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Abstract
PDE4B (phosphodiesterase- 4B) has an important role in cancer and in pharma-
cology of some disorders, such as inflammatory diseases. Remarkably in Native 
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Americans, PDE4B variants are associated with acute lymphoblastic leukemia 
(ALL) relapse, as this gene modulates sensitivity of glucocorticoids used in ALL 
chemotherapy. PDE4B allele rs6683977.G, associated with genomic regions of 
Native American origin in US- Hispanics (admixed among Native Americans, 
Europeans, and Africans), increases ALL relapse risk, contributing to an associa-
tion between Native American ancestry and ALL relapse that disappeared with an 
extra- phase of chemotherapy. This result insinuates that indigenous populations 
along the Americas may have high frequencies of rs6683977.G, but this has never 
been corroborated. We studied ancestry and PDE4B diversity in 951 healthy indi-
viduals from nine Latin American populations. In non- admixed Native American 
populations rs6683977.G has frequencies greater than 90%, is in linkage disequi-
librium with other ALL relapse associated and regulatory variants in PDE4B- 
intron- 7, conforming haplotypes showing their highest worldwide frequencies in 
Native Americans (>0.82). Our findings inform the discussion on the pertinence 
of an extra- phase of chemotherapy in Native American populations, and exempli-
fies how knowledge generated in US- Hispanics is relevant for their even more ne-
glected and vulnerable Native American ancestors along the American continent.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
PDE4B (phosphodiesterase- 4B) has an important role in cancer and in pharma-
cology of some disorders, such as inflammatory diseases. This study was inspired 
by an admixture mapping in US- Hispanics (the product of admixture among 
Native Americans, Europeans, and Africans), that reported that rs6683977.G in 
PDE4B, associated with genomic regions of Native American origin, increase the 
risk of acute lymphoblastic leukemia (ALL) relapse. This association disappeared 
in patients receiving an extra- phase of chemotherapy. Consistently, PDE4B is in-
volved in metabolism of glucocorticoids used in ALL chemotherapy. This result 
on US- Hispanics suggests that indigenous populations along the Americas have 
high frequencies of rs6683977.G, but this has never been corroborated.
WHAT QUESTION DID THIS STUDY ADDRESS?
Does PDE4B allele rs6683977.G actually highly prevalent in Native American 
populations along the American continent?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
We studied PDE4B haplotype structure and ancestry in 951 individuals from 
eight indigenous and one admixed Latin American populations. rs6683977.G has 
frequencies greater than 90% in non- admixed Native American populations, is 
in strong linkage disequilibrium with other single- nucleotide polymorphisms 
(SNPs) associated with ALL relapse and with functionally regulatory variants in 
PDE4B- intron 7. Haplotypes, including ALL relapse risk and functional alleles, 
have the highest frequencies worldwide in Native Americans (>0.82).
HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR 
TRANSLATIONAL SCIENCE?
Our findings, by revealing the haplotype structure of PDE4B, contribute to the 
discussion about an extra- phase of chemotherapy in predominantly Native 
American populations. We also exemplify how to expand results on minority 
groups from developed countries (US- Hispanics) to their even more neglected 
ancestral populations (Native Americans), promoting an inclusive global preci-
sion medicine.
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PDE4B encodes a phosphodiesterase that degrades 
cyclic- AMP (cAMP).1,2 Its inhibitors are commonly used 
in several treatments of disorders, including skin and 
pulmonary diseases.3 Additionally, PDE4B expression 
has also been related with corticosteroids’ role in cancer 
treatment, as in acute lymphoblastic leukemia (ALL).4 
Following B- cell receptor activation, cAMP downmod-
ulates signaling pathways responsible for cell prolif-
eration. PDE4B overexpression abrogates the cAMP 
inhibition of cell proliferation and modulates glucocorti-
coid (i.e., dexamethasone and prednisone5,6) sensitivity/
resistance in ALL treatment. Thus, PDE4B genetic vari-
ants that modulate its expression are relevant for ALL 
treatment.5,7

Ancestry is associated with incidences or treatment out-
comes of several types of cancer.8 However, our under-
standing of these associations is hampered because most 
studies are performed in European/US populations.9 
Studies focusing on non- European and vulnerable popu-
lations are critical in human genomics and pharmacoge-
netics.10 In particular, Native Americans are neglected 
in studies about genetic diversity and the genetic basis of 
diseases.9– 13

ALL is the most common cancer in children less than 
5 years old and its incidence is higher in countries with 
high Native American ancestry.14 An admixture map-
ping including US- Hispanics (admixed among Native 
American, European, and African ancestries), reported 
that alleles PDE4B- rs6683977.G (intron 7, plus [+] 
strand) and MYT1L- rs17039396.A, commonly present 
in genomic regions of Native American origin, increase 
the risk of ALL relapse,5 even after adjusting for known 
prognostic factors. These local- chromosome ancestry- 
based associations account at least in part for the as-
sociation between Native American ancestry and ALL 
relapse.15 Importantly, this association disappeared in 
patients submitted to an extra phase of chemotherapy, 
suggesting that at population level, ancestry- adjusted 
therapy may mitigate the higher risk of relapse.5 The as-
sociation of PDE4B- rs6683977.G with ALL relapse has 
been confirmed in an ethnically diverse cohort of St. 
Jude Hospital, Tennessee/United States, and other three 
intron 7 PDE4B single- nucleotide polymorphisms (SNPs; 
rs546784.A, rs641262.A, and rs524770.A) were associ-
ated with ALL relapse.7

The associations between PDE4B- rs6683977.G and 
MYT1L- rs17039396.A and ALL relapse in US- Hispanics 
insinuates that populations that are predominantly indig-
enous along the Americas have high frequencies of these 
ALL relapse associated variants, but this has never been 
corroborated, which is indicative of how Native American 
populations are neglected in genetic studies. To address 

this issue, we test the hypothesis that PDE4B- rs6683977.G 
and MYT1L- rs17039396.A (and their associated genomic 
regions) show higher frequency and are highly differenti-
ated in indigenous populations of the Americas in respect 
to other continental groups.

There is a nomenclature caveat regarding PDE4B-
 rs6683977.G (Data S1). This SNP has two alleles: C and G. 
A methodological caveat that requires caution occurs 
with SNPs with the pairs of alleles C/G or A/T.16 These 
kinds of SNPs are ambiguous because the alternative al-
leles (that by definition are present in the different ho-
mologous chromosomes) are sometimes confused with 
the complementary bases of the double DNA strands. 
The original study reporting the association between 
PDE4B- rs6683977 and ALL relapse designated the risk al-
lele as PDE4B- rs6683977.C because it was referring to the 
minus (−) DNA strand of chromosome 1.5,7 However, to 
follow the convention (such as the 1000 Genome Project 
[1000GP]17) and to be consistent with strand nomencla-
ture,16 here, we report the risk allele in this study refer-
ring to the plus (+) DNA strand of chromosome 1, as 
PDE4B- rs6683977.G.

We studied 951 healthy individuals from eight Native 
American populations from Mexico (Tarahumara and 
Huichol), Peru (Quechua and Aymara from the Andes, 
Machiguenga, and Ashaninka from the Amazon) and 
Brazil (Tupiniquim and Guarani from South- East of 
the country) and a Brazilian admixed population from 
Minas Gerais state (AMG, also from South- East of 
the country). We generated genomic data for PDE4B 
and MYT1L regions, including PDE4B- rs6683977 and 
MYT1L- rs17039396 allele frequencies after genotyp-
ing 790 and 489 individuals, respectively (Table S1 and 
Figure S1). We estimated continental admixture propor-
tions for each studied Latin American population (Data 
S1, Tables  S1 and S3). Data from the 1000GP17 were 
considered for comparison. Here, we focus on PDE4B 
results. The results regarding MYT1L are in Data S1. 
Institutional review boards of participant institutions ap-
proved this study.

Latin American populations with the highest Native 
American ancestry show the highest PDE4B- rs6683977.G 
frequencies (Spearman correlation rho  =  0.684, p  < 
0.0025; Table S1), with most indigenous populations with 
frequencies greater than 90% (Figure 1a). Compared with 
the 1000GP populations, PDE4B- rs6683977.G frequen-
cies have the lowest values in Europeans (44%), followed 
by South Asians (65%), with higher frequencies, similar 
to Native Americans, in East Asians (84%) and Africans 
(96– 99%). Thus, European admixture influences the 
lower PDE4B- rs6683977.G frequencies in indigenous 
Tupiniquim, the admixed Brazilians (Minas Gerais), 
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and 1000GP admixed American continent populations 
(Figure 1a, Table S1). Among the 17 populations reported 
in Figure 1a, only admixed Puerto Ricans and indigenous 
Guarani from Brazil (with 67% of Native American an-
cestry) show exceptionally high frequencies of PDE4B-
rs6683977.G with respect to expectations based on their 
admixture proportions.

PDE4B -  rs6683977,  LINKAGE 
DISEQUILIBRIUM WITH OTHER 
ALL RELAPSE AND FUNCTIONAL 
REGULATORY VARIANTS

Functional genomic studies were unable to identify if 
rs6683977 directly affects PDE4B expression, but other 
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three SNPs in intron 7 were functionally validated as “pos-
itive regulatory elements” (PRE)18: rs494735, rs502958 
and, in particular, rs12142375, which has an allele- specific 
regulatory effect (Figure 1b).18 In Native Americans from 
Peru, rs6683977.G is in strong linkage disequilibrium 
(LD) with the PRE rs12142375.G (r2 = 1, both at very high 
frequencies; Figure 1c), but not with the other two PRE 
SNPs. In these Peruvian populations PDE4B- rs6683977 is 
also in strong LD (r2  =  1) with other variants in intron 
7, including rs546784 and rs641262 (Figure  1c), associ-
ated with ALL relapse in the St. Jude multi- ethnic co-
hort.7 Notably, we show that the sum of frequencies of 
PDE4B haplotypes including the ALL relapse risk alleles 
rs546784.T, rs6683977.G, rs641262.T, and the functional 
allele rs12142375.G is higher in Native Americans from 
Mexico (0.92) and Peru (0.82– 0.95) than in other 1000GP 
populations, particularly in Europeans (0.43; Table S2).
Our study has the limitation of being a population genetics 
study on healthy individuals. Association and functional 
studies of PDE4B- rs6683977.G with relapse in patients 
with ALL from Latin American countries are a pending 
task. Clinical studies on the use of PDE4B- rs6683977.G 
haplotypes information to prescribe an extra- phase of 
ALL chemotherapy would be the gold standard.

In conclusion, the ALL relapse associated allele 
PDE4B- rs6683977.G is highly prevalent in Native 
American (Figure  1a), as well as in African and East 
Asian populations, but only in Native Americans both 
individual and local- chromosome ancestries are asso-
ciated with ALL relapse in the multi- ethnic St. Jude 
cohort. This result posits the hypothesis, to be tested, 
that effect sizes of PDE4B- rs6683977.G on ALL relapse 
may vary with ancestry, as has been recently observed 
for susceptibility SNPs for ALL in the ERG gene in 

Hispanics.19 PDE4B- rs6683977.G is in LD with other 
SNPs also associated with ALL relapse (Table S1)7 and 
with functional variants in intron 7 (Figure 1c, Table S3) 
both in Native American and also East Asians. The 
intronic region encompassing PDE4B- rs6683977 has 
been functionally validated as a spatially active chro-
matin segment, harboring active enhancers,20 even if 
this validation has been performed in cell lines with 
European ancestry background and not in cell lines 
derived from Native American individuals, a pend-
ing task. Functional databases (Data S1) reveal that 
the region around PDE4B- rs6683977, including other 
ALL relapse markers, has several DNase I hypersensi-
tive binding sites, transcription factor ChIP- seq clus-
ters and histone marks of active enhancers (H3K4me1, 
H3K4me3, and H3K27ac) in a European ancestry 
lymphoblastoid cell line (Figure 1b). Accordingly, the 
importance of PDE4B for the ALL treatment outcome 
is likely related to the association of its overexpression 
with glucocorticoids resistance.1,2,5,6 Our findings are 
consistent with the role of admixture mapping hits 
found by Yang et al.,5 expand their results by revealing 
the very high prevalence of PDE4B- rs6683977.G and 
associated haplotypes in neglected Native American 
populations, and provide further support to the thera-
peutic decision of an extra phase of chemotherapy5 in 
populations with predominant Native American ances-
try. Our study exemplifies how knowledge generated 
in US- Hispanics is relevant for their even more vulner-
able and neglected Native American ancestors along 
the American continent.
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F I G U R E  1  Allele frequency, functional signals, and linkage disequilibrium surrounding PDE4B- rs6683977 in Native Americans. 
(a) PDE4B- rs6683977.G allele frequencies as a function of Native American ancestry proportions in Native or admixed populations 
of the Americas. Admixed US Hispanics/Mexican (MXL), and Latin Americans from Puerto Rico (PUR), Colombia (CLM), and Peru 
(PEL) from 1000GP, Brazilian admixed population (Minas Gerais state), Native Americans from Peru (Quechuas, Aymaras, Ashaninkas, 
Machiguengas, Choppcas, Matzes, Moches, and Uros), Mexico (Tarahumaras and Huicholes), and Brazil (Tupiniquins and Guaranis). See 
Table S1 for details. (b) UCSC Genome Browser visualization of 30,009 bp of PDE4B (GRCh37/hg19 -  chr1:66745279– 66775287). Browser 
comprises (see Supplementary Material for details): three tracks of histone marks (H3K4Me1 [i], H3K4Me3 [ii], and H3K27Ac [iii]) for 
the lymphoblastoid GM12878 (pink) and myelogenous leukemia K562 (purple) cell lines; two tracks with results of modeling the presence 
of chromatin marks for GM12878 (iv) and K562 (v) cells (ChromHMM -  red: promoter, orange: strong enhancer, yellow: weak enhancer, 
dark- green: transcriptional transition/elongation, light- green: weak transcribed); and two tracks of (vi) cis-  (DNaseI Hypersensitivity 
Clusters) and (vii) transregulatory elements (Transcription Factor ChIP- seq Clusters). (c) Linkage disequilibrium between variants in 
Peruvian populations of the Whole Genome Sequencing database (Machiguengas, Choppcas, Matzes, Moches, and Uros, considered as a 
unique population, n = 102 individuals), including the PDE4B- rs6683977, and other ALL- relapse and PDE4B expression markers sorted 
by their chromosome positions: rs12142375, rs6668516, rs546784, rs6683604, rs12137080, rs524770, rs12137115, rs495477, rs494735, 
rs6683977, rs638111, and rs641262. Gray scale denotes r2 between SNPs (black: r2 = 1). Table S1 shows results from other databases, 
confirming that SNPs rs546784 and rs641262 are included in another dataset including other individuals and Native American populations 
(the Targetseq Dataset), where rs546784 and rs641262 are also in high LD (r2 > 0.80) with rs6683977. 1000GP, 1000 Genome Project; ALL, 
acute lymphoblastic leukemia; ENCODE, Encyclopedia of DNA Elements; SNP, single- nucleotide polymorphism; WGS, whole- genome 
sequencing
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