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Emerging evidence has linked the gut microbiota dysbiosis to transplant rejection while

memory T-cells pose a threat to long-term transplant survival. However, it’s unclear if

the gut microbiome alters the formation and function of alloreactive memory T-cells.

Here we studied the effects of berberine, a narrow-spectrum antibiotic that is barely

absorbed when orally administered, on the gut microbiota, memory T-cells, and allograft

survival. In this study, C57BL/6 mice transplanted with islets or a heart from BALB/c

mice were treated orally with berberine. Allograft survival was observed, while spleen,

and lymph node T-cells from recipient mice were analyzed using a flow cytometer.

High-throughput sequencing and qPCR were performed to analyze the gut microbiota.

CD8+ T-cells from recipients were cultured with the bacteria to determine potential T-cell

memory cross-reactivity to a specific pathogen. We found that berberine suppressed

islet allograft rejection, reduced effector CD8+CD44highCD62Llow and central memory

CD8+CD44highCD62Lhigh T-cells (TCM), altered the gut microbiota composition and

specifically lowered Bacillus cereus abundance. Further, berberine promoted long-term

islet allograft survival induced by conventional costimulatory blockade and induced

cardiac allograft tolerance as well. Re-colonization of B. cereus upregulated CD8+

TCM cells and reversed long-term islet allograft survival induced by berberine plus the

conventional costimulatory blockade. Finally, alloantigen-experienced memory CD8+

T-cells from transplanted recipients rapidly responded to B. cereus in vitro. Thus,

berberine prolonged allograft survival by repressing CD8+ TCM through regulating the

gut microbiota. We have provided the first evidence that donor-specific memory T-cell

generation is linked to a specific microbe and uncovered a novel mechanism underlying

the therapeutic effects of berberine. This study may be implicated for suppressing human

transplant rejection since berberine is already used in clinic to treat intestinal infections.
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INTRODUCTION

The gut microbiota not only is involved in host physiological
processes, including vitamin synthesis, metabolism and immune
defense (1, 2), but also plays an important role in many
diseases, including multiple sclerosis (3) and autoimmune
arthritis (4). Recently, a growing number of studies revealed
the relationship between the gut microbiota and allograft
rejection and GVHD (5–13). Changes in urinary microbiota
correlated with renal transplant outcomes (14, 15). It was shown
that microbiota dysbiosis was obviously associated with post-
operative complications, such as infection and graft rejection
(16–18). Meanwhile, pretreatment of recipient mice with broad-
spectrum antibiotics (ABX) also prolonged survival of minor
antigen-mismatched skin transplants (19) while differences
in gut microbes in mice derived from different vendors
resulted in a different graft outcome (20). Acute infection
could temporarily interrupt tolerance (21) while antibiotic
pretreatment attenuated hepatic transplant injury (22). Although
it remains not fully understood how microbiota regulates
immunity, recent advances in the field showed that a short-
chain fatty acid, butyrate, regulated energy metabolism and
inflammation (23, 24). Interaction of microbiota and bile acids
could also alter host metabolism (25). Furthermore, three major
tryptophan metabolites that affect T cell function, including
serotonin, kynurenine, and indole derivatives, were controlled
by the gut microbiota (26). Thus, the gut microbiota could be a
therapeutic target for preventing transplant rejection.

Berberine, a natural ingredient originally derived from the
plant goldthread, has been widely used to treat bacteria-associated
diarrhea as an antibiotic in China (27, 28). Berberine monomer
is poorly absorbed by the gastrointestinal tract (29–32), and thus
its modulation of gut microbiota has been hypothesized as one of
the main mechanisms underlying its beneficial effects on diabetes
(33). Moreover, some studies demonstrated that berberine
ameliorated autoimmune diseases, including colitis, arthritis
and experimental autoimmune encephalomyelitis (EAE), by
inhibiting Th1 and/or Th17 responses in rodents (34–42).
Nevertheless, the direct effects of berberine on transplant
rejection remain undefined. This study was undertaken to
investigate the effects of berberine on allograft rejection and
its underlying mechanisms in a murine model. We found that
berberine promoted long-term islet allograft survival and cardiac
allograft tolerance induced by brief costimulatory blockade via
shrinking alloreactive CD8+ TCM pool through altering the gut
microbiota. This study may be implicated for the treatment of
transplant rejection in humans.

MATERIALS AND METHODS

Animals
BALB/c and C57BL/6 male mice (6 to 8 weeks-old) were
obtained from Guangdong Medical Laboratory Animal Center

Abbreviations: ABX, broad-spectrum antibiotics; Ber, berberine; dLN, draining

lymph node; EOMES, eomesodermin; Treg, regulatory T cell; TCM, central

memory T cell; TEM, effector memory T cell; Teff, effector T cell.

(Guangdong, China), while C3H/HeJ mice (6 to 8 weeks-
old) were purchased from Jiangsu ALF Biotechnology company
(Nanjing, China). Mice were bred and maintained under a
specific pathogen-free condition. Animal protocols involved in
this study were approved by the Animal Ethics Committee of
Guangdong Provincial Academy of Chinese Medical Sciences.

Treatment of Mice
Recipient mice were randomly divided into control groups and
groups treated with berberine (Ber: 200mg/kg body weight daily)
or ABX via oral gavage. Both Ber (Alfa Biotechnology, China,
purity >99%) and ABX (Solarbio, China) were prepared with
sterilized water. Mice in ABX group received 200 µl of mixed
antibiotics, including gentamycin (0.35 mg/ml), kanamycin (5.25
mg/ml), colistin (8,500U), metronidazole (2.15 mg/ml), and
vancomycin (0.5 mg/ml), as described previously (19). Mice were
treated with Ber or ABX for 3 weeks after transplantation or until
graft rejection, whichever came earlier. In some experiments,
mice were pretreated with ABX for 6 days prior to transplantation
and rested for 1 day before further treatment. To induce long-
term allograft survival, some recipients received brief treatment
with low-doses of anti-CD154 Ab (MR1) or CTLA4-Ig (Bio X
Cell, West Lebanon, USA) at 0.2mg on days 0 and 4.

Murine Islet and Heart Transplantation
Islet transplantation was performed as described in our previous
studies (43, 44). Briefly, 2ml of collagenase V (1 mg/mL, Sigma)
was injected into common bile duct of BALB/c donors. The
pancreas was removed and incubated in a 37◦C water bath
for 16–18min and the crude preparation was filtered through
a 100-µm nylon cell-strainer. Islets were counted and ∼400
islets were injected into the renal subcapsular space of C57BL/6
recipients. Recipient mice were rendered diabetic by a single
injection of streptozotocin (180 mg/kg, Sigma) 10–14 days before
transplantation. Primary graft function was characterized by a
blood glucose level of <200 mg/dL for 48 h after transplantation.
Graft rejection was defined as a rise in blood glucose to
>300 mg/dL for 2 consecutive days after primary function.
Cardiac donors were 7 to 8-week-old BALB/c (H-2d) mice while
recipients were 7 to 8-week-old C57BL/6 mice (H-2b). Fully
vascularized heterotopic heart transplantation was performed as
described previously (45, 46).

Flow Cytometry
Draining lymph node (dLN) and spleen cells were harvested
and stained with anti-CD4-FITC, CD8-FITC, CD44-V450,
CD62L-PE-Cy7, FoxP3-APC, EOMES-PE-Cy7, Bcl-6-PE, and
anti-Thy1.1 (CD90.1)-PE Abs (eBioscience or BD Biosciences).
To determine intracellular expression of FoxP3, EOMES, and
Bcl-6, cells were fixed and permeated according to the protocol
of Foxp3/Transcription Factor Fixation/Permeabilization
Concentrate and Diluent Kit (eBioscience). Then, cells were
stained with anti-FoxP3, EOMES, or Bcl-6 Abs and finally
analyzed using FACSAria III (BD Biosciences). To purify CD8+
TCM cells, cells were stained with anti-CD8-FITC, CD44-V450,
and anti-CD62L-PE-Cy7 Abs and CD8+CD44highCD62Lhigh

T cells were sorted out via FACSAria III (BD Biosciences). To
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purify CD3+ T cells, splenocytes were stained with anti-CD3-PE
Ab and CD3+ cells then were sorted out.

16S rRNA Gene Amplification and
Sequencing
Caecum microbiota from recipient mice were collected and
used for DNA extraction. Then V4 region of 16S rRNA
genes was amplified from purified DNA using specific PCR
primers (F515/R806). Replicate PCR products were quantified
and pooled. Finally, all determinant libraries were sequenced on
an Illumina MiSeq platform.

Sequencing Data Analysis
Sequencing data were analyzed via FLASH (Fast Length
Adjustment of Short reads, v1.2.11) for generating Tags,
which were subsequently clustered to OTU (Operational
Taxonomic Unit) at 97% similarity by scripts of software
USEARCH (v7.0.1090). Then OTU representative sequences
were taxonomically classified using Ribosomal Database Project
(RDP) Classifier v.2.2 (47) trained on the Greengenes database
(48), utilizing 0.6 confidence value as cutoff.

Bacteria Strains, Culture, and Preparation
of Bacterial Suspension
Bacteroides ovatus (Bacteroides ov.) was purchased from
ATCC (ATCC 8483), and cultured in anaerobically sterilized
ATCC medium 260 containing tryptone, soytone, NaCl, and
sheep blood (defibrinated) under strict anaerobic conditions
overnight. Bacillus ce. was bought from BeNa Culture Collection
(BNCC103930) and cultured in anaerobically sterilized medium
260. Briefly, cultures were centrifuged at 9,000 rpm for 10min
and re-suspended in PBS containing 10% glycerol to 5 × 1010

colony-forming units (CFUs)/ml.

Quantification of the Abundance of
Bacteria Via qPCR
Bacterial relative abundance was determined by qPCR using the
ABI ViiA 7 detection system (Thermo Fisher Scientific) and
THUNDERBIRD SYBR qPCR Mix (TOYOBO). The relative
quantity of each bacteria was calculated by the 1Ct method
and was normalized to the amount of total bacteria (16S). The
primers for 16S rRNA gene were used as the following: Forward,
5′-ACTCCTACGGGAGGCAGCAG-3′, Reverse, 5′-ATTACCG
CGGCTGCTGG-3′. For taxa assays, the following primers were
used: Bacteroides ov., Forward, 5′-AAGTCGAGGGGCAGCA
TTTT-3′, Reverse, 5′- CACAACTGACTTAACAATCC-3′; and
Bacillus ce., Forward, 5′-TTCAAATTCAAAAGAATGTTGAA
GAAGG-3′, Reverse, 5′-GATTTGTTTGCTTATTCATTTCAT
CAC-3′.

Analysis of T Cell Apoptosis and
Proliferation in vitro
FACS-sorted CD3+ T cells derived from Thy1.1+ C57BL/6
mice were sorted out, labeled with CFSE and then cultured
with BALB/c splenocytes in the presence of berberine or CsA.
Briefly, cells were stained for Annexin V-APC according to the

protocol of Annexin VApoptosis DetectionKit (BDBiosciences).
For proliferation assays, cells were labeled with 1µM CFSE
(Invitrogen, Germany) at room temperature for 15min. Then,
cells (2 × 105 cells/well) were cultured with mitomycin C-
treated BALB/c splenocytes (4 × 105 /well) in 96-well plates in
complete RPMI-1640 medium in the presence of IL-2 (10 ng/ml,
Peprotech) at 37◦C for 4 days. These cells were treated with
berberine (0.1 and 0.5µM) or CsA (100mM). To measure
memory T-cell response to Bacillus ce., CD8+ T-cells from
previously transplanted mice were purified, labeled with CFSE
and cultured with self-APCs in the presence of inactivated
Bacillus ce. (1 × 105 CFU/well), for 24 h. Bacillus ce. was
inactivated by incubating at 65◦C for 1 h (49), while self-APCs
(50) were obtained from C57BL/6 splenocytes depleted of CD3+

T cells using magnetic micro-beads. Finally, cells were harvested
and their proliferation was measured after gating on Thy1.1+

populations using FACS.

Measurement of IFN-γ and IL-17A via
ELISA
The protein levels of IFN-γ and IL-17A were measured using
ELISA kits according to the manufacturer’s instructions (Boster,
China), and the absorbance was read at 450 nm in a microplate
spectrophotometer (Thermo Fisher Scientific, USA).

Statistical Analysis
Comparisons of the means were performed using one-way
ANOVA or Student t-test. Data analyzed using GraphPad Prism
7 (GraphPad Software, La Jolla, CA, USA). The analysis of graft
survival was performed using Kaplan–Meier method (log-rank
test). A value of P < 0.05 was considered statistically significant.

RESULTS

Berberine Inhibits Murine Islet Allograft
Rejection
To investigate the effects of berberine on allograft survival,
C57BL/6 mice were transplanted with islets from BALB/c mice
and treated with berberine (Ber) or broad-spectrum antibiotics
(ABX). As shown in Table 1, berberine extended islet allograft
survival in immune competent wild-type mice compared to
the control, with a statistical significance (median survival time
or MST = 33 vs. 14 days, P < 0.05), while ABX did not
(MST = 18 vs. 14, P > 0.05), suggesting that berberine can
regulate alloimmunity.

TABLE 1 | Berberine suppresses murine islet allograft rejection.

Group Survival time Median survival

(days) time (MST)

Control 11,12,12,13,14,14,15,16,17 14

ABX 13,14,15,17,19,22,24,25 18

Berberine 21,23,27,31,35,36,38,41 33*
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Berberine Diminishes Effector and Memory
CD8+ T Cells
To determine whether berberine would regulate effector
CD8+ T cells (CD44highCD62Llow, Teff) and central memory
CD8+ T cells (CD44highCD62Lhigh, TCM), dLN and spleen
cells from recipient mice treated with berberine or ABX

were isolated 4 weeks after transplantation. As shown in
Figures 1A,B, either berberine or ABX decreased CD8+

Teff number in dLNs while berberine, but not ABX, also

reduced their number even in the spleen. However, it was
berberine but not ABX that lowered CD8+ TCM number in
dLNs and spleen of recipient mice (Figure 1B). Interestingly,

FIGURE 1 | Berberine reduces effector and memory CD8+ T cells. Cells from dLN and spleen of recipient mice were harvested 4 weeks after islet transplantation and

treatment with berberine. The percentages of CD8+CD44highCD62Llow (Teff ) and CD8+CD44highCD62Lhigh (Tcm) cells were measured via a flow cytometer (A), while

their absolute numbers were also calculated (B). Data of individual values (b) are presented as median ± interquartile range (*P < 0.05 and **P < 0.01, n = 6–7

mice/group).
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berberine did not significantly alter CD4+FoxP3+ Tregs
(Supplementary Figure 1).

Four weeks after transplantation, berberine also significantly
reduced CD8+ TCM cell number in naïve mice without
transplantation (Supplementary Figure 2). Moreover,
we tracked CD8+/CD4+ Thy1.1+ TCM cell formation in
transplanted mice adoptively transferred with naïve Thy1.1+

T cells. CD44highCD62LhighCD8+/CD4+TCM numbers within
Thy1.1+ population were determined via FACS. We found that
berberine, but not ABX, reduced the number of Thy1.1+CD8+,
but not Thy1.1+CD4+, TCM cells in both dLNs and spleen
(Supplementary Figure 3), indicating that it downregulates
CD8+, but not CD4+, T-cell memory. To further track
alloreactive CD8+ TCM cells that are still non-artificial or non-
transgenic, CD3+ T cells isolated from naïve Thy1.1+ B6 mice
were stained with CFSE and stimulated with BALB/c splenocytes
in an MLR for 4 days. Thy1.1+CD8+ T cells that underwent
at least two divisions were sorted and injected into C57BL/6
mice that were then transplanted with BALB/c islets and treated
with berberine. We found that alloreactive Thy1.1+CD8+
TCM cell number was decreased by berberine, but not ABX
(Supplementary Figure 4). Finally, berberine did not promote
the apoptosis of CD4+ T, CD8+ T, CD19+, and CD11c+ cells
(Supplementary Figure 5), suggesting that orally administered
berberine is non-cytotoxic.

Berberine Suppresses EOMES Expression
in CD8+ T Cells in vivo
EOMES, a transcription factor, is considered to be crucial
for the maintenance of TCM cells (51, 52). Bcl-6 is another
transcription factor that is also important for the generation of
TCM cells (53). We found that berberine downregulated EOMES
expression in CD8+ T cells from recipient mice, but did not
significantly reduce Bcl-6 expression (Figure 2). However, there
was no significant difference in their expression between ABX
and control groups.

Berberine Alters the Composition of the
Gut Microbiota in Recipient Mice
To characterize the potential changes in gut flora 14 days
after transplantation, bacterial DNA was extracted from caecal
samples of recipients and 16S rRNA sequencing was performed.
Berberine did not significantly decrease overall bacterial richness,
as determined by analysis of OTUs (operational taxonomic
units), which contrasted with a reduction in bacterial richness
in ABX-treated mice (data not shown). Therefore, berberine
treatment did not alter general bacterial richness. Furthermore,
we analyzed the microbial abundance to identify berberine-
sensitive microorganism. Among the top 26 genus-level taxa,
berberine-treated recipients had much lower relative abundance
of Bacillus in their microbiota and higher abundance of
Bacteroides and Turicibacter (Figure 3A). Quantitative PCR also
was performed to validate the sequencing results, and the
expansion of Bacteroides ov. and contraction of Bacillus ce. were
indeed observed in the cecum microbiota of berberine-treated
mice (Figure 3B).

FIGURE 2 | Berberine inhibits the expression of EOMES in CD8+ T cells. dLN

cells were harvested 14 days after allotransplantation with various treatments.

The expression of EOMES and Bcl-6 in CD8+ T cells was detected via a flow

cytometer and quantified as mean fluorescence intensity (MFI). Histogram is

shown after gating on CD8+ population. Plots of individual values are

presented as median ± interquartile range (*P < 0.05, n = 6–8 mice/group).

Berberine Promotes Long-Term Islet
Allograft Survival Under the Cover of
Costimulatory Blockade While Addition of
Exogenous CD8+ TCM Cells or Bacillus ce.
Reverses It
Since berberine reduced CD8+ TCM formation, we then asked
if berberine would help induce long-term islet allograft survival.
We found that treatment with berberine plus either anti-CD154
Ab (MR1) (Figure 4A) or CTLA4-Ig (Figure 4B) induced long-
term islet allograft survival (>90 days) in some recipients
although berberine, MR1 or CTLA4-Ig alone extended islet
allograft survival. On day 28, some groups of transplanted
mice that were treated with berberine plus MR1 or CTLA4-Ig
also received a single dose of bacterial strain (Bacillus ce. or
Bacteroides ov.: 1 × 107 CFU) or CD8+ TCM cells derived from
C57BL/6 recipients that were previously transplanted/primed
with either BALB/c or C3H/HeJ skin (3rd-Party). As shown
in Figure 4, administration of alloreactive, but not 3rd -party,
CD8+ TCM cells reversed the long-term islet allograft survival,
with all recipients rejecting their allografts within 60 days, and so
did Bacillus ce. transplantation. However, addition of Bacteroides
ov. failed to alter long-term islet survival induced by Ber +
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FIGURE 3 | Berberine alters the composition of gut microbiota in recipient mice. Bacterial DNA was isolated from the cecum of B6 recipient mice transplanted with

BALB/c islets 14 days after berberine treatment, and was analyzed via high-throughput sequencing. (A) The distribution of the top 26 bacterial taxa in

berberine-treated and control groups at genus level (n = 4/group, shown as mean ± SEM, *P < 0.05). (B) Quantitative PCR was performed for validation of relative

abundance of Bacteroides ov. and Bacillus ce. in caecum of control and berberine-treated mice (n = 5 mice/group, shown as median ± interquartile range with

control group being set as 1.0).

MR1 (Figure 4A), while treatment with ABX + CTLA4-Ig also
did not further extend the islet allograft survival compared to
CTLA4-Ig alone (Figure 4B). Thus, although berberine increased
the abundance of Bacteroides ov., the latter did not prolong
allograft survival.

Bacillus ce. Transplantation, but Not
Costimulatory Blockade, Increases CD8+

TCM Cells
To examine direct effects of Bacillus ce. on CD8+ TCM

generation, we performed re-colonization of Bacillus ce. in
some islet recipients. CD8+ TCM cells were quantified via
FACS analyses. As shown in Figure 4C, Bacillus ce. colonization
increased CD8+ TCM cells. However, colonization of Bacteroides
ov. did not alter their number (data not shown). Interestingly,
either ABX or costimulatory blockade alone failed to significantly
change their number, whereas treatment with Ber + MR1 or
Ber + CTLA4-Ig further reduced their number compared to
MR1 or CTLA4-Ig alone (Figure 4C). These results suggest that

Bacillus ce. upregulates CD8+ TCM cells while berberine does
the opposite, with the costimulatory blockade of CD154 or CD28
alone failing to alter CD8+ TCM formation.

Berberine Induces Cardiac Allograft
Tolerance Under the Cover of
Costimulatory Blockade
To further confirm if berberine would help induce long-term
allograft survival or tolerance in solid organ transplantation,
C57BL/6 mice received a heart derived from BALB/c mice and
were treated with berberine and/orMR1. As shown in Figure 5A,
we found that berberine alone indeed delayed cardiac allograft
rejection (MST = 32 vs. 6 days) while berberine plus MR1
induced long-term cardiac allograft survival (>90 days) in 6 of
9 recipients. Among the 6 recipients with an accepted cardiac
allograft, 3 of them rejected a new skin allograft from C3H/HeJ
donor while the rest of the recipients accepted a new one from
BALB/c donor (Figure 5B), suggesting that berberine induces
allospecific cardiac transplant tolerance.
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FIGURE 4 | Berberine promotes long-term islet allograft survival induced by costimulatory blockade while addition of exogenous CD8+ TCM cells or Bacillus ce.

reverses the long-term islet survival. C57BL/6 mice were transplanted with islets from BALB/c mice and treated with berberine for 3 weeks and/or MR1/CTLA4-Ig on

days 0 and 4. On day 28, some of transplanted mice that were treated with berberine plus MR1 (A) or plus CTLA4-Ig (B) received a single dose of bacterial strain

(Bacillus ce. or Bacteroides ov.: 1 × 107 CFU) or 1 × 106 CD8+ TCM cells isolated from an untreated B6 recipient that was previously transplanted/primed with

BALB/c or C3H/HeJ skin (3rd-Party). Islet allograft survival was observed (n = 7–9 mice, *P < 0.05). In some groups, transplanted mice were also treated with ABX

and/or CTLA4-Ig. (C) Draining dLN cells were harvested and assessed using a flow cytometer 4 weeks after transplantation with various treatments. The absolute cell

numbers of CD8+CD44highCD62Lhigh (TCM) cells were measured via FACS. Data are presented as median ± interquartile range (*P < 0.05, n = 6 mice/group).

FIGURE 5 | Berberine induces cardiac allograft tolerance under the cover of costimulatory blockade. To further confirm if berberine would help induce long-term

allograft survival or tolerance in solid organ transplantation, C57BL/6 mice received a heart derived from a BALB/c mouse and were treated with berberine and/or

MR1. Cardiac allograft rejection was observed (n = 7–9 mice/group, *p < 0.05) (A). Moreover, C57BL/6 recipients with an accepted cardiac allograft (BALB/c) for 90

days were transplanted with a skin graft from a BALB/c or C3H/HeJ (third-party) donor (n = 3 mice/group), and skin allograft rejection was observed (B).
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Berberine, at Low Concentrations Close to
Those Achieved in Blood in vivo, Does Not
Suppress T Cell Proliferation and
Differentiation in vitro
Orally administered berberine is barely absorbed in the intestinal
tract, with a maximal concentration of <0.1µM achieved in
the blood (29–32). To determine if berberine directly inhibits
T cell activation in vitro, FACS-sorted CD3+ T cells from
Thy1.1+ C57BL/6 mice were stimulated with mitomycin C-
treated BALB/c splenocytes for 4 days. As shown in Figure 6A,
T cell apoptosis started to increase when berberine was
used at 2.5µM and reached 46.4% when used at 12.5µM.
Importantly, berberine, at either 0.1 or 0.5µM, which did not
yet promote T cell death, did not suppress T cell proliferation
whereas CsA did so (Figure 6B). Similarly, berberine failed to
reduce IFNγ (Figure 6C) or IL-17A (Figure 6D) level in the
supernatant. These findings indicate that berberine, at relatively
low concentrations that can be maximally achieved in the blood
following oral administration, does not inhibit T cell response in
an MLR, a setting of alloreactivity.

CD8+ T Cells From Mice Previously Primed
With BALB/c Skin Rapidly Respond to
Bacillus ce. in vitro
To determine whether alloreactive memory CD8+ T cells
developed in transplanted mice would rapidly cross-react to
Bacillus ce., FACS-sorted CD8+ T cells derived from C57BL/6
recipients previously transplanted with BALB/c or C3H/HeJ
(third-party) skin were stained with CFSE and cultured with
inactivated Bacillus ce. and self APCs. CD8+ T cell division was
measured via FACS while IFNγ expression was measured using
ELISA. As shown in Figure 7A, 17.7% of CD8+ T cells, which
were derived from C57BL/6 recipients previously transplanted
with BALB/c skin, proliferated compared with only 2% of the
cells from untransplanted naïve mice or 3.6% of the cells from
those transplanted with skin of C3H/HeJ mice. Few control cells
without Bacillus ce. stimulation proliferated. Furthermore, CD8+
T cells derived from C57BL/6 recipients previously transplanted
with BALB/c skin also produced more IFNγ than control cells or
those from recipients previously transplanted with C3H/HeJ skin
(a third-party) (Figure 7B). These findings indicate that CD8+
T cells from transplanted/primed mice contain BALB/c-specific
memory T cells rapidly cross-reacting to Bacillus ce, but do not
necessarily imply that this cross-reactivity is limited to BALB/c
donor antigens.

DISCUSSION

Using murine models of islet and cardiac allotransplantation,
we found that berberine, a natural compound used to treat
bacteria-associated diarrhea, delayed acute allograft rejection,
and induced long-term allograft survival or tolerance under
the cover of brief costimulatory blockade. In contrast, broad-
spectrum ABX alone did not significantly delay acute rejection
of a fully MHC-mismatched allograft, which is consistent with a
previous study (54). Instead, Lei et al. demonstrated that ABX

alone mainly extended minor antigen-mismatched skin graft
survival (19). Collectively, previous studies and ours indicated
that ABX did not dramatically suppress fully MHC-mismatched
allograft rejection. Further, we found that berberine repressed
CD8+ TCM without a confounding effect on CD4+Foxp3+
Tregs. In contrast, ABX resulted in a reduction in Treg frequency
in recipient mice, which was consistent with a recent study by
Guo et al. (12). This phenomenon may have restricted otherwise
beneficiary effects of ABX on allograft survival.

Previous studies have shown that berberine attenuates
autoimmunity in animal models by inhibiting Th1/Th2
responses (34–42). For those studies in vitro, berberine was used
at a concentration of ≥5µM. However, it’s well-known that the
concentrations of berberine can not reach more than 0.1µM
upon the oral administration because it is barely absorbed by the
intestine (29–32). We found that berberine, at a concentration of
up to 0.5µM, did not inhibit T cell proliferation and Th1/Th17
responses in an MLR, an in vitro setting of alloimmunity,
indicating that berberine in our model does not directly suppress
alloreactive Th1/Th17 responses. In contrast, we demonstrated
that a higher concentration of berberine, at 12.5µM, caused
significant T cell apoptosis, indicating its cytotoxicity in vivo if it
is directly injected. Moreover, previously studies were concerning
animal models of autoimmunity, but not alloimmunity. It is
ruled out that berberine, even with ultra-low concentrations
in the blood, may still moderately suppress autoimmunity,
directly or through altering the gut microbiota in vivo. At
higher concentrations, such as 50–100µM, berberine might
also have suppressed Th1/Th17 cells by killing T cells in those
studies. Therefore, it’s very likely that berberine helps promote
long-term allograft survival induced by costimulatory blockade
via indirectly altering the gut microbiota, instead of directly
inhibiting Th1/Th17 responses, given that berberine simply
could not reach 0.1µM in the blood after oral administration
(29–32) and that, at up to 0.5µM, it still did not suppress
alloreactive T cell responses in our study in vitro. Importantly,
our findings that treatment with berberine plus ABX failed
to suppress allograft rejection also indicate that berberine
does not directly inhibit alloreactive T cells in the presence
of ABX.

Donor-specific memory T cells pose a significant challenge to
long-term allograft survival. The presence of memory T cells in
the blood of kidney graft recipients has been associated with poor
outcomes in clinical transplantation (55, 56). Studies in animal
models also revealed that memory T cells triggered rapid allograft
rejection (57–59). Moreover, endogenous memory CD8+ T
cells could still respond to alloantigens despite costimulatory
blockade of CD28-CD80/86 or CD40-CD154 (60) while CD122
as a component of high-affinity IL-15 receptor was critical for
memory CD8+ T cell recall response that was also independent
of CD28 signaling (61). Our study revealed that berberine
downregulated both CD8+ Teff and CD8+ TCM cells, implying
that it is a potential agent to be used for induction of transplant
tolerance. Interestingly, a previous study demonstrated that
costimulatory blockade-mediated lung allograft acceptance was
dependent on the intragraft infiltration of CD8+ TCM cells
(62), suggesting that a regulatory subset of CD8+ TCM cells
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FIGURE 6 | Berberine, at maximal concentrations achieved in the blood upon oral administration, does not inhibit T cell response in vitro. (A) FACS-sorted CD3+ T

cells derived from Thy1.1+ C57BL/6 mice were sorted out and cultured with mitomycin-C-treated BALB/c splenocytes in the presence of various concentrations of

berberine or CsA for 4 days, as detailed in the supporting information (item 2.3). Cells were then stained with Annexin V to detect their apoptosis. (B) CD3+ T cells, as

described above, were labeled with CFSE before their culture. Four days later, they were stained for surface Thy1.1 and analyzed via FACS. Histograms were gated on

Thy1.1+ T cells and one of the three sets was shown. Moreover, the culture medium was collected to determine the level of IFN-γ (C) and IL-17A (D) via ELISA. Plots

of individual values are presented as median ± interquartile range (*P < 0.05, **P < 0.01, n = 5–6 mice/group from three separate experiments).

may be induced in that model. Importantly, it’s likely that
not all CD44high T cells in our model are alloreactive. Thus,
there is a limitation in defining alloreactive CD8+ TCM cells
using CD44 marker. To further determine an effect of berberine
on donor-specific CD8+ TCM generation, we therefore used
an adoptive transfer model of pre-activated Thy1.1+CD8+
T cells with at least two divisions in an MLR in vitro, we
found that berberine indeed reduced alloreactive Thy1.1+CD8+
TCM cells in recipient mice. It remains to be defined if
berberine can also hinder the formation of CD8+ TCM cells
in humans.

We validated the alteration of twomicrobial species, including
Bacteroides ov. and Bacillus ce., by quantitative qPCR. Bacteroides
ov., a species member of Bacteroidaceae family that is a
predominant group in gut bacteria of almost all mammals (63),

was previously reported to alleviate LPS-induced inflammation
in mice (64) and was increased in berberine-treated recipient
mice in our study. Nevertheless, we found that colonization
of Bacteroides ov. alone was insufficient to ameliorate acute
allograft rejection. On the other hand, we demonstrated that
berberine reduced overall levels of Bacillus ce., the toxin-
producing bacteria capable of causing human diarrhea, while
recolonization of Bacillus ce. reversed long-term islet allograft
survival induced by berberine plus brief costimulatory blockade,
implying that Bacillus ce. is a pathogen precipitating allograft
rejection. More importantly, our mechanistic studies revealed
that colonization of Bacillus ce. increased CD8+ Teff and
TCM cells whereas addition of Bacteroides ov. did not. This
finding underscores differences in their immunomodulation
and suggests that berberine can eliminate bacterial species that
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FIGURE 7 | Bacillus ce. induces in vitro proliferation and IFN-γ expression by CD8+ T cells derived from recipient mice that were primed with BALB/c skin.

FACS-sorted CD8+ T cells derived from naïve or C57BL/6 recipients transplanted with BALB/c or C3H/HeJ skin 4 weeks earlier were stained with CFSE and cultured

in the presence of inactivated Bacillus ce. plus inactivated self APCs obtained from C57BL/6 splenocytes depleted of CD3+ T cells via magnetic micro-beads

detachment. Twenty-four hours later, CD8+ T cell division was measured via FACS analysis after gating on CD8+ population (A), while one representative of three

separate sets of histograms is shown. Besides, IFNγ expression by the lyzed cells was also measured via ELISA (B). Data of individual values are presented as median

± interquartile range (*P < 0.05, n = 4 mice/group).

would otherwise promote alloreactive CD8+ TCM generation.
Indeed, we found that Bacillus ce. contained a cross-reactive
antigen that stimulated the formation of alloreactive CD8+
TCM cells, because Bacillus ce. rapidly stimulated in vitro
proliferation and IFN-γ expression by alloreactive CD8+
TCM cells derived from recipient mice that were previously
transplanted or primed with specific donor organs. It is
possible that endotoxins released by Bacillus ce. could also
stimulate CD8+ T cells in vitro. Fortunately, the response to
endotoxins, released possibly by the bacteria, would not be so

fast, such as 24 h, because this response was an alloreactive
memory recall.

Taken together, berberine promotes the induction of allograft
tolerance via downregulating memory CD8+ T cells through
altering the gut microbiota because: (1) Berberine promoted
long-term allograft survival, downregulated CD8+ Tcm and
lowered Bacillus cereus abundance; (2) Addition of CD8+ Tcm
or B. cereus reversed allograft survival induced by berberine plus
costimulatory blockade; and (3) Furthermore, CD8+ Tcm cells
recovered once B. cereus was added back to the recipients. Our
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findings could be implicated for clinical transplantation since
berberine has already been widely used to treat gastroenteritis
and diarrhea in China (65, 66). Berberine can support a healthy
balance of the gut microbiota (67). Furthermore, previous
studies have reported that berberine has several pharmacological
properties, including improvement of insulin resistance and
cholesterol- or glucose-lowering activities (29, 68–72). A recent
clinical trial in individuals with ulcerative colitis also showed that
berberine reduced the Geboes grade in colonic tissue of patients
(73). Thus, berberine can be used to treat multiple diseases
in clinic.
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