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ABSTRACT

Picornaviruses constitute a large group of viruses
comprising medically and economically important
pathogens such as poliovirus, coxsackievirus,
rhinovirus, enterovirus 71 and foot-and-mouth
disease virus. A unique characteristic of these
viruses is the use of a viral peptide (VPg) as primer
for viral RNA synthesis. As a consequence, all newly
formed viral RNA molecules possess a covalently
linked VPg peptide. It is known that VPg is
enzymatically released from the incoming viral
RNA by a host protein, called TDP2, but it is still
unclear whether the release of VPg is necessary to
initiate RNA translation. To study the possible
requirement of VPg release for RNA translation, we
developed a novel method to modify the genomic
viral RNA with VPg linked via a ‘non-cleavable’
bond. We coupled an azide-modified VPg peptide
to an RNA primer harboring a cyclooctyne
[bicyclo[6.1.0]nonyne (BCN)] by a copper-free
‘click’ reaction, leading to a VPg-triazole-RNA
construct that was ‘non-cleavable’ by TDP2. We
successfully ligated the VPg-RNA complex to
the viral genomic RNA, directed by base pairing.
We show that the lack of VPg unlinkase does not
influence RNA translation or replication. Thus, the

release of the VPg from the incoming viral RNA is
not a prerequisite for RNA translation or replication.

INTRODUCTION

Picornaviruses constitute a large group of small non-
enveloped RNA viruses including many important human
and animal pathogens like poliovirus (PV), coxsackievirus,
rhinovirus, enterovirus 71 and foot-and-mouth disease
virus. These viruses possess a single-stranded RNA
genome of positive polarity ranging from 7.0 to 8.5 kb in
length. The genome consists of a single open reading frame
flanked by two highly structured untranslated regions
(UTRs). The 50 UTR contains the internal ribosomal entry
site essential for viral RNA translation (1–3). Additionally,
at the ultimate 50 terminus another element—the cloverleaf
(CL) structure—is present, which is involved in both viral
RNA translation and replication (4–8).
A unique feature of picornaviruses is the presence of

a small virally encoded peptide, VPg (also known as
3B), at the 50 terminus of the genomic RNA (9–11). This
peptide plays a key role in the RNA replication process.
Once VPg is released from the viral polyprotein by the
3Cpro proteinase (12), the tyrosine residue at position 3
of VPg is uridylylated by the 3D viral polymerase
(13,14). The resulting VPg-pUpU then serves as a primer
for both negative-sense as well as positive-sense RNA
transcription (15). As a consequence, all newly transcribed
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RNA copies contain VPg attached via a covalent
phosphodiester bond (9–11).
Soon after the discovery that picornavirus virion RNA

contained covalently linked VPg, viral RNA molecules
lacking VPg were detected in infected cells (15–17). Thus,
VPg seems to be released from the virion RNA early in
the viral replication cycle. This so-called ‘unlinkase’
activity was also identified in lysates from uninfected cells
(18–20), suggesting that a host enzyme is responsible for
the unlinkase event. Recently, the 50-tyrosyl-DNA
phosphodiesterase-2 (TDP2) enzyme was identified as the
long-sought ‘unlinkase’ enzyme (21).
The function of VPg release from the genomic viral

RNA, if any, is still unknown. Clearly, VPg is not essential
for the translation of incoming viral RNA because protein-
ase K treatment of genomic viral RNA, thereby truncating
the VPg peptide, did not affect translation efficiency
(16,22). Moreover, in vitro transcribed RNA, consequently
lacking VPg, is translated and replicated efficiently.
Because VPg is released from the viral RNA on introduc-
tion in the cytoplasm, it has been suggested that the
presence of the VPg may hamper the formation of the
translation initiation complex (15,16,23). In line with this
hypothesis, analysis of viral RNA molecules that
associated with ribosomes in infected cells lacked VPg
(16,17), although in another study, it was demonstrated
that VPg-containing RNA was able to form complexes
with ribosomes (24). Therefore, it remains unclear
whether the release of VPg from the viral genomic RNA
is a prerequisite for translation and/or RNA replication.
It is technically challenging to modify the 50 terminus of

large RNA molecules. Here, we describe a new method-
ology to decorate the 50 terminus of the genomic viral
RNA with several different modifications. Using this
methodology, we show that small modifications at the 50

terminus do not affect RNA translation and replication.
Moreover, we generated viral RNA containing VPg linked
via a ‘non-cleavable’ bond. We show that this RNA is
efficiently translated and replicated, suggesting that VPg
unlinkase is not required for these processes.

MATERIALS AND METHODS

Cells and infectious clones

HeLa R19 cells were maintained in Dulbecco’s modified
Eagle’s medium supplemented with 10% fetal calf serum,
penicillin (10U/ml) and streptomycin (10mg/ml). The
coxsackievirus strain B3 (CVB3) infectious clone
encoding the Renilla luciferase (RLuc) gene under control
of the viral internal ribosomal entry site [RLuc-CVB3, (25)]
was used as a template for site-directed mutagenesis
(Stratagene). First, the coding sequence of the first 6 nt of
the CL structure was deleted (forward [Fw]: 50-TAATACG
ACTCACTATAGG/CAGCCTGTGGGTTGATC-30 and
reverse [Rv]: 50-GATCAACCCACAGGCTG/CCTATAG
TGAGTCGTATTA-30). The deletion was confirmed by
sequence analysis, and the resulting construct was used for
another site-directedmutagenesis to introduce either an 8-nt
insertion (underlined) to yield the RLuc-CVB3-�1-6+8 in-
fectious clone (Fw: 50-CTTTGTGCGCCTGTTTTAGCGG

TGGATACCCCCTCCCCCA-30 and Rv: 50-TGGGGGA
GGGGGTATCCACCGCTAAAACAGGCGCACAAAG
-30) or a 5-nt insertion (underlined) yielding the RLuc-
CVB3-�1-6+5 infectious clone (Fw: 50-CGGTACCTT
TGTGCGCCTGCCCTGTTTTATACCCCCTCCCCCAA
C-30 and Rv: 50-GTTGGGGGAGGGGGTATAAAACAG
GGCAGGCGCACAAAGGTACCG-30).Again, thecorrect
insertion was confirmed by sequencing.

RNA primers

Unmodified RNA primers, containing a 50-terminal
hydroxyl (OH) group, as well as RNA primers possessing
a 50 biotin, amine or Cy5 modification, were purchased
from Sigma. The RNA primer modified with
bicyclo[6.1.0]nonyne (BCN) (26,27) was synthesized by
IBA using a BCN-phosphoramidite building block from
B&A. Synthesis of the three RNA primers containing a
partial VPg peptide linked via; the natural tyrosine
phosphodiester bond—GH[5], H-Gly-Ala-Tyr-Thr-Gly-
NH2; GH[9], Ac-Gly-Ala-Tyr-Thr-Gly-NH2; and
GH[11], Ac-Ala-Tyr-OH—has been described (28).

RNA transcription and RNA primer ligation

The 250-nt RNA fragment used for RNA ligations was
produced by run-off RNA transcription using the T7
RiboMAX kit (Promega) for 2 h at 37�C. As template, a
250-bp PCR product was used (Fw: 50-TAATACGACTC
ACTATAGG-30 and Rv: 50-GTAGTTGGCCGGATAA
CGAACG-30) spanning the 50-end of the RLuc-CVB3-
CL�1-6+8 genome containing a T7 promoter sequence.
For transcription of genomic RLuc-CVB3 wild-type (wt)
RNA, RLuc-CVB3-�1-6+8 RNA and RLuc-CVB3-�1-
6+5 RNA, the infectious clone was linearized with
BamHI, and run-off RNA transcripts were made using
the T7 RiboMAX kit (Promega) for 2 h at 37�C. RNA
transcripts were purified and concentrated using LiCl pre-
cipitation (Ambion) followed by polyphosphatase treat-
ment (Epicentre) for 2 h at 37�C. Finally, the RNA was
purified once more using LiCl precipitation (Ambion) and
used for RNA ligations.

For RNA primer ligation, 200 pmol of the 12-nt RNA
primers (50-UUCCACCGCUAA-30) or 9-nt RNA primers
(50-UUAAAACAG-30) was incubated with 20-pmol
genomic RNA in the presence of 20 U of RNA ligase 2
(NEB) for 4 h at 37�C (total volume 50 ml). Excess RNA
primer was washed away using a GenElute Mammalian
total RNA miniprep column (Sigma). To assess RNA
primer ligation efficiency, a 250-nt RNA fragment was
released from 1.25 pmol of genomic RNA ligation
product using DNA primer-directed RNase H digestion
(10-ml volume). RNA was incubated with 12.5 pmol of
DNA primer (50-GTAGTTGGCCGATAACGAACG-30)
and 5 U of RNase H (Fermentas) for 20min at 50�C. The
released RNA fragment was analyzed on an 8-M urea, 8%
polyacrylamide gel electrophoresis (PAGE) gel and
stained with Stains-All (Sigma).

RNA translation and replication assay

To determine RLuc translation levels, 100 ng of genomic
RLuc-CVB3 run-off transcript RNA (wt) or RNA
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ligation product were transfected (in triplicate) into
100 000 HeLa cells using Lipofectamine2000 (Invitrogen)
in the presence of 2.5mM GuHCl. Cells were lysed in
passive lysis buffer (Promega) 8 h post-transfection, and
RLuc values were measured using the Renilla luciferase
assay system according to manufacturer’s instructions
(Promega).

To measure RNA replication, 1 ng of genomic RLuc-
CVB3 run-off transcript RNA (wt) or RNA ligation
product were transfected (in triplicate) into 100 000
HeLa cells using Lipofectamine2000 (Invitrogen) in the
presence or absence of 2.5mM GuHCl. Cells were lysed
in passive lysis buffer (Promega) 8 h post-transfection, and
RLuc values were measured using the Renilla luciferase
assay system (Promega). The increase of RLuc values in
the absence of replication inhibitor GuHCl illustrates
RNA replication.

RNA stability assay

To determine RNA stability, 100 ng of genomic RLuc-
CVB3 run-off transcript RNA (wt) or RNA ligation
product were transfected (in triplicate) into 100 000
HeLa cells using Lipofectamine2000 (Invitrogen) in the
presence of 2.5mM GuHCl. At 1, 4 and 8 h post-transfec-
tion, total RNA was isolated using the GenElute mamma-
lian total RNA miniprep kit (Sigma-Aldrich). Isolated
RNA was treated with DNAse I (Invitrogen) before
reverse transcription. cDNA synthesis was performed
with the TaqMan reverse transcription reagents kit
(Applied Biosystems) using random hexamer primers.
Quantitative analysis of viral RNA levels was performed
using the LightCycler 480 (Roche).

Strain-promoted alkyne–azide cycloaddition reaction

To couple the VPg peptide to the BCN-containing RNA
primer, a strain-promoted alkyne–azide cycloaddition
(SPAAC) was used. Azide-modified CVB3 VPg (H-Gly-
Ala-X-Thr-Gly-Val-Pro-Asn-Gln-Lys-Pro-Arg-Val-Pro-
Thr-Leu-Arg-Gln-Ala-Lys-Val-Gln-OH) and poliovirus
VPg (PV; H-Gly-Ala-X-Thr-Gly-Leu-Pro-Asn-Lys-Lys-
Pro-Asn-Val-Pro-Thr-Ile-Arg-Thr-Ala-Lys-Val-Gln-OH)
were synthesized by ALMAC (X= g-azidohomoalanine
residue), and a 100-fold excess of VPg (225 nmol) was
incubated with 2.25 nmol of BCN group containing
RNA primer (IBA) in a total volume of 50 ml of phos-
phate-buffered saline for 1 h at room temperature.
Coupling efficiency of the peptides to BCN was
determined by 8-M urea, 20% PAGE gel analyses and
stained with Stains-All (Sigma). VPg-containing RNA
primers were used for RNA ligation reactions.

Dot blot analysis VPg-containing genomic RNA

Equimolar amounts (5, 0.5 and 0.05 pmol) of VPg peptides
and VPg-containing RNA ligation products were spotted
on an Immobilon-P membrane (Millipore). Membranes
were washed once with washing buffer (PBS+0.1%
Tween20) and incubated 1 h in blocking buffer (PBS+
0.1% Tween20+5% bovine serum albumin). Membranes
were successively incubated for 1 h with a rabbit polyclonal
antibody (1:500) raised against the PV VPg (29) followed

by 30-min incubation with goat-anti-rabbit-HRPO conju-
gate (BIO-RAD, 1:10 000) diluted in blocking buffer.
In between and after the incubations, the membranes
were washed, thrice each time, with washing buffer.
Finally, membranes were washed once with PBS, incubated
with ECL (Amersham) and scanned using the Odyssey
Imager (LI-COR).

VPg unlinkase assay

The VPg unlinkase reaction was essentially performed as
described before (21,30) with slight modifications. As
positive control, viral RNA isolated from PV virions
was used (wt vRNA, gift from Wilfried Bakker). For the
unlinkase reaction, 2 pmol of RNA was incubated in 50 ml
of unlinkase buffer (20mM Tris–HCl, pH 7.5, 2mM
MgCl2, 1mM dithiothreitol, 5% v/v glycerol) in the
presence or absence of 1 pmol of GST-TDP2 enzyme.
Unlinkase reactions were performed for 30min at 30�C,
and treated RNA was purified over a GenElute
Mammalian total RNA miniprep column (Sigma).
Purified RNA was used for dot blot analysis, and VPg
was detected using an antibody raised against the PV
VPg (as described earlier). Signal intensity was quantified
using the supplied Image Studio Software of LI-COR.

RNA translation assay in rabbit reticulocyte lysate and
HeLa S10 extracts

Rabbit reticulocyte lysate (RRL) from Promega was used
for in vitro translation. RRL mixtures (in triplicate) were
pre-incubated at 30�C for 5min, and RNA (1 ng/ml final
concentration) was added. Reactions were incubated for
30min at 30�C, translation was stopped by adding a 10-
fold excess of H2O, and the RLuc values were measured
using the Renilla luciferase assay system (Promega).
Translation in HeLa S10 extract was performed as

previously described (31–33). RNA (0.1 ng/ml final concen-
tration) was added to HeLa S10 extract in triplicate and
incubated 30min at 34�C. Adding a 10-fold excess of H2O
stopped the translation reaction, and the RLuc values
were measured using the Renilla luciferase assay system
(Promega).

RESULTS

Use of the CL structure allows efficient ligation of
50-modified RNA primers to RLuc-CVB3 genomic RNA

To investigate the importance of VPg unlinkase for viral
RNA translation and replication, we made use of an
infectious clone of CVB3 containing Renilla luciferase
upstream of the capsid region (RLuc-CVB3) (25). Initial
attempts to modify the 50 terminus of the RLuc-CVB3
genomic RNA via ligation of a modified RNA primer
were unsuccessful (data not shown). This was most
likely the result of low ligation efficiency. To optimize
RNA primer ligation, we took advantage of stem A of
the CL structure (Figure 1A) for base pairing-directed
primer ligation. To this end, we generated an RLuc-
CVB3 infectious clone to transcribe RNA containing a
mutated CL lacking the first 6 nt in the 50 strand and
containing an insertion of 8 nt in the 30 strand of stem A
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(CL�1-6+8, Figure 1A). This RNA should allow anneal-
ing of a 12-nt RNA primer with sequence complementary
to the 30 strand (Figure 1A).
To validate this base pairing-directed RNA primer

ligation procedure, an unmodified 12-nt RNA primer was
ligated to a 250-nt RNA fragment harboring the CL�1-
6+8-modified CL structure. For this RNA ligation
reaction, two different enzymes were tested, and ligation
efficiency was visualized by separating the RNA liga-
tion products by polyacrylamide gel electrophoresis
in the presence of urea (urea-PAGE). As shown in
Figure 1B, >50% of the 250-nt RNA fragment was
modified with the RNA primer using RNA ligase 1. Yet,

using RNA ligase 2, which has a preference for dsRNA
substrates, allowed ligation efficiency near 100%
(Figure 1B). Thus, the annealing of the RNA primer to
the CL�1-6+8 modified CL structure, in combination
with the RNA ligase 2 enzyme, significantly increased
ligation efficiency as compared with the standard RNA
ligation protocol. This new procedure now allows the
modification of the RLuc-CVB3 genomic RNA.

To modify the 50 terminus of the full-length RLuc-
CVB3 genomic RNA, several 12-nt RNA primers contain-
ing different 50 termini (R=OH, biotin, amine or Cy5)
were ligated to the genomic RLuc-CVB3-CL�1-6+8
RNA. Because the RLuc-CVB3 genomic RNA is too

Figure 1. Base pairing-directed RNA primer ligation to RLuc-CVB3-CL�1�6+8 genomic RNA. (A) Schematic representation of the wt and the
CL�1� 6+8-modified CL structure. The 8-nt insertion in the 30 strand of stem A is indicated in gray. Note that T7 RNA polymerase-transcribed
RNA contains two additional guanine nucleotides (italic), which form a wobble base pair with uracil nucleotides of the 30 strand of stem A in the
�1� 6+8-modified CL structure. The 12-nt RNA primer used for base pairing-directed RNA ligation is depicted in light gray, and ‘R’ represents the
different 50 modifications. (B) Urea–PAGE analysis of an RNA primer ligation to a 250-nt RNA fragment possessing the �1�6+8-mutated CL
structure. RNA primer was ligated using either RNA Ligase 1 or RNA Ligase 2. Clearly, the RNA Ligase 2 was more efficient in ligating the RNA
primer to the modified CL�1�6+8 structure. (C) RNA primer ligation efficiency to genomic RNA possessing the CL�1�6+8 structure was
determined by urea–PAGE analysis of a 250-nt RNase H-digested 50-terminal fragment. Note that ligation of the RNA primer reduces migration
speed of the 250-nt RNase H-digested RNA fragment. (D) Translation of the incoming genomic RLuc-CVB3 RNA (wt), RNA holding the mutated
CL (�1�6+8) and RNA ligation products with different 50 modifications (OH, amine, biotin, Cy5) were determined by transfection of RNA in
HeLa cells in the presence of GuHCl. Eight hours post-transfection, HeLa cells were lysed and RLuc values were determined. Data from a
representative experiment are presented as the mean of duplicate ±SD and analyzed using unpaired t-test (** indicates significant difference
P< 0.01). (E) Stability of RLuc-CVB3 RNA (wt), the mutated CL (�1�6+8) and RNA ligation product possessing a 50 hydroxyl group (OH)
was followed over time. RNA was transfected into HeLa cells. At 1, 4 and 8 h post-transfection, cells were lysed and intracellular viral RNA level
was analyzed using RT-qPCR. Relative RNA levels are shown in percentages compared with RLuc-CVB3 RNA (wt) at T=1h. (F) RNA replication
of the transfected RNA was determined by comparing the RLuc values in the presence of GuHCl inhibitor (+GuHCl) and in the absence of the
inhibitor (-GuHCl). Note that the extended stem of the CL�1-6+8 structure hampered RNA replication. Data from a representative experiment are
presented as the mean of duplicate ±SD.
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large (>7500 nt) to allow differentiation of a 12-nt modi-
fication on a urea-PAGE gel, a 250-nt RNA fragment was
released from the genomic RNA using DNA primer-
directed RNase H digestion. Analysis of these 250-nt frag-
ments showed efficient ligation of all different RNA
primers to the genomic RLuc-CVB3 genomic RNA
(Figure 1C). In conclusion, using the CL�1-6+8-
modified CL structure, we were able to ligate 12-nt
RNA primers to the genomic RNA and thereby
introducing different modifications to the 50 terminus.

Small modifications at the 50 terminus of genomic RNA
do not affect translation

To determine whether the different RNA modifications
affect translation, an RLuc-translation assay was per-
formed. To ensure that we only measured translation of
the incoming RNA, the RNA ligation products were
transfected into HeLa cells in the presence of the replica-
tion inhibitor guanidine hydrochloride (+GuHCl) to pre-
vent RNA replication. Modification of the CL structure
(CL�1-6+8) hampered RLuc translation significantly
(Figure 1D). Restoring the CL structure by RNA primer
ligation returned RLuc translation to levels similar to
those of wt RNA, which suggests that an intact CL stem
A is essential for efficient protein translation. The differ-
ences in RLuc translation levels were not attributed to
changes in RNA stability as result of the mutated CL
structure, as intracellular RNA levels were comparable
over time (Figure 1E). Importantly, none of the 50 modi-
fications (biotin, amine or Cy5) affected RLuc translation
as compared with RNA lacking a 50 modification (OH) or
the wt RNA, which possesses two additional guanine
nucleotides and a triphosphate 50 terminus (Figure 1D).
Notably, the biotin, amine and Cy5 modifications are not
linked via a phosphodiester bond to the RNA and are
therefore not released by the TDP2 enzyme. Thus, small
modifications at the 50 terminus of the genomic RNA do
not affect translation initiation.

To investigate whether modifications at the 50 terminus
of the genomic RNA influence replication, RNA ligation
products were transfected in HeLa cells but this time
also in the absence of GuHCl (�GuHCl). This allows
translation and also replication of the RNA, which can
be measured by an increase in RLuc values. When wt
RLuc-CVB3 RNA was transfected in HeLa cells without
any drug addition, increased RLuc values were measured
(see wt, Figure 1F). Unfortunately, the RNA ligation
products that possessed the 8-nt extension of stem A
(OH) failed to replicate (Figure 1F), thereby precluding
the analysis of 50-terminal modifications on RNA
replication.

Small modifications at the 50 terminus of RLuc-CVB3
RNA do not affect translation and replication

To allow the analysis of 50 modifications of genomic
RLuc-CVB3 RNA on both translation as well as replica-
tion, a new infectious clone was generated. This new
clone holds the same deletion of 6 nt in the 50 strand of
stem A but now possesses only a 5-nt insertion in the 30

strand of stem A (CL�1-6+5, Figure 2A). This new

mutated CL structure allowed the ligation of 9-nt RNA
primers (Figure 2A) devoid of any 50 modification (OH) or
a bicyclo[6.1.0]nonyne (BCN) group (26). Additionally,
we also used three RNA primers holding a partial VPg
peptide linked via the natural phosphodiester bond
[GH(5), GH(9) and GH(11)] (28). Again the RNA
primer ligation was very efficient (Figure 2B).
When the RNA ligation products were used for an

RLuc translation assay in HeLa cells, mutation of the
CL structure (CL�1-6+5) again showed a slight, but
significant, effect on RLuc translation (Figure 2C). As
observed before, repair of the CL structure by RNA
primer ligation restored RLuc translation back to levels
similar as wt (Figure 2C). Interestingly, in contrast to the
CL+8 modified stem (Figure 1F), the smaller extension of
stem A did not affect replication of the genomic RNA
(Figure 2D). Note that the RNA ligation products con-
taining the partial VPg peptides [GH(5), GH(9) and
GH(11)] are linked via the natural phosphodiester bond
and therefore should be released by the TDP2 enzyme. On
the contrary, the bond between the RNA and the BCN
group is not a known substrate for TDP2. Nonetheless,
this BCN-containing RNA was still efficiently translated
and replicated with similar efficiency as wt RNA
(Figure. 2C and D). Thus, small modifications, like a
BCN group, at the 50 terminus of genomic RNA do not
affect translation or replication.

Coupling of VPg via a ‘non-cleavable’ bond to the
genomic RNA via SPAAC and RNA ligation

BCN is a reactive cyclic alkyne that can be used to link
azide-containing molecules via a SPAAC, also called
copper-free ‘click’ reaction (Figure 3A) (26,34,35). To
this end, we ordered azide-containing VPg peptides from
both CVB3 and PV where the tyrosine at position 3
was replaced by a g-azidohomoalanine residue. The
BCN-containing RNA primer was efficiently coupled to
the VPg peptides by SPAAC, resulting in a slower
migrating RNA fragment following urea-PAGE analysis
(Figure 3B). The resulting triazole bond is larger than the
natural phosphodiester bond (Figure 3C) and should be
‘non-cleavable’ by the TDP2 enzyme. The RNA primers
containing VPg linked via a ‘non-cleavable’ bond were
successfully ligated to the CL�1-6+5 genomic RNA
(Figure 3D), and the presence of VPg on the genomic
RNA was further confirmed by dot blot analysis.
Equimolar amounts of VPg-containing genomic RNA
and VPg peptides were spotted on a membrane and a
PV-VPg antibody (29) bound to these samples with a
similar efficiency (Figure 3E), suggesting that the
majority of RNA contained VPg. To confirm that the un-
natural triazole bond between VPg and the genomic RNA
is ‘non-cleavable’ by the TDP2 enzyme, RNA ligation
product containing PV VPg and an equimolar amount
of viral RNA isolated from PV virions, hence possessing
VPg via a natural phosphodiester bond, was treated with
the TDP2 enzyme (21,30). As shown in Figure 3F, only
VPg linked via the natural phosphodiester bond
(wt vRNA) was released from the genomic RNA, while
the BCN-VPg bond (PV VPg) was unaffected. Taken
together, we were able to attach VPg to genomic viral
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RNA via a SPAAC reaction, which is ‘non-cleavable’ by
the TDP2 enzyme.

The ‘non-cleavable’ bond does not interfere with protein
translation or RNA replication

Using the genomic RNA possessing VPg via a ‘non-cleav-
able’ bond, we were able to study the prerequisite of VPg
unlinkase for translation of the incoming RNA and
successive RNA replication. RNA ligation products were
subjected to the RLuc translation assay in HeLa cells. As
observed before, ligation of the BCN-modified RNA
primer to the CL�1-6+5 genomic RNA resulted in
similar translation levels as RNA lacking a 50 modification
(OH) and the wt RNA (Figure 4A). Importantly, also
RNA modified with VPg via a ‘non-cleavable’ bond
showed efficient RLuc translation. Therefore, it seems
that, at least in this assay system, the inability to release
VPg from the genomic RNA did not affect RNA transla-
tion. To confirm these results, alternative translation
systems such as the HeLa S10 extract (31,32) and rabbit
reticulocyte extracts (24,33,36) were also tested. In the
rabbit reticulocyte extracts (Figure 4B) as well as HeLa
S10 extracts (Figure 4C), the inability to release VPg from
the genomic RLuc-RNA did not affect RLuc translation

levels. Thus, VPg release from the genomic RNA is
dispensable for translation of the incoming viral RNA.

To test whether the inability to release VPg interfered
with RNA replication, an RNA replication assay was
performed in the presence and absence of GuHCl. Also,
in this replication assay, the ‘non-cleavable’ VPg bond
did not negatively influence the RNA replication levels
(Figure 4D). These data combined suggest that the
release of VPg from the genomic RNA is not a prerequis-
ite for RNA translation and replication.

DISCUSSION

Over 35 years ago, the discovery was made that genomic
RNA of picornaviruses possessed a covalently linked VPg
peptide. Soon after this discovery, it was recognized that
VPg is released from the incoming genomic RNA by a
cellular enzyme. The importance of VPg unlinkase for
efficient translation and/or replication has remained
unknown ever since. It has been technically difficult to
study the possible importance of VPg unlinkase because
modification of the 50 terminus of large RNA molecules,
like the picornavirus genomic RNA, has proven to be
challenging. Here we present a novel method to covalently

Figure 2. Base pairing-directed RNA primer ligation to RLuc-CVB3-CL�1�6+5 genomic RNA. (A) Schematic representation of the CL�1�6+5-
modified CL structure. The 5-nt insertion in the 30 strand of stem A is indicated in gray. Note that T7 RNA polymerase-transcribed RNA contains
two additional guanine nucleotides (italic), which form base pairs with cytosine nucleotides of the 30 strand of stem A. The 9-nt RNA primer used for
base pairing-directed RNA ligation is depicted in light gray, and ‘R’ represents the different 50 modifications. (B) RNA primer ligation efficiency to
genomic RNA possessing the CL�1�6+5 structure was determined by urea–PAGE analysis of a 250-nt RNase H-digested 50-terminal fragment.
Note that ligation of the RNA primer reduces migration speed of the 250-nt RNase H-digested RNA fragment. (C) Translation of incoming genomic
RLuc-CVB3 RNA (wt), RNA holding the mutated CL (�1�6+5) and RNA ligation products possessing different 50 modifications (OH, BCN,
GH[5], GH[9], GH[11]) were determined by transfection of RNA in HeLa cells in the presence of GuHCl. Eight hours post-transfection, HeLa cells
were lysed and RLuc values were determined. Data from a representative experiment are presented as the mean of duplicate ±SD and analyzed
using unpaired t-test (* indicates significant difference P< 0.05). (D) RNA replication of the transfected RNA was determined by comparing the
RLuc values in the presence of GuHCl inhibitor (+GuHCl) and in the absence of the inhibitor (� GuHCl). Data from a representative experiment
are presented as the mean of duplicate ±SD. Note that the modification of the CL structure (�1�6+5) hampered RNA replication. However,
reconstituting the stem by RNA primer ligation restored RNA replication again.
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derivatize the 50 terminus of large RNA molecules with a
diverse set of modifications. We exploited the highly
folded CL structure in the 50 UTR to allow base pairing-
directed ligation of modified RNA primers. Combining
this RNA ligation method with the new ‘click’ chemistry
principle, we were able to modify the large genomic RNA
with VPg via a ‘non-cleavable’ bond. Using these modified
genomic RNA molecules in a series of translation and
replication assays, we show that the inability to release
VPg from the incoming viral RNA does not affect trans-
lation and replication efficiency.

For the ‘click’ reaction, we used a novel ring-strained
alkyne, the BCN group (26). The main advantage of BCN

over the other common cyclooctynes like DIBO, DIBAC
or BARAC is the rather small size, the straightforward
synthesis protocol and low lipophilicity (26). BCN
reacted efficiently with the azide-modified VPg, and the
resulting triazole-containing linkage between VPg and
the genomic RNA, although somewhat longer, mimics
the natural tyrosine phosphodiester structure (Figure 3C).
In contrast to the viral RNA isolated from virions,

the ‘clicked’ VPg was not released from the RNA by the
TDP2 enzyme in the in vitro unlinkase assay (Figure 3F).
Most likely, the absence of the aromatic ring adjacent
to the phosphodiester bond, which plays an important
role in ligand recognition by TDP2 (37–39), results in

Figure 3. Modification of the 50 terminus of picornavirus genomic RNA with VPg linked via a ‘non-cleavable’ bond. (A) Schematic representation of
the SPAAC ‘click’ reaction that was used to couple the VPg peptides to the RNA primer (B) SPAAC ‘click’ reaction efficiency was determined by
urea–PAGE analysis. The unmodified RNA primer (OH) and the BCN-modified RNA primer (BCN) migrated faster than the VPg-containing BCN
primers (CVB3 VPg and PV VPg). (C) Structure of VPg-RNA linked either by the natural tyrosine phosphodiester bond or the triazole linkage.
Arrow indicates the unlinkase site of the TDP2 enzyme. (D) RNA primer ligation efficiency to genomic RLuc-CVB3-�1-6+5 RNA was determined
by urea–PAGE analysis of a 250-nt RNase H-digested 50-terminal fragment. Note that ligation of the RNA primer reduces migration speed,
especially in the case of the RNA primers containing VPg (CVB3 VPg and PV VPg). (E) The presence of VPg was determined by dot blot
analysis. Equimolar amounts of the VPg peptide and RNA possessing VPg via a ‘non-cleavable’ bond were spotted on a membrane, and VPg
presence was detected by a polyclonal antibody (29). Note that CVB3 VPg is less reactive than PV VPg as the antibody is raised against the PV VPg.
Importantly, the signals of the peptides correlated with the signal intensities from the RNA ligation products possessing VPg. (F) Unlinkase reaction
using recombinant TDP2 was performed using the RNA ligation product containing the unmodified RNA primer (OH), the PV VPg peptide (PV
VPg) linked via a ‘non-cleavable’ bond and genomic RNA isolated from PV virions (wt vRNA). Values were corrected for background signal (OH),
and mean of two independent experiments are shown ±SD and analyzed using unpaired t-test (* indicates significant difference P< 0.05). Note that
TDP2 treatment reduced only the signal from viral RNA isolated from virions (wt vRNA) and not from RNA modified with PV VPg linked via a
‘non-cleavable’ bond (PV VPg).
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the ‘non-cleavable’ linkage. However, as result of the low
sensitivity of the dot blot analysis, we were unable to
confirm the presence of VPg following transfection of
cells with modified genomic RNA. Therefore, it cannot
be ruled out that, for instance, cellular proteolytic
activity might cleave the VPg peptide, but not at the
triazole structure, which has been described to be ex-
tremely inert, as alkyne- and azide-containing molecules
are not typically found in biological molecules (26,34,35).
Recently, it has been shown that this triazole bond can
only be reversed via strong mechanical force induced by,
for instance, ultrasound (40). However, we performed our
translation and replication assays under native conditions,
and therefore the unnatural bond that is created between
the genomic RNA and VPg via the ‘click’ reaction will
most likely be retained after transfection of the RNA.
The presence of VPg linked via a ‘non-cleavable’ bond

at the 50 terminus of the genomic RNA did not affect
translation of the transfected RNA (Figure 4A–C). A
previous study already showed that VPg-containing
genomic RNA was able to associate with ribosomes
(24). However, because these authors performed their

assays under conditions that impaired translation, they
were unable to determine whether VPg-containing RNA
could be translated. Our study extends these data and
shows that the presence of VPg at the 50 terminus of the
genomic RNA does not impair translation as well as
replication. This important new piece of data conse-
quently argues against some of the original speculation
that the presence of VPg might prevent efficient transla-
tion of viral RNA, as discussed in (15,16,23). However, it
should be noted that the translation data presented in our
study were obtained after RNA transfection or in cell-free
extracts. It is possible that viral translation requirements
are different when picornavirus virion RNA is delivered to
the cell cytoplasm following uncoating of entering virus
particles.

If the presence of VPg is not affecting translation or rep-
lication of the incoming viral RNA, why is this peptide
released from the genomic RNA on introduction in the
cytoplasm? It has been suggested that VPg might play a
role in encapsidation of the genomic RNA in particles
(16,20,21), as virions only contain VPg-containing viral
RNA (15,41). Unlinkase of VPg from the viral RNA

Figure 4. VPg unlinking is not required for picornavirus RNA translation and replication. (A) Translation of the incoming genomic RLuc-CVB3
RNA (wt), RNA holding the mutated CL (�1� 6+5), RNA ligation products possessing a hydroxyl (OH) or a BCN group (BCN) at the 50-end,
and RNA holding VPg via a ‘non-cleavable’ bond (CVB3-VPg and PV-VPg) were determined by transfection of RNA in HeLa cells in the presence
of GuHCl. Eight hours post-transfection, HeLa cells were lysed and RLuc values were determined. Data from a representative experiment are
presented as the mean of triplicate ±SD and analyzed using unpaired t-test (* indicates significant difference P< 0.05). (B) Translation of the
incoming genomic RLuc-CVB3 RNA (wt), RNA holding the mutated CL (�1�6+5) and RNA ligation products in RRL System (Promega) and
(C) in HeLa S10 extracts. RLuc values were determined after 30min of incubation. Data from a representative experiment are presented as the mean
of triplicate ±SD and analyzed using unpaired t-test (* indicates significant difference P< 0.05, ns indicates no significant difference). As observed in
HeLa cells, the 50 modification did not affect translation efficiency. (D) RNA replication of the transfected RNA was determined by comparing the
amount of RLuc values in the presence of GuHCl inhibitor (+GuHCl) and in the absence of the inhibitor (�GuHCl). Data from a representative
experiment are presented as the mean of triplicate ±SD. Note that the modification of CL structure (�1� 6+5) hampered RNA replication.
However, reconstituting the stem by RNA primer ligation restored RNA replication. Importantly, neither modification at the 50 terminus affected
RNA replication.
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could mark the RNA exclusively for translation and repli-
cation. This suggestion is in line with the recent observation
that the TDP2 enzyme is relocated to cytoplasmic sites
distal to the viral RNA late in infection (21), which correl-
ates with the shift from RNA translation/replication to
RNA encapsidation. Thus, VPg release may mark viral
RNA for translation and replication, but this study
clearly shows that it is not required for these processes.
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