDP--

FucN, dTDP-Qui3N, dTDP-Fuc3N, dTDP-Rha) were typically located in the O antigen gene

cluster [19, 21]. Based on these features, we compared the O antigen gene clusters and struc-

tures in Proteus (Figs 1 and 2, S4 Table) [32]. Of the 60 Proteus O antigen gene clusters, 57

(95% of the collection) were found to correspond to their known O antigen structures. Next,

the genetic and structural consistency of rare monosaccharides will be described.

There are 4 Proteus O antigens whose structures include QuiNAc (O1, O2, O31, and O55),

and their gene clusters all contain fnlA-qnlAB. There are 6 Proteus O antigens whose structures

include FucNAc (O6, O8, O12, O19a, O42, and O67), and their gene clusters all contain

fnlABC. UDP-GlcNAc is converted to UDP-2-acetamido-2,6-dideoxy-β-L-lyxo-hexos-4-ulose

by fnlA [45], which can be further converted to UDP-L-QuiNAc by qnlAB or to UDP-L-Fuc-

NAc by fnlBC [45–47].

There are 2 Proteus O antigens whose structures include Fuc3NAc (O17 and O45). The

O45 gene cluster contains rmlA-fdtABC, and the O17 gene cluster contains rmlA-fdtAB. There

are 2 Proteus O antigens whose structures include Qui3NAc (O56 and O59), and their gene

Fig 1. The O antigen gene clusters from the 60 Proteus serotypes. The sequences of the 60 Proteus O

antigen gene clusters have been deposited to GenBank with accession numbers KY710685 to KY710739.

https://doi.org/10.1371/journal.pone.0183267.g001

Fig 2. Biosynthesis pathways for the sugars in Proteus O antigens. GalU, UTP-glucose-1-phosphate

uridylyltransferase; GalE, UDP-glucose-4-epimerase; Ugd, UDP-glucose 6-dehydrogenase; Gla, UDP-

glucuronate 4-epimerase; GlmS, glutamine:fructose-6-phosphate transaminase; GlmM, phosphoglucosamine

mutase; GlmU, UDP-N-acetyl-glucosamine pyrophosphorylase; Gne, UDP-N-acetylglucosamine-4-

epimerase; RmlA, glucose-1-phosphate thymidylyltransferase; RmlB, dTDP-D-glucose 4,6-dehydratase;

RmlC, dTDP-6-deoxy-α-D-xylo-hexos-4-ulose 3,5-epimerase; RmlD, dTDP-6-deoxy-β-L-lyxo-hexos-4-ulose

4-reductase; FdtA, dTDP-6-deoxy-α-D-xylo-hexos-4-ulose 3,4-isomerase; FdtB, dTDP-6-deoxy-α-D-xylo-

hexos-3-ulose aminase; FdtC, dTDP-D-Fuc3N acetylase; QdtA, dTDP-6-deoxy-α-D-xylo-hexos-4-ulose

3,4-isomerase; QdtB, dTDP-6-deoxy-α-D-ribo-hexos-3-ulose aminase; QdtC, dTDP-D-Qui3N acetylase; FnlA,

UDP-D-GlcNAc 4,6-dehydratase, 3- and 5-epimerase; FnlB, UDP-2-acetamido-2,6-dideoxy-β-L-lyxo-hexos-

4-ulose 4-reductase; FnlC, UDP-2-acetamido-2,6-dideoxy-L-talose 2-epimerase; QnlA, UDP-2-acetamido-

2,6-dideoxy-β-L-lyxo-hexos-4-ulose 4-reductase; QnlB, UDP-L-RhaNAc 2-epimerase; * indicates the genes

located outside the O antigen gene cluster (all enzymes encoded by these genes can be found in the 68

Proteus genomes; the amino acid sequence identities of GalU to the homolog in E. coli K12 are 75.44–76.43%,

the amino acid sequence identities of GalE to the homolog in E. coli K12 are 59.13–65.26%, the amino acid

sequence identities of Rib to the homolog in E. coli K12 are 94.29–94.6%, the amino acid sequence identities

of GlmS to the homolog in E. coli K12 are 78.89–82.79%, the amino acid sequence identities of GlmM to the

homolog in E. coli K12 are 80.97–88.12%, the amino acid sequence identities of GlmU to the homolog in E. coli

K12 are 73.94–79.8%, data not shown).

https://doi.org/10.1371/journal.pone.0183267.g002
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clusters both contain rmlA-qdtABC. There are 7 Proteus O antigens whose structures include

Rha (O25, O32, O51, O55, O58, O62, and O75), and all corresponding gene clusters except

that of O55 contain rmlACD. Glc-1-P is converted to dTDP-6-deoxy-α-D-xylo-hexos-4-ulose

by rmlAB [48, 49], which is further converted to dTDP-L-Rha by rmlCD [50, 51] or dTDP-

D-Fuc3NAc by fdtABC [52] or dTDP-D-Qui3NAc by qdtABC [53]. However, we did not find

the rmlB gene in any of these Proteus O antigen gene clusters, indicating that the rmlB gene

may be located outside the clusters in these strains. Therefore, we downloaded 68 Proteus
genomes (S5 Table), and identified the RmlB in all these genomes, which had amino acid

sequence identities to the homolog in E. coli K12 from 71.95% to 74.76% (data not shown).

There are 4 Proteus O antigens whose structures include Ribf (O9, O25, O36, and O59), the

only pentose, which is available from the NAD salvage pathway [54]. The gene responsible for

the synthesis of UDP- Ribf is not always located in O antigen gene clusters [19, 21], and we did

not find it in these strains too. There are 5 Proteus O antigens whose structures include Rib-ol

(O16, O33, O41, O53, and O73ab), which is synthesized from ribulose 5-phosphate by rib [54].

However, we did not find the rib gene in any of these Proteus O antigen gene clusters, indicat-

ing that the rib gene may be located outside the clusters in these strains.

There are 39 Proteus O antigens whose structures do not contain any rare monosaccharides

(O3ab, O5, O9-O11, O13-O14, O16, O18, O20-O24, O26-O30, O33-O34, O37ab, O40-O41,

O44, O47-O50, O52, O54ab, O57, O60-O61, O65, O69, and O71-O74). Of these, there are 38

antigens whose O antigen gene clusters are relatively simple and do not contain any genes

responsible for the synthesis of rare monosaccharides. The only exception is O37ab, which is

discussed below.

There are also some other genes in the O antigen gene clusters. Most O antigens of Proteus
contain uronic acids, and the ugd and gla genes were found in many Proteus O antigen gene

clusters [3]. The ugd gene is involved in UDP-GlcA biosynthesis [55, 56], and it was present in

the O antigen gene clusters of all 60 O antigens (O56 has two copies of ugd gene). The gla gene,

which is involved in UDP-GalA biosynthesis [55, 56], was found in 15 of the Proteus O antigen

gene clusters. Of these, 14 O antigens (except for O61) contain GalA. The gne gene, which is

responsible for UDP-GalNAc synthesis, was found in 12 Proteus O antigen gene clusters, and

all corresponding O antigens contain GalNAc [57]. The glf gene, which is involved in the syn-

thesis of UDP-Galf, was found in 5 Proteus O antigen gene clusters, but none of these O anti-

gens contain Galf, suggesting that glf may not be involved in Proteus O antigen biosynthesis

[58].

There are 3 Proteus O antigens (5% of the collection) whose O antigen gene clusters did not

correspond to their known O antigen structures (O37ab, O53, and O55). The O37ab gene clus-

ter contains rmlA-qdtAB, but its O antigen does not contain Qui3NAc. O53 antigen contains

FucNAc but no fnlABC genes were found in the O antigen gene cluster. Similarly, O55 con-

tains Rha in the O antigen but no rmlACD genes in the O antigen gene cluster. We have re-

checked these three strains by sequencing based on serotype-specific genes, and the possibility

of mixing up of other strains can be excluded. The possible explanation is that the strains we

used in sequencing are different from those used for structure analysis. We will identify the O

antigen structures of the three strains we had, and sequence the O antigen gene clusters of

other strains of these three serotypes in the future.

Glycosyltransferase genes

In E. coli and Shigella, the first sugar residue of the O antigen synthesis is GalNAc or GlcNAc,

and the initial transferase (IT) encoded by wecA is responsible for initiating the O antigen syn-

thesis, which is usually located outside the O antigen gene cluster [27, 59]. Almost all of the
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Proteus OPS structures analyzed in this study (except for O53) contain GalNAc or GlcNAc

[32]. The IT genes are usually conserved across different species, and we identified the WecA

in all 68 Proteus genomes, which had amino acid sequence identities to the homolog in E. coli
K12 from 73.3% to 76.74% (S6 Table). The identities between the Proteus WecA are 90.46%-

100% (data not shown). Therefore, we propose that WecA initiates the synthesis of the OPS in

most Proteus strains.

Glycosyltransferases sequentially transfer sugars to growing glycan chains until the O-units

have been completely synthesized [19, 21]. Each studied Proteus O antigen gene cluster con-

tained 2 to 7 putative GT genes, with a total of 216 GT genes identified in the 60 O antigen

gene clusters. According to the similarity of the protein sequences, we have classified 78 of

these GTs into 19 homology groups that contain at least 2 GTs (HG01-HG19), as shown in S7

Table. The GTs in the same HGs are considered to have similar functions. By comparing the

structures of the different O antigens that contain GTs belonging to the same HG, we pre-

dicted the functions of some of these GTs, and some examples are discussed below.

For instance, the GTs of HG02 share 62–65% identity to E. coli WbuB, which is a known

L-FucNAc transferase [60]. By comparing the O antigen structures whose corresponding gene

clusters contain GTs belonging to HG02, we found that O6, O8, O12, O19, and O42 all contain

an α-L-FucNAc-(1!3)-D-GlcNAc linkage in their structures. Therefore, we predicted that

the GTs of HG02 have a similar function and are responsible for the formation of the α-L-Fuc-

NAc-(1!3)-D-GlcNAc linkage.

In the same manner, the GTs of HG15 share 55% identity to Citrobacter europaeus PglA,

which is a known α-1,3-D-GalNAc transferase [35, 61]. By comparing the known O antigen

structures whose corresponding gene clusters contain GTs belonging to HG15 (O16 and O48),

we found that they contain an α-D-GalNAc-(1!3)-D-GlcNAc linkage. Therefore, we pre-

dicted that the GTs of HG15 have a similar function and are responsible for the formation of

the α-D-GalNAc-(1!3)-D-GlcNAc linkage.

By comparing the known 6 Proteus O antigen structures whose corresponding gene clusters

containing GTs belonging to HG05, we found that they contain only one common linkage, α-

D-GalA-(1!3) -D-GlcNAc. Therefore, we suggest that GTs of HG05 are responsible for the

formation of the α-D-GalA-(1!3)-D-GlcNAc linkage.

O antigen processing genes

All 60 studied Proteus O antigen gene clusters contained both wzx and wzy genes, but none of

them contained wzz gene. We identified the Wzz in all 68 Proteus genomes, which had amino

acid sequence identities from 86.16% to 100% to E. coli K12 Wzz (S8 Table). Therefore, the

wzz gene is located outside the Proteus O antigen gene clusters. As expected, all Wzx contain

10 to 12 transmembrane segments, and all Wzy contain 9 to 12 transmembrane segments. We

constructed the maximum likelihood phylogenetic trees using the wzx and wzy genes, individ-

ually, which show the high levels of diversity of these two genes from different strains (Fig 3).

The maximum gene sequence identity of wzx is 87.9%, and the maximum gene sequence iden-

tity of wzy is 82.7%; the identities between either wzx or wzy are not more than 80%. The diver-

sity of the wzx and wzy genes provided us a basis to develop molecular techniques to ditect and

identify different Proteus O serotypes.

Additional genes identified

A putative methyltransferase gene, a glycerol-3-phosphate dehydrogenase gene, and two serine

acetyltransferase genes were found between cpxA and secB genes in all 60 serotypes. The

methyltransferase gene shared the same transcriptional promoter on the leading strand with
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Fig 3. The phylogenetic trees for wzx and wzy genes from the 60 Proteus serotypes. The wzx (A) and

wzy (B) trees were constructed using wzx and wzy genes. The sequences were aligned using ClustalW v2.0,

and the trees were constructed using the JC69 substitution model and the phyML v3.0.

https://doi.org/10.1371/journal.pone.0183267.g003
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the other O antigen synthesis genes. However, the other three genes use a different transcrip-

tional promoter on the lagging strand, suggesting that these genes may not be associated with

Proteus O antigen synthesis.

PCR-based suspension arrays for molecular detection of 31 different

Proteus O serotypes

With the development of molecular techniques, many PCR-based molecular serotyping meth-

ods have been developed based on the O antigen specific genes for serological identification of

many species, such as E. coli, Salmonella and Yersinia pseudotuberculosis [62]. According to the

Proteus O antigen gene cluster analysis we performed in this study, the wzx and wzy genes

were specific for different serotypes, indicating that the wzx and wzy genes could be used for

molecular serotyping. At present, 37 Proteus serotypes have been reported to be frequently iso-

lated from clinical specimens (O1-O15, O17-O21, O23-O24, O27-O34, O36, O38, O40, O42,

and O45-O47) [35, 63, 64], and 31 of these 37 O antigens were analyzed in this study. A PCR-

based suspension array was developed for molecular serotyping of all these 31 Proteus O sero-

types using the wzx or wzy genes (Fig 4).

Primers were designed based on the wzx or wzy genes to amplify the PCR products, as

described in the materials and methods. In most cases, we used wzy gene as target to amplify

PCR products. If serotypes appeared to cross react due to the high sequence identities of their

wzy genes, we tried to use wzx to obtain the PCR amplicons. Under optimal conditions, the

multiplex PCR was performed to amplify the target amplicons varied from 100 to 495 bp.

Fig 4. The hybridization results of the 31 Proteus strains. The suspension arrays were divided into 3 groups:

(A) O1, O2, O9, O17, O20, O21, O23ac, O30, O32 and O47; (B) O5, O6, O8, O11, O12, O27, O29a, O31ab and

O45; (C) O3ab, O10, O13, O14ab, O18, O19a, O24, O33, O34, O36, O40 and O42; no cross reactions were

observed for any probe tested in this study, and the Blank was a negative control; the x-axis represents the PCR

products of different serotypes, the y-axis represents the MFI values, and the z-axis represents the specific probes

used for detection.

https://doi.org/10.1371/journal.pone.0183267.g004
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Serotype-specific probes (19 to 30 bp) were designed based on target genes for each serotype,

and the optimum hybridization temperatures were determined by detecting the hybridization

efficiencies at different temperatures (from 45˚C to 60˚C). Consequently, the probe hybridiza-

tion temperature was determined to be 56–59˚C.

To distinguish all of the 31 different strains tested, suspension arrays were divided into 3

groups: (A) O1, O2, O9, O17, O20, O21, O23ac, O30, O32 and O47; (B) O5, O6, O8, O11, O12,

O27, O29a, O31ab and O45; (C) O3ab, O10, O13, O14ab, O18, O19a, O24, O33, O34, O36, O40

and O42. The results of the suspension array can be repeated from three repeat detections. The

MFIs for probes hybridized with their homologous DNA are> 151.5, and the S/Bs for probes

hybridized with their homologous DNA are> 14.9. The MFIs for probes hybridized with their

nonhomologous DNA are< 51, and S/Bs for probes hybridized with their nonhomologous

DNA are< 5.0. The MFIs and S/Bs for probes hybridized with their homologous DNA were

significantly higher than the MFIs and S/Bs obtained from probes hybridized with nonhomolo-

gous DNA. No cross reactions were observed for any probe tested in this study (Fig 4).

In order to determine the sensitivity of the suspension array, a ten-fold gradient dilution

experiment was carried out (0 fg/μl, 1.0 fg/μl, 10.0 fg/μl, 100.0 fg/μl, 1.0 pg/μl, 10.0 pg/μl, 100.0

pg/μl, 1.0 ng/μl and 10.0 ng/μl of genomic DNA). Positive signals could be generated as low as

10–100 pg of genomic DNA.

In conclusion, the primers and probes designed in this study worked well for each strain,

and no obvious nonspecific signals were observed. However, like any other molecular detec-

tion method, this suspension array has limitations because the probes must be designed based

on known sequences. More serotypes can be distinguished using this method if new specific

probes and primers are designed to complement our suspension assay. Overall, this wzx/wzy-

based suspension array provides us a potential tool to identify different Proteus O serotypes.

Conclusions

OPS is an important component of gram-negative bacterial cell membranes with high variabil-

ity within and between species. In this study, we identified 55 new O antigen gene clusters

from different Proteus serotypes. Together with previously reported gene cluster data [35], we

have analyzed a total of 60 Proteus O antigen gene clusters and have confirmed that the Proteus
O antigen gene clusters are located between cpxA and secB genes, and the synthesis of Proteus
O antigen is Wzx/Wzy pathway dependent. By comparison with their known O antigen struc-

tures, we found that most O antigen gene clusters correlated well with the corresponding O

antigen structures (57 of 60, 95%). We also predicted the functions of some of the GTs by com-

paring the known O antigen structures whose corresponding gene clusters contain GTs

belonging to the same HGs. The diversity of the wzx and wzy genes provides a basis for rapid

molecular detection of different Proteus O serotypes. We therefore developed a suspension

array to distinguish 31 different Proteus O serotypes using specific primers and probes de-

signed based on the wzx/wzy genes. Our work comprehensively describes the O antigen gene

clusters of Proteus species and provides a basis for future serological studies.
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