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Advanced imaging and DNA sequencing technologies now enable the diverse biology
community to routinely generate and analyze terabytes of high resolution biological data.
The community is rapidly heading toward the petascale in single investigator laboratory
settings. As evidence, the single NCBI SRA central DNA sequence repository contains
over 45 petabytes of biological data. Given the geometric growth of this and other
genomics repositories, an exabyte of mineable biological data is imminent. The
challenges of effectively utilizing these datasets are enormous as they are not only
large in the size but also stored in geographically distributed repositories in various
repositories such as National Center for Biotechnology Information (NCBI), DNA Data
Bank of Japan (DDBJ), European Bioinformatics Institute (EBI), and NASA’s GeneLab. In
this work, we first systematically point out the data-management challenges of the
genomics community. We then introduce Named Data Networking (NDN), a novel but
well-researched Internet architecture, is capable of solving these challenges at the network
layer. NDN performs all operations such as forwarding requests to data sources, content
discovery, access, and retrieval using content names (that are similar to traditional
filenames or filepaths) and eliminates the need for a location layer (the IP address) for
data management. Utilizing NDN for genomics workflows simplifies data discovery,
speeds up data retrieval using in-network caching of popular datasets, and allows the
community to create infrastructure that supports operations such as creating federation of
content repositories, retrieval from multiple sources, remote data subsetting, and others.
Named based operations also streamlines deployment and integration of workflows with
various cloud platforms. Our contributions in this work are as follows 1) we enumerate the
cyberinfrastructure challenges of the genomics community that NDN can alleviate, and 2)
we describe our efforts in applying NDN for a contemporary genomics workflow
(GEMmaker) and quantify the improvements. The preliminary evaluation shows a
sixfold speed up in data insertion into the workflow. 3) As a pilot, we have used an
NDN naming scheme (agreed upon by the community and discussed in Section 4) to
publish data from broadly used data repositories including the NCBI SRA. We have loaded
the NDN testbed with these pre-processed genomes that can be accessed over NDN and
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used by anyone interested in those datasets. Finally, we discuss our continued effort in
integrating NDN with cloud computing platforms, such as the Pacific Research Platform
(PRP). The reader should note that the goal of this paper is to introduce NDN to the
genomics community and discuss NDN’s properties that can benefit the genomics
community. We do not present an extensive performance evaluation of NDN—we are
working on extending and evaluating our pilot deployment and will present systematic
results in a future work.

Keywords: genomics data, genomics workflows, large science data, cloud computing, named data networking

1 INTRODUCTION

Scientific communities are entering a new era of exploration and
discovery in many fields driven by high-density data
accumulation. A few examples are Climate Science (Cinquini
et al., 2014), High Energy Particle physics (HEP) (Aad et al.,
2008), Astrophysics (Dewdney et al., 2009; LSST Dark Energy
Science Collaboration, 2012), Genomics (Sayers et al., 2020),
Seismology (Tsuchiya et al., 2012), Biomedical research (Luo
et al., 2016), just to name a few. Often referred to as “data-
intensive” science, these communities utilize and generate very
large volumes of data, often reaching into Petabytes (Shannigrahi
et al., 2018b) and soon projected to reach into Exabytes.

Data-intensive science has created radically new
opportunities. Take for example high-throughput DNA
Sequencing (HTDS). Until the very recent years, HTDS was
slow, expensive, and only a few institutes were capable of
performing it at scale (McCombie et al., 2019). With the
advances in supercomputers, specialized DNA sequencers, and
better bioinformatics algorithms, the effectiveness and cost of
sequencing has dropped considerably and continues to drop. For
example, sequencing the first reference human genome cost
around $2.7 Billion over 15 years, and currently, it costs under
$1,000 to resequence a human genome (Genome.gov, 2020).
With commercial incentives, several companies are offering
fragmented genome re-sequencing under $100, performed in
only a few days. This massive drop in cost and improvement
in speed supports more advanced scientific discovery. For
example, earlier scientists could only test their hypothesis on a
small number of genomes or gene expression conditions within
or between species. With more publicly available datasets (Sayers
et al., 2020), scientists can test their hypothesis against a larger
number of genomes, potentially enabling them to identify rare
mutations, precisely classify diseases based on a specific patient,
and thus more accurately treat the disease (Lowy-Gallego et al.,
2019).

While the growth of DNA sequencing is very encouraging, it
has also created difficulty in genomics data management. For
example, the National Center for Biotechnology Information’s
(NCBI) Sequence Read Archive (SRA) database hosts
42 Petabytes of publicly accessible DNA sequence data (NCBI,
2019). Scientists desiring to use public data must discover (or
locate) the data and move it from globally distributed sites to on-
premize clusters and distributed computing platforms, including
public and commercial clouds. Public repositories such as the

NCBI SRA contain a subset of all available genomics data
(Stephens et al., 2015). Similar repositories are hosted by
NASA, NIH, and other organizations. Even though these
datasets are highly curated, each public repository uses their
own standards for data naming, retrieval, and discovery that
makes locating and utilizing these datasets difficult.

Moreover, data management problems require the community
to build and the scientists to spend time learning complex
infrastructures (e.g., cloud platforms, grids) and creating tools,
scripts, and workflows that can (semi)- automate their research.
The current trend of moving from localized institutional storage
and computing to an on-demand cloud computing model adds
another layer of complexity to the workflows. The next
generation of scientific breakthroughs may require massive
data, thus, our ability to manage, distribute, and utilize
extreme-scale datasets and securely integrate them with
computational platforms may dictate our success (or failure)
in future scientific research.

Our experience in designing and deploying protocols for big-
science (Olschanowsky et al., 2014; Fan et al., 2015; Shannigrahi
et al., 2015; Shannigrahi et al., 2017; Shannigrahi et al., 2018a;
Shannigrahi et al., 2018b) suggests that 1) using hierarchical and
community-developed names for storing, discovering, and
accessing data can dramatically simplify scientific data
management systems; 2) the network is the ideal place for
integrating domain workflows with distributed services. In this
work, we propose a named ecosystem over an evolving but well-
researched future Internet architecture, Named Data Networking
(NDN). NDN utilizes content names for all data management
operations such as content addressing, content discovery, and
retrieval. Utilizing content names for all network operations
massively simplifying data management infrastructure. Users
simply ask for the content by name (one such name might
look like “/ncbi/homo/sapiens/hg38”) and the network delivers
the content to the user.

Using content names that are understood by the end-user over
an NDN network provides multiple advantages: natural caching
of popular content near the users, unified access mechanisms, and
location-agnostic publication of data and services. For example, a
dataset properly named can be downloaded by, for example,
NCBI or GeneLab at NASA, whichever is closer to the researcher.
Additionally, the derived data (results, annotations, publications)
are easily publishable into the network (possibly after vetting and
quality control by NCBI or NASA) and immediately discoverable
if appropriate naming conventions are agreed upon and followed.
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Finally, NDN shifts the trust to content itself; each piece of
content is cryptographically signed by the data producer and
verifiable by anyone for provenance.

The following sections are organized as follows. We first
introduce NDN and the architectural constructs that make it
attractive for the genomics community. We then discuss the data
management and cyberinfrastructure challenges faced by the
genomics community and how NDN can help alleviate them.
We then present our pilot study applying NDN to a
contemporary genomics workflow GEMmaker (Hadish et al.,
2020) and evaluate the integration. Finally, we discuss future
research directions and an integration roadmap with cloud
computing services.

2 NAMED DATA NETWORKING

NDN (Zhang et al., 2014) is a new networking paradigm that
adopts a drastically different communication model than that
current IP model. In NDN, data is accessed by content names
(e.g., “/Human/DNA/Genome/hg38”) rather than through the
host where it resides (e.g., ftp://ftp.ncbi.nlm.nih.gov/refseq/H_
sapiens/annotation/GRCh38_latest/refseq_identifiers/GRCh38_
latest_genomic.fna.gz). Naming the data allows the network to
participate in operations that were not feasible before.
Specifically, the network can take part in discovering and local
caching of the data, merging similar requests, retrieval from
multiple distributed data sources, and more. In NDN, the
communication primitive is straightforward (Figures 1A
consumer asks for the content by content name (an “Interest”
in NDN terminology), and the network forwards the request
toward the publisher.

For communication, NDN uses two types of packets, Interest
andData. The content consumer initiates communication in NDN.
To retrieve data, a consumer sends out an Interest packet into the
network, which carries a name that identifies the desired data. One
such content name (similar to a resource identifier) might be
“/google/index.html”. A network router maintains a name-based
forwarding table (FIB) (Figure 1). The router remembers the

interface from which the request arrives, and then forwards the
Interest packet by looking up the name in its FIB. FIBs are
populated using a name-based routing protocol such as Named-
data Link State Routing Protocol (NLSR) (Hoque et al., 2013).

NDN routes and forwards packets based on content names
(Afanasyev et al., 2018), which eliminates various problems that
addresses pose in the IP architecture such as address space
exhaustion, Network Address Translation (NAT) traversal,
mobility, and address management. In NDN, routers perform
component-wize longest prefix match of the Interest name the
FIB. Routing in NDN is similar to IP routing. Instead of
announcing IP prefixes, an NDN router announces name
prefixes that it is willing to serve (e.g., “/google”). The
announcement is propagated through the network and
eventually populates the FIB of every router. Routers match
incoming Interests against the FIB using longest prefix match.
For example, “/google/videos/movie1. mpg” might match
“/google” or “/google/video”. Though an unbounded
namespace raises the question of how to maintain control over
the routing table sizes and whether looking up variable-length,
hierarchical names can be done at line rate, previous works have
shown that it is indeed possible to forward packets at 100 Gbps or
more (So et al., 2013; Khoussi et al., 2019).

When the Interest reaches a node or router with the requested
data, it packages the content under the same name (i.e., the
request name), signs it with the producer’s signature, and returns
it. For example, a request for “/google/index.html” brings back
data under the same name “/google/index.html” that contains a
payload with the actual data and the data producer’s (i.e., Google)
signature. This Data packet follows the reverse path taken by the
Interest. Note that Interest or Data packets do not carry any host
information or IP addresses—they are simply forwarded based on
names (for Interest packets) or state in the routers (for Data
packets). Since every NDN Data packet is signed, the router can
store it locally in a cache to satisfy future requests.

2.1 Hierarchical Naming
There is no restriction on how content is named in NDN except
1) they must be human-readable and hierarchical 2) and globally

FIGURE 1 | NDN Forwarding. The two servers on the right announce a namespace (/google) for the data they serve. The routers make a note of this incoming
announcement, When the laptops ask for /google/index.html, the routers forward the requests on the appropriate interfaces (31, 32, or both, depending on
configuration). Data follows the reverse path. (Zhang et al., 2014).
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unique. The scientific communities develop the naming schemes
as they see fit, and the uniqueness of names can be ensured by
name registrars (similar to existing DNS Registrars).

The NDN design assumes hierarchically structured names,
e.g., a genome sequence published by NCBI may have the name
“/NCBI/Human/DNA/Genome/hg38”, where “/” indicates a
separator between name components. The whole sequence
may not fit in a single Data packet, so the segments (or
chunks) of the sequence will have the names “/NCBI/Human/
DNA/Genome/hg38/{1..n}“. Data that is routed and retrieved
globally must have a globally unique name. This is achieved by
creating a hierarchy of naming components, just like Domain
Name System (DNS). In the example above, all sequences under
NCBI will potentially reside under “/NCBI”; “/NCBI” is the name
prefix that will be announced into the network. This hierarchical
structure of names is useful both for applications and the
network. For applications, it provides an opportunity to create
structured, organized names. On the other hand, the network
does not need to know all the possible content names, only a
prefix, e.g., “/NCBI” is sufficient for forwarding.

2.2 Data-Centric Security
In NDN, security is built into the content. Each piece of data is
signed by the data producer and is carried with the content. Data
signatures are mandatory; on receiving the data, applications can
decide if they trust the publisher or not. The signature, coupled
with data publisher information, enables the determination of
data provenance. NDN’s data-centric security helps establish data
provenance, e.g., users can verify content with names that begin
with “/NCBI” is digitally signed by NCBI’s key.

NDN’s data-centric security decouples content from its
original publisher and enables in-network caching; it is no
longer critical where the data comes from since the client can
verify the authenticity of the data. Unsigned data is rejected either
in the network or at the receiving client. The receiver can get
content from anyone, such as a repository, a router cache, or a
neighbor, as well as the original publisher and verify that the data
is authentic.

2.3 In-Network Caching
Automatic in-network caching is enabled by naming data because
a router can cache data packets in its content store to satisfy future
requests. Unlike today’s Internet, NDN routers can reuse the
cached data packets since they have persistent names and the
producer’s signature. The cache (or Content Store) is an in-
memory buffer that keeps packets temporarily for future requests.
Data such as reference genomes can benefit from caching since
caching the content near the user speeds up content delivery and
reduces the load on the data servers. In addition to the CS, NDN
supports persistent, disk-based repositories (repos) (Chen et al.,
2014). These storage devices can support caching at a larger scale
and CDN-like functionality without additional application-layer
engineering.

In our previous work with Climate Science and High Energy
physics community, we saw that even though scientific data is
large, a strong locality of reference exists. We found that for
climate data even a 1 GB cache in the network speeds up data

distribution significantly (Shannigrahi et al., 2017). We observe
similar patterns in the genomics community where some of the
reference genomes are very popular. These caches do not have to
be at the core of the network. We anticipate most of the benefits
will come from caching at the edge. For example, a large cache
provisioned at the network gateway of a lab will benefit the
scientists at that lab. In this case, the lab will provision and
maintain their caches. If data is popular across many
organizations, it is in the operators best interest to cache the
data at the core since this will reduce latency and network traffic.
Given that storage price has gone down significantly (a 8 TB or
8000 GB hard-drive costs around $150, at the time of writing this
paper), it does not significantly add to the operating costs of the
labs. Additionally, new routers and switches are increasingly
being shipped with storage, reducing the need for additional
capital expenditure. Additionally, caching and cache
maintenance is automated in NDN (it follows content
popularity) eliminating the need to configure and maintain
such storage.

Having introduced NDN in this section, we now enumerate
the genomics data management problems and how NDN can
solve them in the following section.

3 GENOMICS CYBERINFRASTRUCTURE
CHALLENGES AND SOLUTIONS
USING NDN
The genomics community has made astronomical progress in
recent decades. However, this progress has not been without
challenges. A core challenge, like many other science domains,
is data volume. Due to the low-cost sequencing instruments, the
genomics community is rapidly approaching petascale data
production at sequencing facilities housed in universities,
research, and commercial centers. For example, the SRA
repository at NCBI in Maryland, United States contains over 45
petabytes of high-throughput DNA sequence data—there are other
similar genomic data repositories around the world (DDBJ, 2019;
EBI, 2020). These data are complemented with metadata (though
not always present or complete) representing evolutionary
relationships, biological sample sources, measurement
techniques, and biological conditions (NCBI, 2019).

Furthermore, while a large amount of data is accessible from
large repositories such as the NCBI repository, a significant
amount of genomics data resides in thousands of institutional
repositories (Lathe et al., 2008; Dankar et al., 2018; National
Genomics Data Center Members and Partners, 2019). The
current (preferred) way to publish data is to upload it to a
central repository, e.g., NCBI, which is time-consuming and
often requires effort from the scientists. The massively
distributed nature of the data makes the genomics community
unique. In other scientific communities, such as high-energy
physics (HEP), climate, and astronomy, only a few large scale
repositories serve most of the data (Group and for Nuclear
Research, 1991). For example, the LHC produces most of the
data for the HEP community at CERN, the telescopes (such as
LSST and to-be-built SKA) produces most of the data for
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astrophysics, and the supercomputers at various national labs
produce climate simulation outputs (Taylor and Doutriaux
2010).

Modern genomic data comes in the form of 1) reference
genomes with coordinate-based annotation files, 2) “dynamic”
measurements of genome output (e.g., RNA-seq, CHIP-seq), and
3) individual genome resequencing data. Reference genomes are
used by many researchers across the world that can benefit from
efficient data delivery mechanisms. The dynamic functional
genomics and resequencing genomics datasets are often larger
in size and of more focused use. All data is typically retrieved
using various contemporary technologies such as sneakernet
(Munson and Simu, 2011), SCP/FTP, Aspera (ASPERA, 2019),
Globus (glo, 2020), and iRODS (Rajasekar et al., 2010) (Chiang
et al., 2011). While reference data is often easier to locate and
download, the dynamic and resequencing datasets often are not
since they are strewn over geographically distributed institutional
repositories. Locating and retrieving data are not the only
problems that the genomics community face—the rest of the
section enumerates the cyberinfrastructure requirements of the
genomics community, encountered problems due to the current
point-to-point, TCP/IP based model of the Internet, and how
NDN can solve these.

3.1 Problem-Massive Storage
The genomics community is producing more data than it is
currently feasible to store locally (Stephens et al., 2015). This
phenomenon will accelerate as modern field-based or hand-held
sequencers become more prevalent in individual research labs
and commercial sequencing providers. Increasingly, valuable data
is at risk of being lost, potentially forever. While the community
must invest in storage capacity, the existing storage strategies
need to be optimized, such as deduplication of popular datasets
(e.g., the reference genomes). Moreover, popular datasets that are
often reused must be available quickly and reliably to reduce the
need for copying data.

3.1.1 NDN-Based Solution
With NDN, data can come from anywhere, including in-network
caches. Fast access to popular data reduces the need to download
and store datasets locally. They can be quickly downloaded and
deleted after the experiments. Multiple researchers in the same
area can benefit from this approach since they no longer need to
individually download datasets from NCBI, rather from a in-
network cache that is automatically populated by the network.
Further, the data downloaded from this cache can be verified
publicly for provenance. Another solution is to push the
computation to the data. This can be accomplished by adding
a lambda (computational function) to the Interest name. The data
source (e.g., a data producer or a dedicated service) interprets the
lambda upon receiving the Interest and returns the computed
results. Scientists don’t have to download and store large datasets
every time they need to run an experiment.

3.2 Problem-Data Discovery
Genomics data is currently published from central locations (e.g.,
NCBI, NASA). The challenges in data discovery come not only

from the fact that one needs to know all the locations of these
datasets but also needs to navigate different naming schemes and
discovery mechanisms provided by the hosting entity. There are
many community-supported efforts to define controlled
vocabularies and ontologies to help describe data [e.g. (Eilbeck
et al., 2005; Schriml et al., 2012; The Gene Ontology Consortium,
2015)]. These metadata then can be parsed, indexed, and
organized for data discovery. A scientist, for example, can
associate appropriate metadata with source data, resulting
data, and data collections. Moreover, the application of
metadata to data is non-uniform, non-standard, and often
inconsistent, making them difficult to utilize for consistent
naming or data discovery.

3.2.1 NDN-Based Solution
NDN does not provide data discovery by itself. Once data is
named consistently by a certain community or subcommunity,
these names can be indexed by a separate application (see our
previous work (Fan et al., 2015) that provides name discovery
functions and operated over NDN). Since name discovery in
NDN is sufficient for data retrieval—an application can request
for this name—no additional steps are necessary. Note that NDN
only requires a hierarchical naming structure—how individual
communities name their datasets (/biology/genome vs. /genome/
biology) is up to them (Shannigrahi et al., 2020)

A distributed catalog (Fan et al., 2015) that stores the content
names is sufficient to provide efficient name discovery. Since an
NDN based catalog will only hold a community-specific set of
names (not the actual data), the synchronization, update, and
delete operations are lightweight (Shannigrahi, 2019). These
names in these catalogs can be added, updated, and deleted as
necessary. We refer the reader to our previous work for the details
of how such a catalog can be created and maintained in NDN Fan
et al., (2015).

3.3 Problem-Fast and Scalable Data Access
Currently, genomics data retrievals range from downloading a
significant amount of data from a central data archive (e.g.
NCBI) to downloading only the desired data that can be staged
on local or cloud storage systems. For example, the researchers often
need to retrieve genome reference data on demand for comparison.
Downloading large amounts of datasets over long-distance Internet
links can be slow and error-prone. Further, the current Internet
model does not work very well over long distance links (tcp, 2020).
Evenwith very high-speed links, it is particularly difficult to utilize all
the available bandwidth.

3.3.1 NDN-Based Solution
NDN provides access to data from “anywhere”, including storage
nodes, in-network caches, and any entities that might have the
data. This property allows scientists to reuse already downloaded
datasets that are nearby (e.g., dataset downloaded by another
scientist in the same lab). Additionally, in NDN data follows the
content popularity, as it is cached in the in-network devices
automatically. The more popular content is, the higher the
likelihood it would be cached nearby. All data is digitally
signed, ensuring provenance is preserved.
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Getting content fast and from nearby locations may be
convenient to download data when needed and delete them
when the computation is finished. For example, the reference
human genome has been downloaded by us and our students
hundreds of times in the last 2 decades. Secure and verifiable data
downloaded on demand will reduce the amount of storage
needed.

3.4 Problem-Minimizing Transfer Volume
The massive data volume needed by genomic workflows can
easily saturate institutional networks. For example, the size of
sequence data (in FASTQ format) or processed sequence
alignments (in binary sequence alignment map (BAM) format)
for one experiment, can easily aggregate into terabytes. If stored
in online repositories, these data might be downloaded many
times by researchers extending existing studies, leading to high
bandwidth usage. One solution is to subset the data and
download only the necessary portion. However, several
challenges remain—if multiple copies of the file exist, the
network/application layers can not take advantage of that to
pull different subsets in parallel.

However, depending on the size and type of the analysis being
performed, subsetting of the data may not be appropriate.
Currently, that means the scientist would be required to
download all datasets (or staged at a remote site) before the
computation can begin. However, instead of downloading large
amounts of data, pushing computation to data might be much
more lightweight.

For example, to determine if a scientific avenue (e.g., a large
scale experiment with millions of genomes) or dataset is worth
pursuing, the scientists often run smaller scale experiments for
early signs of interesting properties. A key issue is determining
the smallest number of records required to produce the same
scientific result as the full dataset, and we previously point to a
simple saturation point as determined by transcript detection
(Mills et al., 2019). Once a saturation point has been reached, one
could pause and examine the results. If there is an interesting
signal, then there is nothing preventing the user from processing
more sequence records. However, if there is no signal, one could
drop the experiment and move on to other datasets. However,
this method currently requires downloading the full experimental
datasets and running computations against them.

3.4.1 NDN-Based Solution
NDN supports subsetting the data at the source, and
transferring only the necessary portions reduces bandwidth
consumption. This is already possible through BAM file slicing
to select data specific to genomic regions. With NDN, the
request can carry the required subsetting parameters and allow
the user/applications to download only the part of the data
required for computation. NDN can also parallelize subsetting
in the event that multiple slices are needed, and data is
replicated over multiple repositories. When subsetting is not
appropriate, NDN is able to push computation to data by
appending the computation to the Interest name (or adding
them as the payload to the Interest). The result comes back to
the requester under the same name and is also cached for

future use, reducing bandwidth usage. Furthermore, in some
genomics workflows, caching of computation can reduce the
load on the compute and servers (such as those hosted in NCBI
or cloud platforms).

3.5 Problem-Secure Collaboration
Genomics data, especially unpublished or identifiable human
data can be very sensitive. Scientists often need to secure data
due to privacy requirements, non-disclosure agreements, or legal
restrictions (e.g., HIPPA). Without a security framework,
securing data and enforcing permissions becomes difficult.
Suitable data access methods with proper access control is
therefore required for privacy and legal requirements. At the
same time, scientific collaborations often need to share data
between groups without violating security restrictions. Suitable
frameworks must exist for utilizing open source sequenced data
for research, albeit with appropriately restricted access. The lack
of an infrastructure that allows secure access to a large number of
sequenced human genomes prevents population genetics
researchers from identifying rare mutations or test hypotheses
on analogous experiments which can lead to medical
advancement. Encryption and data security models, along with
proper access control is highly necessary as data breaches of
protected data can lead to massive fines, forcing institutions to
severely limit the scope of allowable controlled data access on
local cyberinfrastructure.

3.5.1 NDN-Based Solution
To support secure data sharing among collaborators, all data in
NDN is digitally signed, providing data provenance. When
privacy is needed, NDN allows encryption of content,
facilitating secure collaborations. Furthermore, the verification
of trust and associated operations (such as decryption) can be
automated in NDN—this is called schematized trust (Yu et al.,
2015). One example of schematized trust might be the following:
a scientist attempting to decrypt a data packet starting with
“/NCBI” must also present a key that is signed by “/NCBI”
and begins with the “/NCBI/scientistA”. More complex, name-
based trust schemes are also possible.

This section discussed NDN properties that can address
data management and cyberinfrastructure challenges faced
by the genomics community. In the following section, we
present a pilot study that uses a current genomics workflow
that demonstrates some of these improvements in a real-
world scenario.

4 METHOD

To demonstrate how NDN can benefit genomics workflows, we
integrated NDN with a current genomics workflow
(GEMmaker) and deployed our integrated solution over a
real, distributed NDN testbed (Shannigrahi et al., 2015).
The experiment has multiple parts: 1) naming data in a way
that is understood by NDN as well as acceptable to the
genomics community (Figure 2); 2) publishing data into
the testbed and making them discoverable to the users
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using a distributed catalog and a UI (Figure 3); 3) Modify
GEMmaker to interact with the data published in the testbed 4)
Compare the performance of the new integration to the
existing workflow. The following sections describe these
efforts in detail.

4.1 NDN Testbed
For this work, we utilized a geographically distributed six-
node testbed that was deployed at Colorado State University,
ESNet, and UCAR supercomputing center. The testbed had
six high-performance nodes (each with 40 cores, 128 GB

memory, and 50 TB storage) and connected over ESnet
(esn, 2020) using 10 Gbps dedicated links. All nodes ran
the latest version of Fedora, and the network stack was
tuned for big-data transfers (tcp, 2020). Specifically, we
tuned the network interfaces to increase the buffer size
and used large ethernet frames (9000-byte jumbo frames).
We also tuned the TCP stack according to the ESnet
specification, including increasing read and write buffers,
utilizing cubic and htcp congestion control algorithms. We
also tuned the UDP stack to increase read/write buffers as
well as specifying CPU cores (tcp, 2020).

FIGURE 2 | Genome naming strategy for indexing in NDN. The NDN names were translated from the existing Pynome file naming scheme. Tokens above
(surrounded by square brackets) indicate the location of taxonomic names and genome assembly names. Most of the names directly map to hierarchical NDN names.
Depending on the use case, components can be added or removed. These names are starting points for all NDN based operations. They are also the only necessary
component for an NDN network.

FIGURE 3 | The user interface (UI) for the NDN-based genomics catalog system. It demonstrates how a name based catalog can act as a central point to an NDN
ecosystem. Once the user looks up the names, additional functionality such as data retrieval can be built on top these names.
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4.2 Data Naming and Publication
NDN recommends globally unique, hierarchical, and
semantically meaningful names. This is a natural fit for the
genomics community since they have established taxonomies
dating as far back as 1773.

Note that while NDN requires names to be globally unique,
there is no need for a global convention even among a particular
community. For example, two names pointing to the same
content, /Biology/Genome/Homo/Sapiens and /NCBI/Genome/
Homo/Sapiens are perfectly acceptable. Each community is free
to name their own content as they see fit. The uniqueness in these
names come from the first component of the name (the prefix),
which is /Biology and /NCBI, respectively. We anticipate each
entity (e.g., an organization such as NCBI, a university, a
community genome project) will have their own namespaces,
possibly procured from commercial name registrars, the same
way DNS namespaces are obtained today.

In the genomics community, very commonly used datasets
can even be assigned their own namespaces. For example, a
globally unique namespace (e.g., /human/genome) may be
reserved for human genomes for convenience. However, that
special namespace does not preclude an organization from
publishing the same genomes from another namespace (e.g.,
/NCBI/human/genome). While NDN operates on names, it
does not interpret the semantic meaning of the name
components at the network layer. For example, NCBI
announces the /NCBI prefix into the network that the NDN
routers store. When an Interest named /NCBI/Genome/Homo/
Sapiens arrives at the router, the router performs a longest
prefix match on the name and matches the interface
corresponding to /NCBI. This way, the network is able to
forward Interests and data but does not need to interpret
the individual components.

It is true that a name component (e.g., “hg38”) might have
different meaning in different communities. It is the job of the
application layer to interpret and use this components as they see
fit. In our previous work, we built a catalog (an application) that
mapped individual components to their semantic meaning (see
Figure 3). Different communities will build different applications
on top of NDN to understand the semantic meaning of a name.

The other problem is name assignment and reconciliation. In
today’s Internet ICCAN (ica, 2020) and the domain registrars
play a significant role in assigning, maintaining and reconciling
DNS namespaces (e.g., assigning google.com namespace to
Google). In NDN, these organizations will continue to control
and assign namespaces that are used over the Internet.

In NDN, the data producer is responsible for publishing
content under a name prefix (/biology or /NCBI). NCBI will
acquire such namespaces from a name registrar. At that point,
only NCBI is allowed to announce the /NCBI prefix into the
Internet and publish content under that name prefix. The onus of
updating namespaces is on the data publisher and the name
registrars. Note that no such NDN name registrar exists today but
we expect similar organizations to exist in the future.

When a user looks up a content name (e.g., /NCBI/Genome/
Homo/Sapiens) in a catalog and expresses an Interest, the Interest
is forwarded by the network and eventually reaches the NCBI

server that announced /NCBI. Namespace reconciliation is not
necessary for the network to function properly. Let’s imagine
NCBI is authorized to publish datasets under two namespaces
/Biology and /NCBI and it publishes the human genome under
“/Biology/Genome/Homo/Sapiens” and “/NCBI/Genome/
Homo/Sapiens”. A user can utilize both names to retrieve
content—the network does not need to interpret the meanings
of the names—the interpretation of name and content is up to the
applications (and users) requesting and serving the datasets.

As part of the NSF SciDAS project (Sci, 2020), we store large
amounts of whole genome reference and auxiliary data in a
distributed data grid (iRODS). These whole genome references
were initially retrieved from the Ensembl database (Zerbino,
2018) using the Python-based Pynome (Pyn, 2020) package
and consist of hundreds of Eukaryotic species. Pynome
processes these data to provide indexed files which are not
available on Ensembl and which are needed for common
genomic applications performed by researchers around the
world. These data are organized in an evolution-based,
hierarchical manner which is an excellent naming convention
for an NDN framework.

For this study, we used an NDN name translator that we
created as part of our previous work (Olschanowsky et al., 2014)
to translate these existing names into NDN compatible names.
Once translated, the content names became the unique reference
for these datasets. Figure 2 shows the reference genome DNA
sequence names created from the existing hierarchical naming
convention. For example, one such name would look like
“/Absidia/glauca/AG_v1/fa”. We could find that some of these
names may or may not contain certain components, for example,
infraspecific name in the above example. We then translated and
imported these names into our NDN data management
framework (Shannigrahi et al., 2018b). All subsequent
operations such as discovery, retrieval, and integration with
workflows used these names.

After naming, we published these datasets under the derived
names on the NDN testbed servers. In this pilot test, we used
three nodes to publish the data. However, each testbed server
published the same data under the same name, replicating the
content. Depending on the client location, requests were routed to
the closest replica. If one replica went down, nothing needed to
change on the client’s end—the NDN network routed the request
to a different replica. We then used this testbed setup in
conjunction with GEMmaker to test NDN’s usefulness. We
discuss the results in the evaluation section.

The UI in Figure 3 provides an intuitive way to search for
names that were published on the testbed. A user could create a
query by selecting different components from the left-hand menu
(e.g., by selecting “Absidia” under genus). The user can start
typing the full name, and the UI will provide a set of
autocompleted names. Finally, the user could choose to view
the entire name tree using the tree view. The catalog and the UI
are necessary for dataset discovery—while NDN operates on
names, it is more efficient and fast to discover names using a
catalog. Once discovered, the names could be used for all
subsequent operations. For example, once the names are
known, the user can initiate retrieval or other operations, as
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discussed before. The API also provides a command-line
interface (CLI) for name discovery, allowing the users to
integrate the name discovery (and subsequent operations) with
domain workflows.

Since NDN operates on names, data naming in NDN affects
application and network behaviors. The way a piece of content is
named has profound impacts on content discovery, routing of
user requests, data retrieval, and security. Besides, the naming of
individual pieces of content seriously affects how the behaves. For
brevity, we do not discuss those naming trade-offs here but point
the reader to our recent work on content naming in NDN
(Shannigrahi et al., 2020).

4.3 Integration With GEMmaker
GEMmaker (Hadish et al., 2020) is a workflow that takes as input a
number of large RNA sequence (RNA-seq) data files and a whole
genome reference file to quantify gene expression-levels underlying
a specific set of experimental parameters. It produces a Gene
Expression Matrix (GEM), which is a data structure that can be
used to compare gene expression across the input RNA-seq
samples. GEMs are commonly used in genomics and have been
instrumental in several studies (Ficklin et al., 2017; Roche et al.,
2017; Dunwoodie et al., 2018; Poehlman et al., 2019). GEMmaker
consists of five major steps: 1) read RNA-seq data files as input; 2)
trim low-quality portions of the sequences; 3) map sequences to a
reference genome; 4) count levels of gene expression in each RNA-
seq sample; 5) merge the gene expression values of each sample into
a Gene ExpressionMatrix. GEMmaker is regulated by the Nextflow
(NextFlow, 2019) (Di Tommaso et al., 2017) workflow manager,
which automates the fluid execution of each step in GEMmaker,
which are defined as Nextflow processes. Nextflow has a variety of
executors that enable the deployment of processes to a number of
HPC and cloud environments, including Kubernetes (K8s).

Without NDN, the typical process a user follows to execute
GEMmaker in a K8s environment is as follows. First, the user
moves the whole genome reference files onto a Persistent
Volume Claim (PVC), a K8s artifact that provides persistent
storage to users. Nextflow is able to mount and unmount
GEMmaker pods directly to this PVC, which stores all input,
intermediate, and output data. When the user executes
GEMmaker, Nextflow deploys pods that automatically
retrieve the RNA-seq data directly from NCBI using Aspera
or FTP services. One pod is submitted for each RNA sample in
parallel, so ideally all RNA-seq data is downloaded
simultaneously. This represents the bulk of data movement
in GEMmaker. Once each sample of RNA-seq data is
downloaded to the PVC, new pods are deployed to execute
the next step of the workflow for each sample. Each step in
GEMmaker produces a new intermediate file used as input for
the next step, all of which is written to the PVC. Once
GEMmaker completes, the resulting GEM can be
downloaded from the PVC by the user.

Currently, pulling data from host-specific services is built into
the GEMmaker workflow. For example, the NCBI SRA-toolkit
can pull data from SRA but not all genome data repositories. With
NDN, the process can be abstracted from the workflow logic as
data is preloaded into the NDN testbed from any host,

downloaded by name at step 1, reference data is pulled by
name at step 3, and data is created and uploaded with a new
name at step 5. In contrast to the typical execution of GEMmaker,
with NDN, users need not retrieve the whole genome reference or
the final GEM, and retrieval of RNA-seq data can occur
independent of Aspera or FTP protocols, supporting a greater
variety of data repositories or even locally created data (so long as
a local publisher makes it available). Users need only provide the
NDN names for moving data and accessing cloud APIs.

For GEMmaker integration, we created a NDN-capable
program that pulled data from the NDN testbed using the
SRA ID. We modified GEMmaker to replace the existing
RNA-seq data retrieval step with this NDN retrieval program
and to retrieve the whole genome references. These whole
genome references are the same described previously that were
generated by Pynome and cataloged in the testbed. For this small-
scale testing, we added the NDN routes to the testbed machines
manually. However, the NDN community provides multiple
routing protocols (Wang et al., 2013) that can automate the
routing updates.

5 RESULTS

5.1 Performance Evaluation
In order to understand how caching affects data distribution, we
moved datasets of different sizes between the NDN testbed and
Clemson University. The SRA sequences were published into the
testbed, and then the workflow modified to download data over
NDN. NDN based download only needs to know the name of the
content. The rest of the infrastructure is opaque to the user.

For these experiments, the standard NDN tools for (Afanasyev
et al., 2018) publication and retrieval were used. Once the files were
downloaded, they were utilized in the workflow. For the first
experiment, we copied different sized files using existing IP
based tools (wget). For comparison, we then utilized NDN-
based standard tools (ndncatchunks and ndnputchunks) for the
same files, with in-network caching disabled followed by caching
enabled. Each transfer experiment was repeated three times.

The experiments showed how NDN can improve content
retrieval using in-network caching. Figure 4A shows a
comparison of data download speed between NDN and
HTTP. The first 3 bars represent three sequential
downloads of a set of three SRA datasets from the NCBI
repository using HTTP. The next 3 bars show three
sequential downloads using NDN retrieval from the NDN
testbed without caching. Since we manually staged the data,
we knew that data source was approximately 1,500 miles
away from the requester. Even then, the download
performance was comparable with the HTTP performance.
The real performance gain came from caching the datasets as
seen in the last 3 bars where the first transfer was similar to
HTTP and NDN without caching ( 2 min) while the next two
transfers only took around 20 s after caching kicked in. These
results point toward a massive improvement opportunity
since many genomics workflows download hundreds or
even thousands of SRAs for a given experiment.
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FIGURE 4 | The effect of NDN caching on DNA dataset insertion into GEMmaker workflow. A set of three NCBI SRA Arabidopsis thaliana datasets (SRR5263229:
167.9 Mb, SRR5263230:167.8 Mb, SRR5263231:167.9 Mb) was sequentially transferred three times (black bars (transfer I), gray bars (transfer II), white bars (transfer
III)) for insertion into the GEMmaker workflow from the NDN testbed or from the SRA repository over the Internet via HTTP. The y-axis in both panels shows the transfer
time of all three datasets from request to workflow accessibility in seconds. Error bars represent standard error of the mean. (A) The aggregate transfer times are
shown for the three sequential transfers with HTTP, NDN tested without caching, and NDN with caching at 655,360 packets. (B) The effect of varying cache size (packet
number in parentheses) is shown. The x-axis shows the cache capacity in packet numbers.

FIGURE 5 | The effect of NDN caching on SRA download times on a Kubernetes cluster. A single NCBI SRAHomo sapiens kidney RNAseq dataset (SRR5139395)
was downloaded a total of nine times (3 transfer trials labeled I, II, III in triplicate) for each cache size (packet number in parentheses). The following cs_max sizes (packet
number) were used: 65,536 (approx 500 MB), 262,144, 327,680, 393,216, and 458,752. The Y-axis shows the download time for the dataset into the endpoint pod in
seconds. Error bars represent standard error of the mean.
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Figure 4B shows how much in-network cache was needed to
accomplish speedup using in-network caching and how the
caching capacity affects the speedup. The x-axis of this figure
shows the cache size in the number of NDN data packets (by
default, each packet is 4,400 bytes). We find that at around
500 MB cache size, we start to see speed improvements.

We performed an additional experiment to better evaluate
caching on data transfer in a cloud environment (Figure 5). In
this caching experiment, gateway and endpoint containers were
employed to determine the time it takes to download a SRA
sequence dataset. The gateway container used NDN to pull the
SRA sequence from a remote NDN repository and create the
network cache. The endpoint container (with a cache size of 0)
acted as the consumer and created a face to the gateway used to pull
the data. Both the endpoint and the client were run on separate
nodes to replicate real cloud scenarios. This experiment
demonstrates how an NDN container can cache a dataset for use
by any endpoint on the same network and indicates that an
insufficiently sized content store on the gateway will prevent
network caching, resulting in slower download times. This
provides a basic example of how popular genomic sequences
could be cached for use by multiple researchers working on the
same network in the cloud.

The actual cache sizes in the real-world would depend on
request patterns as well as file sizes—we are currently working on
quantifying this. In any case, it is certainly feasible to utilize
NDN’s caching ability for very popular datasets, such as the
human reference genomes. Our previous work shows that in big-
science communities, even a small amount of cache significantly
speeds up delivery due to the temporal locality of requests
(Shannigrahi et al., 2017).

6 CODEBASE

All code used for these experiments are publicly available and
distributed under open source licences (Table 1). NFD is the
Named Data Networking forwarder that works as a software
router for Interests and Data packets. ndn-cxx is an NDN library
that provides the necessary API for creating NDN based “apps”.
NDN catalog is an NDN based Name lookup system—an
application can send an Interest to the catalog and receive the

name of a dataset. The application can then utilize the name for
all subsequent operations. Two versions of the catalog exists, ndn-
atmos is written in C++ while ndn-python-catalog is
implemented in python.

Nextflow is a general purpose workflow manager. GEMmaker
is a genomics workflow adpated for Nextflow (see Section 4.3
above for more details). For these experiments, we modified
GEMmaker to request data over NDN instead of standard
mechanisms (such as HTTP). This modified workflow is
available under this repository—https://github.com/mmcogle/
GEMmakerCam.

7 DISCUSSION AND FUTURE DIRECTIONS

7.1 Discussion
This work demonstrates the preliminary integration of NDNwith
genomics workflows. While the work shows the promise of NDN
toward a simplified but capable cyberinfrastructure, several other
aspects remain to be addressed before NDN can completely
integrate with genomics workflows and cloud computing
platforms. In this section we discuss the technical challenges
as well as the economic considerations that are yet to be
addressed.

7.1.1 Economic Considerations
NDN is a new Internet architecture that operates differently that
the current Internet. Consequently, the users and the network
operators need to consider the economic cost of moving to an
NDN paradigm. This section outlines some of the economic
considerations. There are two primary cost of moving to an NDN
paradigm: the cost of upgrading current network equipment and
the cost of storage if caching is desired.

As of writing this paper, NDN routers are predominately
software based. To utilize this software based routers, the
researcher needs to install NFD (an NDN packet forwarder)
and NDN libraries on a machine (a server or even a laptop). All
experiments in this paper were done on commodity hardware
and did not require any additional capital investment. NDN is
able to run as an overlay on top of the existing IP infrastructure or
on Layer two circuits—in this work, we utilized NDN as an
overlay on existing Internet connectivity.

TABLE 1 | Software packages used in this experiment.

Component Purpose Code License

NFD Named data networking software forwarder. Forwards
NDN interest and data based on names

https://github.com/named-data/NFD GPLv3, MIT, BSD,
boost

Ndn-cxx Named data networking application library https://github.com/named-data/ndn-cxx/ GPLv3
NDN catalog Catalog for NDN name lookup https://github.com/named-data/ndn-atmos and https://github.

com/satyaprakash-1729/ndn-python-catalog
GPLv2,
Apache2.0

GEMmaker A workflow for construction of gene expression count
matrices (GEMs)

https://github.com/SystemsGenetics/GEMmaker GPLv2

Nextflow A bioinformatics workflow manager https://github.com/nextflow-io/nextflow Apache 2.0
Integration
experiments

Modified GEMmaker workflow with NDN integration https://github.com/mmcogle/GEMmakerCam GPLv2

NDN tools image NDN tools in a container https://hub.docker.com/r/cbmckni/ndn-tools GPLv3

The experiments were run on Linux machines (Fedora and Ubuntu). The machines were a mix of bare metal and virtual machines.

Frontiers in Big Data | www.frontiersin.org February 2021 | Volume 4 | Article 58246811

Ogle et al. NDN for Genomics Data

https://github.com/mmcogle/GEMmakerCam
https://github.com/mmcogle/GEMmakerCam
https://github.com/named-data/NFD
https://github.com/named-data/ndn-cxx/
https://github.com/named-data/ndn-atmos
https://github.com/satyaprakash-1729/ndn-python-catalog
https://github.com/satyaprakash-1729/ndn-python-catalog
https://github.com/SystemsGenetics/GEMmaker
https://github.com/nextflow-io/nextflow
https://github.com/mmcogle/GEMmakerCam
https://hub.docker.com/r/cbmckni/ndn-tools
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Any commodity hardware (servers or desktop) with storage
(depends on the workflow requirement) and a few GB memory is
capable of supporting NDN. Given the current low cost of storage
(an 8 TBhard drive costs around $150) even the cost ofmoving to a
dedicated server is low. However, workflows with large storage
requirement will need some capital investment. To minimize this
cost and provide an alternate, we are working on two storage access
mechanisms. First, when installing new storage is feasible (e.g. cost
of storage continues to fall and a petabyte of storage costs around
$30k at the time of writing this paper) it might be convenient for
large research organizations to install dedicated storage that holds
and serves NDN data packets—this approach improves NDN’s
performance since objects are already packetized and signed by the
data producers. The second approach is interfacing NDN with
existing storage repositories such as HTTP and FTP servers. As
NDN Interests come in, they are translated into appropriate system
calls (e.g., POSIX, HTTP, or FTP) and the NDN Data packets are
created on-demand. This approach is slower than the first
approach but does not require any additional hardware or
storage, reducing the deployment cost.

The benefits of NDN (caching etc.) becomes apparent when
more users utilize an NDN based network. As the networking
community moves toward testbeds and deployments such as NSF
funded FABRIC (Dataset, 2020) that incorporate NDN into their
core design, the research labs and institutes connected to these
networks would be able to take advantage of those infrastructures.
Additionally, connecting a software NDN router to these networks
and testbeds are often free (assuming an institute is already paying
for Internet access). These networks will create and deploy large
scale in-network caches near the users and in the Internet core as
users continue to request data from. As users exchange data over
these networks, data will be automatically cached and served from
in-network caches. In the future, when ISPs deploy NDN routers,
the researchers will be able to take advantage of in-network caching

without added cost. However, we expect large scale ISP deployment
of NDN to take a few more years.

The other cost is the learning and integration cost with existing
workflows. This is not trivial—NDN requires careful naming
considerations, aligning workflows with a name base network,
and data publication. To make this process straightforward,
(Figure 6), we are working on containerizing several
individual pieces. We hope that containerizing NDN, data
transfer pods, and other components would allow the
researchers to simply mix-and-match different containers and
integrate them with workflows without resorting to complex
configuration and integration efforts. Having discussed the
economic considerations, we now discuss the technical
challenges that remain.

7.2 Future Directions
7.2.1 Software Performance
While our work shows some attractive properties of NDN for the
genomics community, there are well known shortcomings of
NDN. For example, the forwarder we used (NFD) was single
threaded and therefore its throughput is low. This has been
recently addressed by a new forwarder (ndn-dpdk) that can
perform forwarding at 100 Gbps. We are currently working on
integrating the genomics workflow with NDN-DPDK. We hope
to demonstrate further improvements as the protocol and
software stack continues to mature.

7.2.2 Accessing Distributed Data Over NDN
Genomics data generation is highly distributed as data is
generated in academic institutions, research labs, and the
industry. While the HTDS datasets are eventually converted
into in FASTQ format (Cock et al., 2010), the storage and
downstream analysis data formats are highly heterogeneous
with different naming systems, different storage techniques,

FIGURE 6 | Nextflow managed GEMmaker workflow on a Kubernetes Cluster.
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and inconsistent and non-standard use of metadata.
Seamlessly accessing these diverse datasets is an enormous
challenge. Additionally, multiple types of repositories exist
with different scopes—national-level (e.g., NCBI, EBI, and
DDBJ) with large scale sequencing data for many
organisms, community-supported repositories focused on a
species or small clade of organisms, and single investigator web
sites containing ad-hoc datasets. Storing these datasets in
different repositories that are hosted under various domain
names is unlikely to scale very well for two primary
reasons—first, different hosting entities utilize different
schemes for data access APIs (e.g. URLs) making it
necessary to understand and parse various naming schemes,
and second, it is hard to find and catalog each institutional
repository.

NDN provides a scalable approach to publish and retrieve
immutable content using their names in a location-agnostic
fashion. NDN uses the content names for routing and request
forwarding, ensuring all publicly available data can be access
directly without the need for frequent housekeeping. For
example, currently moving a repository under a new
domain name requires a large amount of housekeeping,
such as renaming the data under a new URL or linking new
and old data. With NDN, the physical location of the data has
no bearing on how they are named or distributed. When data is
replicated, NDN brings the requests to the “nearest” data
replica—“nearest” in NDN can be defined as the physically
nearest replica, the most performant replica, or a combination
of these (and other) factors.

However, several unexplored challenges exist on applying
NDN to distributed data. First, NDN operates on names.
Finding these names require the service of a third party
software or name provider. A catalog that enumerates all
names under a namespace (as we discuss before) can provide
this service. However, it is not yet obvious who would be
responsible for running and updating the authoritative
versions of these catalogs. When data is replicated, we also
need to address the issue of data consistency across multiple
repositories. This is still an active research direction that requires
considerable attention.

7.2.3 Distributed Repositories Over NDN
A single centralized repository can become a bottleneck when
subjected to a large number of queries or download requests.
Moreover, it becomes a single point of failure and introduces
increased latency for distant clients. NDN makes it easier to
create distributed repositories since they no longer need to be
tracked by their IP addresses. For example, in this work, we
created a federation of three geographically distributed
repositories. These repositories had to announce the prefix
they intended to serve (e.g., “/genome”. Even when one or
more repositories go down or become unreachable, no
additional maintenance is necessary, NDN routes request to
the available repositories as long as at least one repository is
reachable. Similarly, when new repositories are added, the
process is completely transparent to the user and does not
require any action from the network administrator. However,

several aspects remain to be addressed—how to data producers
to publish long term data efficiently, how to replicate datasets
across repositories (partially or completely), and how to
retrieve content most efficiently.

7.2.4 Publication of More Genomics Datasets and
Metadata Into the NDN Testbed
There are currently hundreds of reference genomes in the
NDN testbed and we are working on updating Pynome to
include more current genome builds, genomes from services
other than Ensembl, and support for popular sequence aligner
programs (e.g., StAR, Salmon, Kallisto, and Hisat2). We are
also working on loading the metadata and SRA RNA-seq files
at scale into the NDN testbed. By studying the usage logs of our
integration, we will better understand the benefit NDN brings
to genomics workflows. Further, the convergence of searchable
metadata from multiple data repositories published in the
same NDN testbed will allow for a common search and
access point for genomic data.

7.2.5 Integration With Docker
For further simplification of workflows, we have created a
docker container with NDN tools, forwarder, and application
libraries built-in. The resulting container is fairly lightweight.
We plan to publish the image to a public repository where
scientists can download and utilize the docker build “as-is”.
These images can be deployed to a variety of cloud platforms
without modifications, further simplifying the NDN access to
genomics workflows.

GEMmaker is able to run nextflow processes inside
specified containers. By adding a container that is
configured with NDN to the GEMmaker directory, scripts
can run inside the NDN container during a normal
GEMmaker workflow. The GEMmaker workflow can then
use the ndn-tools to download the SRA sequences, both
from ndn-only or NDN-interfaced existing repositories.
This method also provides the opportunity for decreased
data retrieval time due to NDN in-network caching and
allows GEMMaker to benefit from all the NDN features we
described earlier.

7.2.6 Integration With Kubernetes
The genomics community is moving toward a cloud-based
model. Container orchestration platforms (such as Kubernetes)
are more commonly being used in favor of traditional HPC
clusters. We believe that enabling users to easily move data
from an NDN network to a Kubernetes cluster is imperative
for the widespread adoption of this use case.

To achieve this goal, we are engineering the integration of
NDN with a Data Transfer Pod (DTP) that is a deployment of
different containers that enable users to read and write data to
a Kubernetes cluster. A DTP is a configurable collection of
containers, each representing a different data transfer
protocol/interface. A DTP uses the officially maintained
images of each protocol/interface, removing the need for
integration aside from adding the container to the DTP
deployment, which is an almost identical process for each

Frontiers in Big Data | www.frontiersin.org February 2021 | Volume 4 | Article 58246813

Ogle et al. NDN for Genomics Data

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


protocol/interface. This makes adding new protocols very
simple, as there is no need to build a custom image for
each protocol/interface, as long as an image already exists.
Almost all interfaces/protocols used by the community have
officially maintained images associated with them.

The DTP tool will allow Kubernetes users to easily access
data stored on NDN-based repositories. Each DTP container
provides the client with a mechanism to utilize a different data
transfer method (e.g. NDN, Aspera, Globus, S3). Using a DTP
aims to address the need for simple access to data from a
variety of sources. A DTP is not coupled with any particular
workflow, so users will be able to pull or push NDN data as a
pre- or post-processing step of their workflow, without
modifying the workflow itself. The DTP can also be used to
pull data from other sources if it is not present in an NDN
framework.

We are modifying the existing GEMmaker workflow to use
an NDN via the DTP that queries the NDN framework for the
required reference genome files and SRA datasets. If the SRA
dataset file exists in the NDN framework, the DTP will pull the
data onto a Kubernetes persistent volume claim (PVC). For
example, we are adapting NDN to work with the Pacific
Research Platform (PRP; (Smarr, 2018)) Nautilus
Kubernetes cluster (6). If the user knows the content name
(or metadata) but content does not exist in NDN format, the
DTP will pull the dataset from SRA with Aspera and publish it
in the NDN testbed and then pull into PRP. Once published,
the dataset will now exist in the NDN testbed and benefit from
NDN attributes, including caching. Once the DTP completes
its job, the GEMmaker workflow will function in the same way
it does now so no new code needs to be written. We are also
developing a cache retention policy to allow the SRA files to
evaporate if they are not accessed after a certain period of time.

7.3 Limitations
The NDN prototype we used (NFD) and other components we
used (catalogs and repo) are research prototypes. The
performance and scalability of these prototypes are being
improved by the NDN community. Additionally, utilization
of NDN containers on PRP has not been explored before—we
are working on optimizing both the containers and their
interactions with the cloud platforms. We are also working
on better understanding the caching and storage needs of the
genomics community by looking at real-world request patterns
and object sizes associated with them.

8 CONCLUSION

In this paper, we enumerate the cyberinfrastruture challenges
faced by the genomics community. We discuss NDN, a novel but
well-researched future Internet architecture that can address
these challenges at the network layer. We present our efforts
in integrating NDN with a genomics workflow, GEMmaker. We
describe the creation of an NDN-complaint naming scheme that
is also acceptable to the genomics community. We find that
genomics names are already hierarchical and easily translated
into NDN names. We publish the actual datasets into an NDN
testbed and show that NDN can serve data from anywhere,
simplifying data management. Finally, through the integration
with GEMmaker, we show NDN’s in-network caching can speed
up data retrieval and insertion into the workflow by six times.
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