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Background
If a patient needs intravenous administration of medication, it is important for the clini-
cian to understand the basic pharmacokinetics of these medications. However, in recent 
years, ample evidence has been found [1–4], including a number of clinical cases and 
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catheter, and after implementation in Mathematica (Wolfram), explicit expressions are 
produced automatically. Consistency of the resulting analytical expressions has been 
examined for limiting cases, and three types of in-vitro measurements have been per-
formed to obtain a first experimental test of the validity of the theoretical results.

Results:  The relative contribution of various factors affecting the dosing errors, such 
as the Poiseuille flow profile, resistance and internal volume of the catheter, mechani-
cal compliance of the syringes and the various pump flow rate settings, can now be 
discerned clearly in the structure of the expressions generated by our method. The 
in-vitro experiments showed a standard deviation between theory and experiment of 
14% for the delay time in the catheter, and of 13% for the time duration of the dosing 
error bolus.

Conclusions:  Our method provides insight and predictability in a large range of pos-
sible situations involving many variables and dependencies, which is potentially very 
useful for e.g. the development of a fast, bed-side tool (“calculator”) that provides the 
clinician with a precise prediction of dosing errors and delay times interactively for 
many scenario’s. The interactive nature of such a device has now been made feasible 
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tions, as opposed to conventional time-consuming numerical simulations.
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in vivo studies [5–9], indicating that physical effects related to the infusion hardware are 
equally important to understand [10, 11]. Especially in critical care, on the ICU and the 
OR, where multiple medications are typically delivered through one single lumen of a 
thin catheter, these physical effects may cause ambiguous and counter-intuitive discrep-
ancies between the intended dose and the dose that has been actually delivered. This is 
particularly true if the dosing rate is adjusted ad hoc [12]; for example, fast-acting and 
critical inotropic drugs are often titrated, based on the mean arterial blood pressure 
(MABP).

There are three major factors that can produce significant deviations from the 
intended medication dosing rate scheme: (i) the length of the catheter causes a delay 
in the administration of the medication into the patient, and therefore, a mixture, cor-
responding to previous medication dosing rates, may still be present inside the catheter, 
i.e. the contents inside the catheter constitutes a “memory” in which the effects of previ-
ous medication dosing rates may be stored. This has been called “dead volume effect” in 
the literature [7, 13]. (ii) The syringes that are used in clinical practice are far from ideal, 
because these syringes have a significant mechanical compliance primarily due to the 
compressibility of the rubber plunger inside the syringe [14]. Therefore, whenever the 
flow rate setting of one of the infusion pumps in a multi-infusion set-up is altered, pres-
sure changes within the entire system cause a change in the deformation of compressible 
and expandable parts (i.e., the other syringes) within the system, and hence may cause a 
deviation from the intended flow rates. (iii) The low velocities of the fluids in catheters 
ensure that the flow inside these lines will be laminar (low Reynolds number), and hence 
exhibit a Poiseuille flow profile, in which the fluid particles near the central longitudinal 
axis of the catheter travel faster than fluid particles near the wall of the catheter, thus 
giving rise to a “mixing effect” of its own.

Several infusion simulation studies have shown the importance of these problems by 
demonstrating the influence of the physical effects of dead volume, compliance and the 
Poiseuille effect on drug delivery in isolation: There are a number of studies that describe 
the “dead volume effect” in isolation from the syringe compressibility (“compliance”) 
effect [7]. In simple cases, calculation of the “dead volume effect” is straightforward: If 
the actual volumetric flow rate ucath inside a single lumen catheter is assumed to be con-
stant, and the internal volume Vcath of the catheter (i.e., the internal volume as meas-
ured starting from the mixing point, at which the medications from all syringes come 
together, up to the distal catheter tip inside the vasculature of a patient) is known, then 
calculation of the “delay time” tdelay, i.e. the time needed for a droplet of medication to 
travel through the dead volume before it reaches the blood stream of the patient, is sim-
ply tdelay = Vcath/ucath.

In clinical practice, however, the situation is often more complex: the flow rate may 
vary during the delay time due to changes in the pump flow rate settings, and the actual 
flow rate also typically differs from the pump flow rate setting value temporarily, due 
to the effects of mechanical compliance as mentioned above. These compliance effects 
have been studied in isolation as well [2, 3, 15]. Its basic mechanism is a “capacitor” 
effect, which has been quantified using the electric analog of a system containing capaci-
tors, and the calculations of the dosing errors have been performed using the Laplace 
transform.
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The third major factor, the mixing effect due to the Poiseuille profile [16], can be 
described as a convolution, as will be explained in more detail in “Appendix”. It causes 
a spreading out of the dosing error in time, in which the first arrival of the dosing error 
occurs sooner then it would have without Poiseuille mixing effect.

As a result, due to the combination of the effects (i), (ii), and (iii) mentioned above, 
non-trivial deviations from the intended medication dosages scheme may occur, as will 
be explained below.

In an earlier paper, we have shown that the “dead volume effect” on one hand, and 
syringe compliance (“capacitor”) effect on the other hand, produce opposite deviations 
from the pump flow rate settings in the actual drug output concentrations, making the 
net result hard to predict and often counterintuitive [4].

In this paper, however, we focus on the mathematical method of calculating dos-
ing errors in multi-infusion setups in complex situations. The aim of the new method 
described in this paper is to obtain analytical expressions for the deviations from the 
intended dosages during multi-infusion that result from the combination of the effects 
(i) and (ii) described above. These analytical expressions contain dependencies on 
parameters that represent the physical variables in a multi-infusion set-up, such as: 
intended flow rates of the various pumps, compliances of the syringes, resistances of the 
various tubes, height differences within the multi-infusion set-up, etc.

As opposed to conventional numerical simulations, our objective therefore is to obtain 
explicit analytical expressions for these deviations, in which physical characteristics of 
the multi-infusion set-up are represented explicitly as variables.

We see the need for a tool for clinicians and medical physicist that provides under-
standing of the role that various physical parameters (i.e., characteristics of the multi-
infusion hardware) play in the emergence of a dosing error. In order to make these roles 
explicit, we will use our new mathematical approach, presented in the “Method: analyti-
cal model, and in-vitro set-up” section of this paper, to explicate these roles in the form 
of direct mathematical relationships between physical hardware parameters and dosing 
errors.

For our mathematical model we used the strong symbolic calculation capabilities of 
the Mathematica package (Mathematica 10, Wolfram® Inc., USA) to process Laplace-
transforms and Z-transforms analytically. This will be explained in “Method: analytical 
model, and in-vitro set-up” section. Furthermore, we have performed in-vitro measure-
ments in order to verify our mathematical results experimentally.

Method: analytical model, and in‑vitro set‑up 
To start with, we analyse the total chain of causality, from a change in the pump flow 
rate setting value, up to the moment that a dosing error enters the bloodstream of the 
patient. As has been mentioned in the introduction, it is essential to recognize that the 
lumen of the catheter (i.e. the internal volume C inside the catheter, starting from the 
mixing point M, at which the medications from all syringes come together, up  to the 
distal tip P of the infusion line inside the vasculature of a patient) constitutes a mem-
ory in which the effects of previous changes in pump flow rate settings are stored. In 
the explanation of our method, we focus on a single-lumen catheter. This however can 
be easily extended to a multi-lumen catheter. In order to represent this memory in the 
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mathematical model, the internal volume of the catheter C between the points M and P 
is divided into tiny voxels Ak, in which the index k runs from k = 0 at point P to k = N  
at point M (see Fig. 1), in which N is a very large number. Let L denote the length of the 
catheter. Hence, the length of a single voxel equals γ, with γ = L/N . In our mathematical 
model, we use a general set-up containing any number of infusion pumps. For simplicity, 
however, we start with three pumps, in which each of these pumps contains a solution 
of a different medication, in which we used colours (“Red”, “Green”, and “Blue”, or R, G, 
and B, respectively) to denote the three different solutions. It is important to note that 
the R, G, and B denote the three different solutions as stored in their respective syringes, 
not the medications themselves. Furthermore, in this paper, the dosing errors will be 
expressed as volumes of the R, G, and B solutions, instead of dosages of the medications 
themselves. In Fig. 1a, the situation directly after t = 0 is depicted, i.e. the point in time 
at which a change in pump flow rate setting value of one of the pumps takes place. As a 
result, the first small voxel at k=N near the mixing point M is now being filled with a 
droplet ξ featuring a new mixing ratio between the solutions R, G, and B, resulting from 
the new pump flow rate setting values at t = 0. The rest of the voxels inside the line C, 
however, contain a fluid mixture that still has the old mixing ratio corresponding to the 
steady-state situation before the change in pump flow rate setting value. In Fig. 1b, the 
situation at t = tdelay is depicted, i.e. the point in time at which this specific droplet ξ , 
that has been situated inside voxel Ak=N at t = 0, has now reached the distal tip of the 
catheter at point P at t = tdelay. Hence, at t = tdelay, the entire line C has now been filled 

pump 2

pump 3

R

B

G

pump 1 voxel : k = 0
voxel : k = N

increasing k

voxel contents :

a
t = 0

pump 2

pump 3

R

B

G

pump 1 contents is now here

b
t = tdelay

Fig. 1  Example of a general multi-infusion set-up. In this example, the number of pumps is three. The 
method, however, allows for any number of pumps. a The catheter C contains a mixture of the fluids “R”, 
“G”, and “B”, in which “R”, “G”, and “B” are the contents of syringe 1, syringe 2, and syringe 3, respectively. We 
consider this mixture to be completely homogeneous, despite the “stratified” rendering of the three colours in 
catheter C in this figure. b Situation at t = tdelay; since tdelay is by definition the time needed to travel through 
the catheter C, the contents ξ that was inside the voxel k = N (near the mixing point M) at time t = 0 in 
a, has now reached the very tip P of the catheter at time t = tdelay, and is entering the blood stream of the 
patient
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with the new mixing ratio. The contents of voxel Ak, for any value of k, is described by 
the 3D-vector āk, in which

in which

The ratio a(R)k  represents the volume fraction of fluid (R) inside voxel k, i.e. the volume of 
solution (R) inside voxel k divided by the total volume inside voxel k. The voxel for which 
k = 0 is the very last voxel at point P inside the catheter, i.e. the distal tip of the catheter. 
This specific voxel at k = 0 releases its contents āk=0 directly into the blood stream of 
the patient.

Now consider the situation in which the flow rate setting of the “Green” pump is 
changed suddenly at t = 0, whereas the flow rate settings of the “Red” and “Blue” pumps 
are never altered. If the “old” total flow rate inside the catheter C before t = 0 has been 
constant and equal to uold for all t < 0, and the “new” total flow rate is also constant and 
equals unew for all t > 0, then the partial flow rate u(R)patient of the “Red” fluid leaving the 
catheter at point P (and thus entering the patient) at t = 0 equals:

in which the “old” mixing ratio refers to the mixing ratio produced by the pump rate set-
tings of t < 0.

As is explained in Fig. 2, the presence of the “old” mixing ratio in Eq. (3) can give rise 
to effects that may be unexpected to physicians, in which a temporary increase in the 
partial flow rate of (R) entering the blood stream occurs, although the setting value of 
the flow rate of the pump of (R) has never been changed. We will refer to this unwanted 
temporary increase in the u(R)patient as the “push-out” effect, which has sometimes been 
called “dead volume” effect in the literature [7]. In Fig. 2a, the situation before t = 0 is 
depicted. In Fig. 2b, a temporary, unplanned, and undesirable increase in u(R)patient occurs 
(see figure legend for explanation). After t = tdelay, the value of u(R)patient returns to its 
original value (Fig. 2c).

Furthermore, due to the mechanical compliance of the syringes, however (as men-
tioned at point (ii) in the introduction), the actual flow rate ucath(t) in the catheter does 
not follow the changes in pump flow rate setting values immediately. As a result, the 
actual flow rate ucath(t) is not exactly equal to the sum of the pump flow rate setting val-
ues u(R)pump(t), u(G)

pump(t), and u(B)pump(t), due to the transient mechanical compliance effects 
that cause extra fluid to be stored in, or released from, the syringes directly after changes 
in pump flow rate setting values:
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
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
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for t > 0 and t < tdelay
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Therefore, the general expression from which the “delay time” tdelay needs to be estab-
lished is:

in which ucath depends on the compliance characteristics of the syringes as well.

New method for incorporating the memory effect of the catheter into an analytical model

In this paper, we will follow the following strategy to calculate dosing errors analytically 
(see Fig. 3):

First, standard techniques [17] (involving the Laplace Transform) are used to calculate 
pressures and total flow rates (see Fig. 3a), in which the differences between the “Red”, 

(4)u(R)pump(t) + u(G)
pump(t) + u(B)pump(t) �= ucath(t)

(5)Vcath =
∫ tdelay

0
ucath(τ )dτ

t < 0

0 <  < tt delay

t > tdelay

Red (t < 0)

Red (0 < t < t )delay

Red (
= Red (t < 0)

 t > tdelay )  

a

b

c

Fig. 2  Schematic, illustrating the “push-out” effect, i.e.: the temporary increase in the outflow of the “red” fluid 
into the patient due to an increase in speed of the “blue” pump, as is explained below. a Two infusion pumps, 
filled with a “blue” and a “red” solution, respectively, produce the same flow rate, which is constant in time. 
The two flows are merged at the “mixing point” M, and subsequently travel towards point P, which represents 
the distal tip of the catheter where the fluid enters the blood stream of the patient. Since the flow rates of 
both pumps are equal, the catheter from point M to point P contains equal amounts of red and blue fluid, 
in the form of a mixture. This mixture is travelling with a flow rate that is twice the flow rate of each pump. A 
constant amount r of red fluid is entering the patient during each unit time interval (illustrated by a canister 
at point P for each unit time interval). b The same set-up, but now, at t = 0, the flow rate of the “blue” pump is 
suddenly increased by a factor 5. As a result, after t = 0, the amount of red fluid entering the patient at point 
P now temporarily equals 3r per unit time. Therefore, in b, the “memory effect” is visible: the distal part of the 
catheter (near P) still contains the “old” mixing ratio corresponding to the situation before t = 0. This “old” 
mixture is now being pushed out at the new speed; hence we dubbed this temporary increase in output of 
red fluid the “push-out” effect. In the literature, this effect is sometimes referred to as “dead volume” effect, or 
“catheter memory effect”. c After t = tdelay, the amount of red fluid entering the blood stream per unit time 
equals r again, which equals the intended dose, just like the situation before t = 0 in a
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“Blue” and “Green” solutions are disregarded; i.e. in this “color-blind” calculation, only 
the total flow rate inside the catheter ucath(t) is calculated. The mechanical compliance 
of the catheter is very small with respect to the mechanical compliance of the syringes 
[18], and therefore the mechanical compliance of the catheter is neglected in our model. 
As a result, the flow rate entering the tube at time t and the flow rate leaving the tube 
(entering the blood stream) at the same time t are both equal to ucath(t), disregarding 
the different constitutions that the fluids entering, and leaving, respectively, may have in 
terms of the partial fluids R, G, and B.

Secondly, our new analytical method is introduced (see Fig. 3b), which enables incor-
poration of the “memory effect” of the catheter into the model. In order to make the 
analytical approach possible throughout the entire calculation up to the end of point (d) 
in the figure, a formulation in the Z-domain (using the Z-transform, which is a discrete 
variant of the Laplace transform) is introduced. This analytical method uses the results 
form the standard (Laplace-based) method [see (a)] as an input. This input has the form 
of general expressions for the various total flow rates as function of time. The Z-trans-
form formulation in our method [see (b)] therefore does not replace the Laplace-based 
method from (a), but is used after it.

Third, the Z-domain formulation from (b) enables an easy, analytical, incorporation of the 
Poiseuille mixing effect (c) into the model, because the convolution-like nature of the Poi-
seuille mixing effect is reduced to a mere multiplication in the Z-domain. The mathematical 
details of the Poiseuille mixing effect are described in “Poiseuille mixing effect” section.

Finally (d), we derive expressions for the volume, and the first and second moment, of 
the dosing error as function of hardware parameters. These moments can be calculated 
directly within the Z-domain. From the first and second moment, key characteristics 
concerning timing and duration of the dosing error are derived.

Calculation of 
using standard techniques (Laplace transform)

pressures and flow rates

Defining the  using
a Z-transform based definition

contents inside the catheter

Incorporation of the

into the model : in the Z-domain,
the convolution-like effect of the
Poiseuille mixing is reduced to a 
simple multiplication  

Poiseuille mixing effect

Calculation of 
of the dosing error,

 which can be evaluated directly in the Z-domain 

volume and
 first and second moments 

a

b

c

d

Fig. 3  Outline of the analytical method as presented in this paper. a See “Starting point: Laplace transform 
and Kirchho’s laws” section. b See “Contents of the catheter without Poiseuille mixing effect” section. c See 
“Poiseuille mixing effect” section. d See “Calculation of moments of the dosing error distribution after Tdelay” 
section
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Throughout the entire process, we have used the symbolic calculation capabilities of 
the Mathematica package (Mathematica 10, Wolfram® Inc., USA) to process Laplace-
transforms and Z-transforms analytically, as can be seen in “Results” section.

Starting point: Laplace transform and Kirchhoff’s laws

In this paper, we focus on the multi-infusion of aqueous solutions, in which all solutions 
have a viscosity close to the viscosity of water. Therefore, in our mathematical model, 
all fluids are assumed to have approximately the same viscosity. For the calculation of 
the pressures and total flow rates, we use an electric circuit model that is analogous to 
the infusion set-up, in which current sources (the infusion pumps), resistances (infusion 
lines and catheter), and capacitors (mechanical compliance of the syringes) are present, 
and in which Kirchhoff’s laws are applied on the voltages (pressures) and currents (flow 
rates) in the Laplace domain. The output Ucath(s) of the calculation is the Laplace trans-
form of the total flow rate ucath(t) inside the catheter. This ucath(t) equals the total flow 
rate entering the tube at time t as well as the total flow rate leaving the tube (entering 
the blood stream) at the same time t. Let Ŵ denote the complete set of these changes in 
pump flow rate setting values, together with the physical hardware parameters of the 
set-up, which are present in the form of explicit parameters in the analytical expressions 
for Ucath(s). Using the Mathematica package (Mathematica 10, Wolfram® Inc, USA), 
we were able to perform an inverse Laplace transform in order to retrieve an analyti-
cal expression for ucath(t,Ŵ) from the Ucath(s,Ŵ), in which the above mentioned hard-
ware parameters Ŵ are present as explicit variables. This result is rendered in Eq. (33) in 
“Results” section.

Key parameters of dosing errors

The dosing errors that are produced after changes in pump flow rate setting values in 
a multi-infusion set-up are of a temporary nature, i.e. “dead volume” and “mechanical 
compliance” (points (i) and (ii), respectively, as mentioned in the introduction) give rise 
to only a temporary deviation of the actual dose rates (entering the blood stream) from 
the intended ones (see e.g. Fig. 2). As a result, each of these dosing errors has the shape 
of a “bolus”.

Let β(R)
patient(t) denote such a bolus-shapes dosing error, i.e. let β(R)

patient(t) denote the 
deviation from the intended partial flow rate [in this case of solution (R)], as a function 
of time, in which

Defining t = 0 as the moment that a change in pump flow rate setting value takes place, 
and defining β(R)

patient(t) as the dosing error due to (only) this specific change in pump 
flow rate setting value at t = 0, then we have by definition:

in agreement with the bolus-shaped nature of the dosing error β(R)
patient(t).

(6)β
(R)
patient(t) = u

(R)
patient(t)− u(R)pump

(7)∀t < 0 : β(R)
patient(t) = 0, and lim

t→∞
β
(R)
patient(t) = 0
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There are two basic mechanisms that contribute to the dosing errors, and the effect 
of each of these two mechanisms is restricted to a particular time interval: During the 
time interval 0 < t < tdelay, the dosing error entering the blood stream is caused by 
the push-out effect, as explained in Fig. 2. During the time interval t > tdelay, however, 
the dosing error entering the blood stream is caused by the effects of mechanical com-
pliance, because the “push-out effect” is by definition restricted to the time interval 
0 < t < tdelay . The effects of mechanical compliance are particularly strong directly after 
changing the pump flow rate settings, and thus the effects of mechanical compliance (in 
the form of deviating mixtures) are entering the catheter at point M at t = 0, and hence 
entering the patient at point P directly after t = tdelay.

In the following, we will use tPOISdelay instead of tdelay, because, as will be demonstrated 
below, the Poiseuille profile of the flow affects the tdelay, resulting in a modified delay 
time that we will refer to as tPOISdelay. Furthermore, we will consider a situation with two 
pumps (“Red” and “Green”) only, and will change the flow rate setting of the “Green” 
pump only (at t = 0), leaving the flow rate setting of the “Red” pump (denoted as u(R)pump) 
constant. This does not affect the applicability of our method in more general cases. The 
flow rate setting of the “Green” pump changes from u(G)

old  to u(G)

final at t = 0.
The β(R)

patient(t) for 0 < t < tPOISdelay is due to the push-out effect, and hence its calculation 
is relatively easy. The β(R)

patient(t) for t > tPOISdelay however is due to the mechanical compli-
ance, and hence its calculation is much more complex. Therefore, we split the β(R)

patient(t) 
into two parts according to the two corresponding distinct time intervals:

in which τ = t − tPOISdelay and ψ(R)
patient(τ ) represents the effects of mechanical compliance 

for t > tPOISdelay, and in which the dimensionless ψ(R)
patient(τ ) is bolus-shaped of its own:

In the following, we concentrate on finding analytical expressions for (the moments of ) 
ψ

(R)
patient(τ ). To this end, the discretized version ψ(R)patient

k  of ψ(R)
patient(τ ) is defined as:

Contents of the catheter without poiseuille mixing effect

In this subsection, we derive a generic expression for the Z-Transform of the contents 
{a(R)k } of the catheter, without incorporating the Poiseuille mixing effect. The Poiseuille 
mixing effect will be incorporated in the model later on.

First, let �tot(t) denote the distance that the fluid inside the catheter has traveled as a 
result of the total flow rate ucath, i.e.:

(8)β
(R)
patient(t) =



















0 if t < 0

β
(R)
pushout(t) = u

(R)
pump

u
(G)
final−u

(G)
old

u
(G)
old +u

(R)
pump

if 0 < t < tPOISdelay

ψ
(R)
patient(τ )

�

u
(G)

final + u
(R)
pump

�

if tPOISdelay < t.

(9)ψ
(R)
patient(τ ) = 0 if τ < 0 ∧ lim

τ→∞
ψ

(R)
patient(τ ) = 0

(10)ψ
(R)
patient(τ ) = ψ

(R)patient
k∗ with k∗ = τ

(

u
(G)

final + u(R)pump

) L

γVcath

(11)�tot(t) =
L

Vcath

∫ t

0
ucath(t

′) dt ′



Page 10 of 28Konings et al. BioMed Eng OnLine  (2017) 16:18 

Furthermore, let u(R)
M

 denote the actual partial flow rate of the Red fluid entering the 
catheter at the mixing point M.

For some voxel k inside the catheter, the value of the ratio a(R)k  reflects the u(R)
M

(t∗) 
divided by the total flow rate ucath(t∗), at the time t∗ that the contents of that particular 
voxel entered the catheter at M, i.e.:

in which γ = L/N . In order to facilitate a Z-transform, we rewrite Eq. (12) in the follow-
ing form:

The value of the Dirac delta δ(γ k − �tot(t)) is zero everywhere, except around t = t∗; 
hence evaluation of the integral in Eq. (13) shows the equivalence of Eqs. (12) and (13):

in which ε and η are both very close to zero.
Using the displacement rule from Z-transform theory [17], Eq. (13) now yields the fol-

lowing expression A(z) in the Z-domain:

Here it needs to be mentioned that, since the Z-transform is merely a discrete form of 
the Laplace transform, it would be, theoretically, possible to replace this Z-transform by 
yet another Laplace transform. However, for clarity, we have chosen to use the Z-trans-
form, because it connects to the “voxel-based” description of the contents inside the 
catheter in an intuitive way, and because it creates a clear distinction from the standard 
Laplace method used to calculate the pressures and flows that enter the mixing point M.

Similarly, we may define the basic input for the calculation of the dosing error of fluid 
(R) as the difference between u(R)

M
 (i.e. the actual partial flow rate of the Red fluid enter-

ing the catheter at the mixing point M), and the intended u(R)pump (i.e. the intended partial 
flow rate of the Red fluid entering the catheter at the mixing point M):

yielding

(12)a
(R)
k = u

(R)
M

(t∗)

ucath(t∗)
in which t∗ is such that γ k = �(t∗)

(13)a
(R)
k = L

Vcath

∫ ∞

0
dt u

(R)
M

(t)δ(γ k − �tot(t))

(14)

L

Vcath

∫ ∞

0

dt u
(R)
M

(t)δ(γ k − �tot(t)) =
L

Vcath

∫

t∗+ε

t∗−ε

dt u
(R)
M

(t)δ(γ k − �tot(t))

ε→0= L

Vcath

u
(R)
M

(t∗)
∫

t∗+ε

t∗−ε

dtδ(γ k − �tot(t)) =
L

Vcath

u
(R)
M

(t∗)
∫ γ k+η

γ k−η

d�

(

dt

d�

)

δ(γ k − �)

η→0= L

Vcath

u
(R)
M

(t∗)
(

d�

dt

)

t=t∗

= u
(R)
M

(t∗)

ucath(t
∗)

(15)A(z) = L

γVcath

∫ ∞

0
dt u

(R)
M

(t) z−�tot (t)/γ

(16)u
(R)diff
M

= u
(R)
M

− u(R)pump

(17)Adiff (z) = L

γVcath

∫ ∞

0
dt u

(R)diff
M

(t) z−�tot (t)/γ
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This approach now enables easy incorporation of the Poiseuille mixing effect into our 
model using a simple multiplication in the Z-domain, as is explained below.

Poiseuille mixing effect

The basic input for calculation of the Poiseuille mixing effect is the input from the Red 
line at M in the form of

which corresponds to Adiff (z) in the z-domain [see Eq. (17)]. The mixing effect due to 
the Poiseuille profile causes a spreading out of the dosing error in time, in which the 
first arrival of the dosing error occurs sooner then it would without Poiseuille mixing 
effect. In a Poiseuile flow, the velocity along the centerline of the tube equals two times 
the average velocity. This implies that, after a change in pump flow rate settings at t = 0 , 
the tip of the parabolic flow profile reaches point P at the end of the catheter already 
at t = tdelay/2. Hence, we define tPOISdelay as: tPOISdelay = tdelay/2. Because the Poiseuille mixing 
effect is a phenomenon that is created within the catheter during the very passage of the 
liquid through the catheter from point M to point P, an accurate description of the full 
extent of this effect can only be given in the form of the contents of the very last voxel at 
point P, just before this contents is released into bloodstream of the patient. This is illus-
trated in Fig. 4, in which the top diagram (Fig. 4a) shows the Poiseuille profile along the 
length of the catheter from point M to point P, in which the tip of the red, innermost, 
parabola has just finished its journey through the catheter, and is just to be released into 
the blood stream. Each parabola in Fig. 4a constitutes a boundary between two volumes 
of liquid that once were subsequent, undistorted, “regular” voxels when they entered the 
catheter at M. These initially flat boundaries between voxels near M are being stretched 
and distorted into the parabola-shaped boundaries during their travel to P.

In “Appendix”, it is derived that the Poiseuille flow profile causes a mixing effect that 
features a simple linear relation between concentration and distance along the line from 
M to P (see Fig. 4b), which is consistent with earlier work by e.g. Taylor [19] and Hutton 
and Thornberry [20].

Using this simple linear relationship, the constitution of the final voxel of the catheter 
at P can be defined in terms of the original, undistorted, voxels that once entered the 
catheter at M, as is illustrated in Fig. 4c. For instance, the contents of the “voxel ∗”, indi-
cated by the symbol ∗, which is voxel nr i counting from point P, and which is limited by 
two downward sloping lines and the thick blue horizontal line segment in Fig. 4c, con-
tributes to the final voxel at P with weight factor wi (indicated by the small vertical thick 
blue line segment). The dimensionless weight factor wi equals the voxel length γ times 
the first derivative of the expression x

L+x, which is depicted in Fig. 4b, and which is estab-
lished on the basis of geometrical reasoning using the triangles involved:

(18)a
(R)diff
k=N (t) = u

(R)diff
M

(t)

ucath

(19)wi = γ

[

d

dx

(

x

L+ x

)]

x=γ i
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which yields

Furthermore, the contents of each “voxel” i, with i running from 0 to infinity, equals that 
of voxel b(R)k−i, in which b(R) refers to the green curve in Fig. 4d, which is a “stretched-out” 
version of the original voxels a(R)diffj  that entered the catheter at M, i.e.:

which reflects the fact that the velocity along the centerline of the tube equals two times 
the average velocity. As a result, the summation of all contributions b(R)k−i with weight 
factors wi yields a (discrete) convolution, which is visible in the first term of the follow-
ing equation, in which the fraction of the Red solution inside the last voxel at point P is 

(20)wi =
γL

(γ i + L)2

(21)b
(R)
2j = a

(R)diff
j

L

bj

j=0j=k

L

0

1

WALL

WALL

WALL

WALL

w(i)

i

*

centerline

centerline

centerline

x

x
L+ x

b

a

c

d

Fig. 4  Schematic representation of the Poiseuille mixing effect, as explained in the text. a Poiseuille flow 
profile. b Linear relation between concentration and distance. c Geometry underlying the weight factor w(i). 
d Convolution with green curve
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denoted by the dimensionless scalar ψ(R)patient
k , and in which k refers to the position of 

the beginning of the green curve b (which shifts in time):

The second term in Eq. (22) does not depend on the compliances and resistances in the 
multi-infusion set-up, but represents the remnant fluid from the old mixture due to the 
poiseuille flow profile.

When calculating the first and second moment of ψ(R)patient
k  (or tcentral and the vari-

ance σ 2 from Fig. 5, respectively), these moments are simply the sum of the moments 
of the two distinct terms in Eq. (22). The moments of the second term can be calculated 
directly in the spatial domain (using an upper limit to the amount of fluid). For the first 
term, however, the Z-transform is needed, as will be explained below. Therefore, we split 
the ψ(R)patient

k  according to:

in which ψ
(R)POIS
k =

∑k
j=0 b

(R)
k−jwj and ψ

(R)remnant
k = L

(L+γ k)

u
(R)
pump(u

(G)
final−u

(G)
old )

(

u
(G)
final+u

(R)
pump

)(

u
(G)
old +u

(R)
pump

)  

and from now on will concentrate on the calculation of the first term, i.e. ψ(R)POIS
k , only.

(22)

ψ
(R)patient
k =

k
∑

j=0

b
(R)
k−jwj

︸ ︷︷ ︸

convolution due to poiseuille

+ L

(L+ γ k)

u
(R)
final

(

u
(G)

final − u
(G)

old

)

(

u
(G)

final + u
(R)
final

)(

u
(G)

old + u
(R)
final

)

︸ ︷︷ ︸

remnant fluid from old mixture due to poiseuille

(23)ψ
(R)patient
k = ψ

(R)POIS
k + ψ

(R)remnant
k

a

b

c

Fig. 5  Sketch of key characteristics of a dosing error distribution. The tcentral and σ are derived from the 
first and second moment, respectively, calculated directly in the Z-domain, without the need for an inverse 
Z-transform, as is explained in the text. a Push-out effect before the tip of Poiseuille profile has reached the 
patient. b Decaying remnant of push-out effect, due to Poiseuille mixing. c Dosing error due to mechanical 
compliances
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Performing the Z-transform on ψ(R)POIS
k  yields:

in which B(z) is the Z-transform of bj, and W(z) is the Z-transform of wj, which yields:

Since L/γ = N  is a large number, this constitutes a rapidly converging series for z ≈ 1. 
Furthermore, since b(R)2j = a

(R)diff
j  (Eq. 21), we have B(z) = Adiff (z2), in which Adiff (z) is 

the Z-transform of the original a(R)diffk , in the form in which it entered the catheter at M, 
before being distorted due to the Poiseuille mixing effect [see Eq. (17)].

Therefore, in summary, we now have

in which �(R)POIS(z) is the Z-transform of ψ(R)POIS
k . This expression for �(R)POIS(z), 

i.e. Eq. (26), constitutes the central equation in our method, and enables derivation of 
explicit expressions for the first and second moment of ψ(R)POIS

k  (or tcentral and σ from 
Fig. 5, respectively), without the need of performing an inverse Z-Transform.

Calculation of moments of the dosing error distribution after Tdelay
We will now use the “theorems of moments” from Z-transform theory to provide expres-
sions for key characteristics of the ψ(R)

patient(τ ) that enters the patient.
The zero’th moment yields:

and hence the total volume of the dosing error ψ(R)
patient(τ ) equals:

The first moment yields:

and hence

Furthermore, using the second moment, the following general expression for σ is 
obtained, in which the typical “duration” or “width” of a dosing error is characterized as 
2σ (see Fig. 5):

(24)

k
∑

j=0

b
(R)
k−jwj

Ztransform�−→ B(z)W (z)

(25)γW (z) = γ − L(z − 1)

(

1

z
+ 2−L/γ

z2
+ 3−L/γ

z3
+ 4−L/γ

z4
+ 5−L/γ

z5
+ · · ·

)

(26)�(R)POIS(z) = Adiff (z2)W (z)

(27)�0 =
L

γVcath

∫ ∞

0

(

u
(R)
M

(τ )− u(R)pump

)

dτ

(28)Q =
∫ ∞

0

(

u
(R)
M

(τ )− u(R)pump

)

dτ

(29)µ = − lim
z→1

(

z
d

dz
�(R)POIS(z)

)

(30)tcentral = − Vcath

�0ufinal
lim
z→1

(

z
d

dz
�(R)POIS(z)

)

(31)σ = Vcath

ufinal

√

1

�0
lim
z→1

(

z2
d2

dz2
�(R)POIS(z)+ z

d

dz
�(R)POIS(z)

)

−
(

µ

�0

)2
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In “Results” section, Eqs. (27)–(31) will be used to produce analytical expressions for 
various situations. Furthermore, also in “Results” section, Eqs. (27)–(31) will be evalu-
ated for situations without the Poiseuille mixing effect, in which case the �(R)POIS(z) in 
these equations is replaced by merely A(z).

Spectrometric in‑vitro set‑up for feasibility tests

A schematic of the in-vitro set-up is rendered in Fig. 6. Two Perfusor B. Braun® syringe 
pumps (B. Braun, Melsungen AG, Germany) and 50-ml syringes (Melsungen AG, Ger-
many) were used in the experimental setup. The syringes contained Tartrazine (TT) and 
Indigo Carmine (IC) solution, solved in distilled water. Each syringe was connected to 
an infusion line (d = 1 mm) of 200 cm (Cair LGL®, France) and subsequently combined 
using the using a 3-needle-free Y-connector (20038E7D, Cardinal Health®, Switzerland). 
The Y-connector outflow was connected to a flowcell (Z flowcell w/SMA 905, 10-mm 
pathlength, FIAlab®, Seattle, WA, USA), this flowcell was also connected to a visual light 

1

2

3

4

5

6

7

8

9

light

flow

Fig. 6  Experimental setup: the syringe pumps (1) pump their contents towards a mixing point (2). From the 
mixing point, the fluid will flow towards a flow cell (3), (4), where the light from light source (5) is used for an 
absorbance measurement by the spectrometer (6). A computer will simultaneously read out the flow rates 
from the flow meter (8). Finally the fluid is stored inside a container (9)
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spectrum (250–2500 nm) DT-1000 light source (Ocean Optics®, Dunedin, FL, USA). 
This allowed a spectrometer QE65000 (Ocean Optics®, Dunedin, FL, USA), also con-
nected to the same flowcell, to continuously measure an absorption spectrum of the dye 
mixture. Concentrations of each dye were acquired from this absorption spectrum [4]. 
After the flow cell, the cumulative flow rate was measured using three M12p flowmeters 
(Bronkhorst®, Ruurlo, The Netherlands). Sample time of all the measurements was 1 s.

Results
General result from laplace transform as a starting point

Performing the first step in the scheme rendered in Fig. 3, a general expression for u(R)diff
M

 
has been derived in the Laplace domain, using a known technique, i.e. Laplace Transform 
in combination with Kirchhoff laws, on the basis of the electric analog depicted in Fig. 7:

in which ŭ(R)diff
M

(s) is the Laplace transform of u(R)diff
M

(t), and u(G)

downstep equals the change 
in pump flow rate setting of the Green pump at t = 0, and C1 and C2 are the mechanical 
compliances of the “green” and “red” syringe, respectively, and R1 and R2 the resistances 
of the “green” and “red” feeding lines, respectively. Meanwhile, the pump flow rate setting 
of the Red pump, u(R)pump remains unchanged all the time. Using the inverse Laplace trans-
form function of Mathematica, the following general expression was obtained in the time 
domain:

in which

(32)

ŭ
(R)diff
M

(s) = −
C2u

(G)

downstepRcath

s2(C1C2RcathR1 + C1C2RcathR2 + C1C2R1R2)+ s(C1Rcath + C1R1 + C2Rcath + C2R2)+ 1

(33)
u
(R)diff
M

(t) =

(

e
− t

ϑfirst − e
− t

ϑsecond

)

u
(G)

downstepRcathC2

√
b2 − 4ac

(34)

ϑfirst =
1

2

(

b−
√

b2 − 4ac
)

ϑsecond = 1

2

(

b+
√

b2 − 4ac
)

a = RcathR1 + RcathR2 + R1R2

b = C1(Rcath + R1)+ C2(Rcath + R2)

c = C1C2

patient

Green
pump

Red
pump

Rcath

R1

C1

R2

C2

Fig. 7  Electric analog of a multi-infusion setup with two pumps. See “Method: analytical model, and in-vitro 
set-up” section
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Using Eq. (32), the total volume of the dosing error [i.e., the time-integral of Eq. (33)] 
is easily calculated using the general rules for integration and for calculation of limits 
from Laplace transform theory. The resulting expression Q(R)

dosingerror(Ŵ), i.e. the volume 
of the dosing error, depends on the set of hardware parameters Ŵ. In this specific case, 
the parameter set Ŵ comprises of: Ŵ = {Resistances,Compliances, FlowRates}.

The subtraction of two exponentially decaying functions in Eq. (33) yields a characteris-
tic bulb-shaped graph of u(R)diff

M
(τ ) as function of the time τ; see Fig. 8. In this figure, Eq. 

(33) has been evaluated for a number of parameter settings of Ŵ.
From the general equation, more specific and practical expressions can be derived by 

substituting standard values into the equation, leaving the parameters of interest as vari-
ables. The standard values for Rcath, R1, R2, C1, C2, u(R)pump, u(G)

old  and u(G)

downstep are rendered 
in Table 1.

(35)Q
(R)
dosingerror(Ŵ) = C2Rcathu

(G)

downstep

1
2

3
4

5

Time (s)

Fl
ow

R
at

e
(m

l/h
)

u
(t)

lin
e

(R
)

Fig. 8  Flow rate u(R)diff
M

(τ ) as function of time τ for different values of the resistance Rcath and the 
mechanical compliance Cred, according to the theoretical model. (1) Cred = Cstandard , Rcath = 3Rstandard . 
(2) Cred = Cstandard , Rcath = 2Rstandard . (3) Cred = Cstandard , Rcath = Rstandard. (4) 
Cred = 0.52Cstandard , Rcath = Rstandard. (5) Cred = 0.36Cstandard , Rcath = Rstandard

Table 1  Standard values in simulations and in-vitro measurements

Variable Standard value

Rcath 1145 Pa/(ml/h)

R1 23 Pa/(ml/h)

R2 23 Pa/(ml/h)

C1 1.5   10−5 ml/Pa

C2 1.5   10−5 ml/Pa

u
(R)
pump

0.5 ml/h

u
(G)
old

12 ml/h

u
(G)
downstep

6 ml/h
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Typical example: resulting dosing error during syringe exchange

We now consider the specific case in which the “Green” syringe is exchanged, during 
which the green pump is stopped and green line has been clamped (with a Kocher), but 
the red line is not clamped, and the settings of the red pump remain unchanged. Let 
Trestart denote the time between clamping the green line and the reopening the green 
line, i.e. Trestart denotes the time duration of the entire procedure of exchanging the 
green syringe.

During the syringe exchange time interval, the red line still oozes red fluid in undiluted 
form into the first voxels of the catheter directly after the mixing point M. We now con-
sider two scenario’s within the general scenario of the syringe exchange with the green 
line being clamped off during the entire exchange time interval. In the first scenario, 
the red line is not clamped off, but the red pump is switched off (pump flow rate set-
ting value is zero; still connected to the red line) simultaneously at the beginning of the 
syringe exchange procedure, and restarted to its original pump flow rate setting value at 
the very end of the syringe exchange procedure. In the second scenario, no actions are 
performed in relation to the red pump or red line at all. The first scenario entails that 
accumulation of undiluted red fluid directly beyond the mixing point is caused only by 
the compliance of the red syringe, in combination with the drop in pressure caused by 
the clamping of the green line. This is indicated by the text “compliance” under the sec-
ond brace in Eq. 36. In the second scenario, however, the regular pumping action of the 
red pump (at flow rate u(R)pump) adds to the accumulation of undiluted red fluid beyond the 
mixing point as well (indicated by the text “red pump on” under the first underbrace in 
Eq. 36). As a result, in the second scenario, the total dosing error Q(R)

dosingerror(Texchange) is 
the sum of the “compliance” and the “red pump on” effects. See Fig. 9. After tdelay, this 
total dosing error is entering the blood stream of the patient within a very short time 
interval, due to the fact that the green pump has a high flow rate.

In Eq. (36), the second term (“compliance”) has been calculated on the basis of integrat-
ing the right side of Eq. (33) over time.

Analytical results for reducing the flow rate of the green pump, without Poiseuille mixing 

effect

We now consider the more general case in which the pump flow rate setting of green 
pump, i.e. of the fast pump, is lowered with an amount u(G)

downstep, without clamping any 
line. The volume Q(R)

dosingerror does not depend on the specific distribution of the dosing 
error over time, and hence yields the same result as in Eq. (35).

Here we present the general result of the calculation of the first moment of A(z) with-
out the Poiseuille flow effect:

(36)

Q
(R)
dosingerror (Texchange) = u(R)pumpTexchange

︸ ︷︷ ︸

red pump on

+
u
(G)

downstepRcathC2

(

ϑfirst

(

1− e
−

Texchange
ϑfirst

)

− ϑsecond

(

1− e
−

Texchange
ϑsecond

))

√
b2 − 4ac

︸ ︷︷ ︸

compliance

(37)
tcentral =

Vcath

L

∫∞
0 �(t)uR(t) dt

ufinalC2Rcathu
(G)

downstep
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Applying this result to the specific case described in Eq. (32), i.e. lowering the pump flow rate 
setting of the green pump, and substituting Eq. (33) into Eq. (37), yields the following result:

In many clinical situations we have C1 = C2 = C and R1 = R2 = R, in which case Eq. 
(38) reduces to:

Applying Eq. (31) from the “Method: analytical model, and in-vitro set-up” section to the 
present situation, without the Poiseuille flow effect reads:

Evaluation of Eq. (40) yields a very long and unwieldy expression. However, as has been 
noted before, in many clinical situations we have C1 = C2 = C and R1 = R2 = R, and, 
furthermore, for most catheters we have R ≪ Rcath. Applying these assumptions, we 
obtain the following result:

This result will be compared with the findings from the in-vitro experiments in “Results 
of in-vitro experiments, and comparison with theoretical predictions” section.

If, in Eq. (41), the u(G)

downstep would be very small with respect to ufinal, then this expres-
sion for σ approaches the familiar σ ≈ 2CRcath.

Analytical results for reducing the flow rate of the green pump, incorporating the Poiseuille 

mixing effect

Evaluation of Eq. (31) from “Method: analytical model, and in-vitro set-up” section to 
the situation of reducing the pump flow rate setting of the green pump (still without 
any clamping) once more, but now substituting �(R)POIS(z) [instead of A(z)] in order to 
incorporate the Poiseuille flow effect, yields a very long and unwieldy expression. There-
fore, again, we apply the assumptions C1 = C2 = C and R1 = R2 = R and R ≪ Rcath, 
which yields the following result:

As can be seen in Eq. (42), the strength of the contribution of the Poiseuille mixing effect 
to the width σ POIS depends on the internal volume of the catheter Vcath with respect to 

(38)tcentral = b+
u
(G)

downstep

4ufinal

(
√

b2 − 4ac − 2C2Rcath + b+ 2
ac

b

)

(39)tcentral = 2C(Rcath + R)+
Cu

(G)
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(

2R2
cath + 6RcathR+ 3R2

)

4ufinal(Rcath + R)
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√

√

√

√

√

∫∞
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−
(∫∞
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√
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3 ufinal

√

C2R2
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+ 12u
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the time CRcath in combination with the flow rates (u(G)

downstep) and ufinal; or, more precisely, 
on the ratio between 3(Vcath)

2 and C2R2
cath((u

(G)

downstep)
2 + 12u

(G)

downstepufinal + 48(ufinal)
2).

If the catheter has a large internal volume but the time CRcath is short and the flow 
rates are low, then the σ POIS in Eq. (42) reduces to: σ POIS ≈ Vcath/ufinal.

If, however, in Eq. (42), the u(G)

downstep would be very small with respect to ufinal, and the 
time CRcath would be very large and the Vcath would be small, then this expression for σ 
approaches σ POIS ≈ 4CRcath, which is two times larger than the σ ≈ 2CRcath that was 
calculated before when omitting the Poiseuille mixing effect. This factor two is a result 
from the fact that, in a Poiseuille flow, the velocity at the centerline of the catheter equals 
two times the average velocity.

Results of in‑vitro experiments, and comparison with theoretical predictions 

Three types of in-vitro experiments have been performed, in order to compare theoreti-
cal results with actual measurements. These three types of experiments are:

(i)		�  measurement of the flow rate of the Green fluid as function of time, immediately 
after a change in pump flow rate setting value of the green pump, corresponding 
to u(G)

downstep = 6 ml/h; see Fig. 10.
(ii)		� measurement of tdelay for a set of three different syringes and three resistances, 

corresponding to various values of C and Rcath; see Fig.  11. The experimental 
measurement of the tdelay showed a standard deviation between theory and exper-
iment of 16.2 s, which is 14% of the total range of variations in tdelay.

(iii)	� measurement of �tcentral as function of various values of the relative resistance of 
the catheter with respect to its standard value R0, in which �tcentral was defined 
as the measured tcentral minus the standard value of tcentral for Rcath = R0. Three 
different values of Rcath/R0 have been used; and the measurement �tcentral of was 
repeated three times for each value of Rcath/R0. See Fig. 12. The experiment meas-
uring the �tcentral showed a reasonable agreement between theory and measure-
ments, in which standard deviation between theory and experiment was 8.4 s, 
which is 13% of the total range of variations in �tcentral.
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Fig. 9  Calculated total dosing error of the Red fluid as function of the time duration Texchange of the syringe 
exchange procedure, in which the green line has been fully closed (clamped) during the entire syringe 
exchange procedure, and in which Cred = Cstandard , Rcath = Rstandard. (1) Compliance effect only (see Eq. 36). 
(2) “Red pump on” effect only. (3) Compliance and “red pump on” effects combined
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Discussion
In this paper, explicit expressions have been derived for the total volume (Q), central 
time point (tcentral) and “width” or “duration” (2σ) of dosing errors as function of hard-
ware parameters such as mechanical compliance of syringes, resistance of the catheter, 
length of the catheter, for two general cases of a change in pump flow rate setting value 
in a multi-infusion set-up, as well as for a typical case of syringe change-over. Consist-
ency of the resulting analytical expressions has been examined for limiting cases, and, 
more importantly, three types of in-vitro measurements have been performed to obtain 
a first experimental test of the validity of the theoretical results derived in this paper. 
The experimental measurement of the tdelay (Fig.  11) showed a standard deviation 
between theory and experiment of 16.2 s, which is 14% of the total range of variations in 
tdelay . The experiment measuring the �tcentral (Fig. 12) showed a reasonable agreement 

Fig. 10  Results of in-vitro experiments, in which the flow rate of the Green fluid (blue dots) is plotted as func-
tion of time, after a change in the flow rate setting of the Green pump. The predicted theoretical result of the 
Green fluid flow is rendered by the red line. a Linear vertical axis. b Logarithmic vertical axis
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Fig. 11  Results of in-vitro experiments, in which the measured tDelay (red dots and blue triangles) are plotted 
as function of the corresponding theoretical value. Red dots using a syringe of 50, 25 or 10 cc. Blue triangles 
using various resistances. Green line linear regression line. Pearson’s R was 0.95; standard deviation between 
theory and experiment was 16.2 s
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between theory and measurements, in which standard deviation between theory and 
experiment was 8.4 s, which is 13% of the total range of variations in �tcentral.

General findings from the expressions derived

In many of the resulting expressions as presented in “Results” section, the relative contri-
bution of various factors affecting the dosing errors, such as the poiseuille mixing effect, 
can be discerned clearly in the structure of these expressions. The characteristic “time con-
stant” RcathC is clearly recognisable in the expressions. Furthermore, the ratio between the 
u
(G)

downstep (the size of the change in pump flow rate setting value) and the ufinal (the stabi-
lized final flow rate) appears as an important factor in determining the nature of the dos-
ing error bolus, particulary how the dosing error will spread out in time (the “width” or 
“duration” (2σ) of the dosing error bolus). The contribution of the Poiseuille mixing effect 
is visible in the resulting expressions. Of particular clinical importance is the fact that the 
Poiseuille flow profile, once fully developed, causes a significant reduction of the time that 
is needed for a newly administered medication to reach the patient. This may come as an 
unexpected effect for the clinician, as may also the fact that the value of 2σ (the “spread 
out”) is increased at the same time. The results in this paper may help to determine the 
magnitude of this “spread-out” effect as function of the hardware parameters (most nota-
bly, the characteristic RcathC time), and e.g. the length and resistance of the catheter.

Limitations of the method, and possible extensions

A number of limitations can be identified in our method in its present form; most appar-
ent is the assumption that when a time interval of duration tPOISdelay has lapsed after having 
changed a pump flow rate setting value, the actual flow rate has already stabilized and 
reached the value ufinal. This needs not to be true in a general case. However, using the 
same reasoning as presented in this paper, our method can be extended to include non-
stable flow rates at t = tPOISdelay as well. Another limitation may arise by the fact that in 
our method we did not examine other elements (other than just syringes, infusion lines, 
catheters, and pumps) that may be present in an infusion set-up, such as a non-return 
valve (preventing flow back from the catheter into a line towards a pump), or filters. The 
non-return valves may be incorporated into the method by restricting flow rates in the 
catheter to positive values or zero, whereas filters may be modeled on basis of a resist-
ance and a mechanical compliance, as indicated in the literature (e.g. [21]). Another 
complicating factor may be the use of high viscosity fluids in the infusion set-up. In 
our method, as it stands now, all fluids in the system were assumed to be of the same 
viscosity. Incorporation of deviating (high) viscosities into our method would entail an 
extension of the laminar flow profile used in this paper, because differences in viscos-
ity of mixing liquids may produce destabilization of laminar flow. An easy, but useful, 
extension of our method is the incorporation of the possibility that the height at which 
the syringes are positioned in a set-up near the patient, is altered during the period that 
a patient receives medication using the multi-infusion set-up. Since a change in height 
may be modeled as the addition of an extra pressure source within the model during 
the process of infusion, this results in an extra bolus of dosing error, and, hence, in the 
addition of some extra terms and factors in the equations in “Results” section. Finally, 
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the parabolic flow profile of a laminar flow does not come into existence instantaneously 
at the mixing point; it has been calculated [20] how long, c.q. what distance, it takes for 
the flow profile to approach the parabolic shape. All of these complicating factors need 
to be incorporated into the model to make it more realistic. As far as we can anticipate 
now, we do not expect these extra factors to be incompatible with our general approach 
outlined in this paper; however, further research is needed.

Potential use of the results in clinical practice

Healthcare professionals working with infusion technology in critical care have 
expressed the desire for a real-time tool that visualizes the multi-infusion drug therapy, 
e.g. continuously calculates predictions to indicate when the drugs will be entering the 
blood stream of the patient and in what dose. Such a tool may also visualize the causal 
consequences of an intervention (i.e., change in a pump flow rate setting value), before a 
clinician decides to proceed with such an intervention. In order to develop such a tool in 
the future, a fast and generic model will be necessary, combining all the relevant physical 
effects. The desirability of such a visualization tool, and the mathematical modeling that 
is a pre-requisite for the development of such a tool in the future, is what prompted us 
to go beyond the state-of-the-art and to develop the fully analytical method described in 
this paper. We envision three types of developments in which the results from this paper 
may be useful: (i) an interactive tool, running synchronized with the multi-infusion sys-
tem on a smartphone device or on a bed-side display, e.g., next to the vital signs display 
monitors. Such a tool could then be used in several cases, such as inotropic titration, 
or to visualize the effects of a syringe changeover, or even the consequence of chang-
ing the height of a pump during infusion. (ii) Another application of the method pre-
sented in this paper could be actual computer control of an infusion system. It has been 
shown that a computer-controlled pump with “knowledge” about the dead volume and 
the mixing effect within the dead volume can be useful in preventing overshoot [16]. 
Moreover, a control system with a feedback approach has also been attempted, where 
the mean arterial blood pressure was used to control the administration of a fast-acting 
vasodilator [22, 23]. In both cases, however, increasingly complex situations and infusion 
setups were encountered where only the incorporation of all the interdependent physi-
cal effects, as described in this paper, would provide a sufficiently accurate prediction in 
order to make computer control feasible. (iii) The model can potentially also be used as 
an analysis and design tool, prior to investing in potential new infusion hardware. It is 
known that flow characteristics are influenced by valves [24, 25], syringes [26], infusion 
lines and catheters [27–29], and filters [21]. By using the method from this paper, ben-
efits of these components can be compared against potential tradeoffs.

Conclusions
We have developed a new method that combines mechanical compressibility (compli-
ance) effects with poiseuille flow and push-out effects (“dead volume”) in one single 
mathematical framework for calculating dosing errors in multi-infusion set-ups.

In contrast to existing numerical methods, our method produces explicit expressions 
that indicate the mathematical dependencies of the dosing errors on hardware param-
eters and pump flow rate settings.
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The results from the in-vitro experiments show a reasonable to good agreement 
between measurements and theoretical results.

The relative contribution of various factors affecting the dosing errors, such as the poi-
seuille mixing effect, resistance and internal volume of the catheter, mechanical com-
pliance of the syringes and the various pump flow rate settings, can now be discerned 
clearly in the structure of the expressions generated by our method.

This enables insight and predictability in a large range of possible situations involving 
many variables and dependencies, which is potentially very useful for e.g. the develop-
ment of a fast, bed-side tool “calculator” that provides the clinician with a precise pre-
diction of dosing errors and delay times interactively for many scenario’s. The interactive 
nature of such a device has now been made feasible by the fact that, using our method, 
explicit expressions are available for these situations, as opposed to conventional time-
consuming numerical simulations. Other potential applications of our method involve 
analysis and design tools for new infusion hardware, and interactive devices connected 
to the infusion hardware that counteract impending dosing errors using predictive 
calculations.
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the mixing point M at time t

u
(R)diff
M

(t)	� u(R)
M

(t)− u
(R)
pump

wi	� weight factor for contribution of original voxel nr i to the voxel at 
the tip P

b2j	� a(R)diffj

ψ
(R)patient
k 	� discrete form of ψ(R)

patient(τ )

ψ
(R)POIS
k 	� part of ψ(R)patient
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Appendix: Volume distribution in a Poiseuille flow
Laminar flow produces a Poiseuille flow profile, in which the velocity u depends on the 
distance r to the central longitudinal axis of the catheter [30]:

(43)u(r) = 1

4η

�p

L
(r20 − r2)
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in which η is the viscosity of the fluid, �p/L is the pressure drop over a length L of cath-
eter, and 2r0 is the diameter of the catheter.

Furthermore, the average velocity uavg equals

and the maximum velocity (located along the central longitudinal axis of the catheter) 
equals

Evidently, if thermal diffusion is left out of the model and the fluid is considered to be 
completely homogeneous at the mixing point M, then the length �max(t) of the protru-
sion of the top of the Poiseuille profile into the catheter along the central longitudinal 
axis, is calculated easily by combining Eqs. (45) and (44):

Let x denote the position measured along the central axis along the catheter, starting 
withy x = 0 at M, and let rboundary(x, t) denote the distance with respect to the central 
longitudinal axis at position x at time t, at which the boundary (parabola) is situated. 
Multiplying both sides of Eq. (43) with t, yields the relation:

in which x is a function of rboundary and represents the distance that the boundary (see 
Fig. 13) has travelled in the longitudinal direction (along the length of the catheter), for 
a given radial position rboundary. The relation between x and r in Eq. (47) is depicted in 
Fig. 13:

Conversely, solving rboundary from Eq. (47) for all values x ∈ [0, t umax], we have:

which is depicted in Fig. 14.
In order to calculate the amount of the fluid R that is present inside a thin, disk-shaped, 

cross-sectional volume S of the catheter at position x, expressed as a fraction fR(x, t) of 
the total fluid in the thin volume S, in which the disk-shaped volume S is perpendicu-
lar to the central longitudinal axis of the catheter at point x, we need to integrate over 
the cross-sectional area of the catheter at point x, from r = 0 to r = rboundary(x, t), and 
divide this by the total cross-sectional area πr20:

(44)uavg =
r20�p

8ηL

(45)umax = 2uavg

(46)�max(t) = tumax =
r20�p

4ηL
t

(47)x
(

rboundary
)

= 1

4η

�p

L

(

r20 −
(

rboundary
)2
)

t

(48)rboundary(x, t) =
√

√

√

√
r20 −

4xη

t
(

�p
L

)

(49)

fR(x, t) =
1

πr20

∫ rboundary(x,t)

0

(

∫ 2π

0
rdφ

)

dr =
(

rboundary(x, t)
)2

r20
= 1− 4xη

t
(

�p
L

)

r20
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Fig. 12  Comparison of theoretical results (red solid line) with the results in-vitro experiments (black dots), in 
which the measured �tcentral is plotted as function of the value of the relative resistance R of the catheter 
with respect to its standard value R0, in which �tcentral is defined as the measured or calculated value of tcentral 
with respect to the standard value of tcentral as calculated for R0. Solid green line Linear regression line. Pearson’s 
R was 0.89; standard deviation between theory and experiment was 8.4 s. Dashed green lines regression line ± 
standard deviation

Fig. 13  Poiseuille profile in laminar flow. See text

Fig. 14  Same relation as in Fig. 13, but now with r as function of x. Effectively, this figure results from rotating 
Fig. 13 by 90°
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An interesting feature of this surprisingly simple result is that, within the region of the 
Poiseuille profile, there is a linear relationship between x and fR(x, t).
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