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Abstract: Lipid metabolism plays an important role in many lung functions. Disorders of lipid
metabolism are part of the pathogenesis of chronic obstructive pulmonary disease (COPD). Lipids
are involved in numerous cross-linkages with inflammation. Recent studies strongly support the
involvement of fatty acids as participants in inflammation. They are involved in the initiation and
resolution of inflammation, including acting as a substrate for the formation of lipid mediators of
inflammation resolution. Specialized pro-inflammatory mediators (SPMs) belonging to the classes of
lipoxins, resolvins, maresins, and protectins, which are formed enzymatically from unsaturated fatty
acids, are now described. Disorders of their production and function are part of the pathogenesis of
COPD. SPMs are currently the subject of active research in order to find new drugs. Short-chain fatty
acids are another important participant in metabolic and immune processes, and their role in the
pathogenesis of COPD is of great clinical interest.

Keywords: COPD; fatty acids; inflammation; inflammation resolution; lipid mediators; specialized
pro-resolving mediators; short-chain fatty acids

1. Introduction

Chronic obstructive pulmonary disease (COPD) is one of the most important non-
communicable diseases, characterized by a variety of pulmonary and extrapulmonary
clinical manifestations, based on local and systemic inflammation mainly due to long-term
exposure to tobacco smoke components [1].

COPD is a clinically heterogeneous chronic disease. Moreover, this clinical hetero-
geneity has both pulmonary and extrapulmonary characteristics, which is the basis for
phenotyping of patients [2]. The concept of phenotypes implies a search for specific clinical
variants of a disease, united by common pathophysiological mechanisms, clinical charac-
teristics, and impact on prognosis, which may be useful in selecting optimal therapeutic
strategies. While for some diseases, the known phenotypes are not questioned by experts
and clinicians. At the moment, there are no universally recognized phenotypes of COPD,
which would fully meet the criteria of this term and would improve the results of treatment
of all patients. The complexity of this situation is also due to the fact that the concept
of phenotype implies more of an assessment of the clinical characteristics of the disease,
without taking into account the underlying pathophysiological mechanisms. Accordingly,
research is ongoing to find endotypes of the disease based on the commonality of impaired
biological mechanisms.

Emphysema and chronic bronchitis are known to be two key disease phenotypes that
were described long before the term COPD itself was coined. However, all the mechanisms
that can lead to the development of emphysema are still the subject of debate.

Acute exacerbations of COPD make a major contribution to the clinical picture of
COPD [3]. The frequency and severity of exacerbations influence disease progression and
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are associated with prognosis [4]. Bacterial colonization of the bronchi, local and systemic
inflammation are considered important mechanisms associated with pulmonary and extra-
pulmonary clinical heterogeneity of the disease and the presence of comorbid pathology.
Given the importance of exacerbations for the course of the disease and prognosis, some
researchers have suggested a COPD phenotype with frequent exacerbations [5].

An important factor complicating the interpretation of COPD studies is that most
studies do not take into account the heterogeneity of the disease. This may be both a
cause and a consequence of a lack of understanding of the mechanisms underlying the
development and heterogeneous course of COPD. In this regard, it should be noted that
there is convincing evidence that the course of COPD is related to lipid metabolism.

Lipids play an important role in lung function. The lungs are known for their unique
lipid biology, which is involved in lung structure and respiratory function. The lipid
landscape of the lungs is very diverse. The importance of lipid balance is well demonstrated
by surfactant, the deficiency of which causes severe impairment of respiratory function.
Saturated fatty acids such as palmitic and stearic acids are components of pulmonary
surfactant [6]. The complexity and lack of study of lipid metabolism are well illustrated by
the link between not only body weight and COPD phenotypes, but also the prognosis of
the disease.

Studies in recent years have convincingly demonstrated the involvement of lipids in
inflammation. Smoking has been shown to disrupt the normal processes that maintain
lipid homeostasis in the lungs, which may be part of the pathogenesis of COPD [7]. It
should be noted that cigarette smoke contributes to an oxidant/antioxidant imbalance
due to exogenous reactive oxygen species (ROS). Exogenous, as well as endogenous
ROS produced by inflammation and mitochondrial dysfunction, may be involved in the
oxidation of various biomolecules, including lipids, leading to epithelial cell damage and
death, which is one of the key factors in the development of COPD [8].

The data accumulated in recent years have significantly expanded the understanding
of the role of lipids as participants in various links of inflammation [9]. Inflammation
is a universal mechanism that responds to a variety of tissue damage. The process of
inflammation is believed to have not only an initialization phase, but also a resolution
phase, which plays an important role in ensuring tissue immune homeostasis. And, as was
found in a number of studies, the resolution phase of inflammation is active and mediated
by a number of biological factors. In addition, it is also proposed to distinguish the “post-
resolution” phase, which is also anti-inflammatory, is regulated by macrophages and
dendritic cells and is necessary for the subsequent immune response due to its influence
on adaptive immunity [10–12].

Given the importance of lipid metabolism for lung function, the purpose of this review
is to discuss the involvement of fatty acids and their lipid metabolites as mediators of
inflammation initiation and resolution in the development and progression of COPD.

2. Long-Chain Fatty Acids

Data accumulated in recent years have improved our understanding of the functions
of lipids in the different phases of inflammation. There is increasing evidence that lipids are
not simply a source of energy or structural material for cells, but are actively involved both
in the initiation and maintenance of inflammation, such as prostaglandins and leukotrienes,
and are also mediators of the highly organized resolution phase of inflammation.

Analysis of the role of fatty acids in inflammation demonstrates the diversity of their
function (Figure 1) [13,14]. As part of the phospholipids of plasma membranes, fatty acids
can influence their structure and function [15]. The saturation and length of the alkyl chain
are important. The biophysical properties of the plasma membrane and the stability of
lipid rafts, and consequently the function of some membrane proteins, can be related to
the chemical structure of fatty acid residues. Available data suggest that unsaturated fatty
acids contribute to a decrease in lipid ordering and lipid raft stability. It has been suggested
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that this may lead to anti-inflammatory effects, given that lipid rafts are considered to be
platforms for the assembly and function of many signaling pathways.
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Regulation of membrane biophysical properties is an important tool for the function
of many membrane proteins. Lipid ordering can influence the possibility of conformational
changes in proteins as they perform their functions. The composition of fatty acids in
membrane phospholipids can provide a balance between optimal membrane fluidity to
allow the necessary conformational changes of proteins and the viscosity required for their
localisation in the membrane. For example, by altering the biophysical properties of the
membrane,ω-3 PUFAs can enhance the activity of transient receptor potential vanilloid 4
(TRPV4) [16].

TRPV4 has many functions in lung cells and is involved in the pathogenesis of COPD.
It is involved in the control of epithelial and endothelial permeability, as well as causing
contraction of bronchial smooth muscles and taking part in autoregulation of mucociliary
transport [17]. Adult TRPV4−/− mice exhibit emphysema-like changes in the lungs [18].
Recently, TRPV4 activation byω-3 PUFAs has been shown to be associated with endothelial
protective mechanisms, given that TRPV4 regulates endothelium-dependent vascular
relaxation associated with nitric oxide release under physiological conditions [19].

Thus, the effect of ω-3 PUFAs on the biophysical properties of membranes and the
function of membrane proteins may be related to the features of the disease course and is a
promising area for future research.

Smoking is known to cause decreased fluidity of plasma membranes of alveolar
macrophages in rats [19,20]. It has been suggested that smoking-induced lipid peroxidation
primarily affects unsaturated fatty acids in membrane phospholipids, which is reflected in
the biophysical properties of membranes [19,21].

In addition to their role in the function of membrane proteins and the regulation of
their signaling pathways through altering the biophysical properties of plasma membranes,
fatty acids can directly stimulate receptors such as toll like receptor 4 (TLR4) [22]. TLR4
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is an important participant in the immune response in COPD, as its function is to detect
lipopolysaccharide (LPS) of Gram-negative bacteria. Only saturated fatty acids can activate
TLR4, whereas unsaturated fatty acids do not [23–25]. These data emphasize the differential
role of saturated and unsaturated fatty acids in inflammation [26].

Another mechanism of ω-3 polyunsaturated fatty acids (PUFAs) involvement in
immunity is their putative links to histone acetylation. Prenatal intake of polyunsaturated
fatty acids from fish oil and olive oil has been shown to affect histone acetylation of genes
involved in adaptive immunity [27,28].

COPD is characterized by impaired fatty acid metabolism in the stable course and
in exacerbations [29]. These changes affect both fatty acids in phospholipids of plasma
membranes and free fatty acids.

Modification of fatty acid composition of plasma membranes of leukocytes of patients
with COPD is characterized by an increase in the relative content of saturated lauric,
palmitic, stearic acids, unsaturated arachidonic acid and depletion of the pool of linoleic,
docosatetraenoic, eicosapentaenoic, docosahexaenoic acids [30]. A decrease inω-3 PUFAs is
found in the mitochondrial membranes of leukocytes, which may affect their function [31].

Disorders of fatty acid composition in COPD have also been found in erythrocyte mem-
branes [32–34]. In patients with COPD and chronic bronchitis, accumulation of arachidonic
acid and deficiency of eicosapentaenoic acid in plasma membranes of erythrocytes were
found. Moreover, this imbalance is more pronounced in patients with COPD than in those
with chronic bronchitis [35]. In addition to the accumulation of arachidonic acid, COPD
patients were found to accumulate pentadecanoic acid, docosatetraenoic acid, stearic acid,
ecosanic acid, and decrease in linoleic acid, eicosapentaenoic acid, and docosapentaenoic
acid. The detected imbalance corresponded to increased accumulation ofω-6 PUFAs. In
addition, an increase in the (20:4, n-6)/(20:3, n-6) ratio was noted in COPD patients, which
may indirectly indicate the activation of delta-5 desaturase, and intensification of substrate
biosynthesis for eicosanoids formation [35]. Interestingly, in very severe COPD, in addition
to increased membrane content of arachidonic acid, phospholipids and cholesterol levels
in erythrocyte plasma membranes also increase, which have a negative correlation with
forced expiratory volume in one second (FEV1%) [33]. These data indicate a systemic
nature of the changes, which may be associated with the progression of the disease and its
extrapulmonary clinical heterogeneity.

Patients with COPD in the stable phase have lower levels of free alpha-linolenic acid,
linoleic acid and eicosapentaenoic acid in sputum [29,32]. At the same time, higher levels of
free arachidonic acid and docosapentaenoic acid were observed during acute exacerbation
of COPD compared with stable COPD [33].

Plasma levels of eicosapentaenoic acid and docosahexaenoic acid, which included
different lipid classes such as cholesterol esters, phosphatidylcholine and lysophosphatidyl-
choline, were found to decrease in the blood plasma of smokers with mild to moderate
COPD [36]. At the same time, serum levels of monounsaturated fatty acids (MUFA, 16:1,
18:1), such as cholesterol esters 16:1, diacylglycerols 18:1/18:1 and phosphathidylcholines
16:1/18:1 were increased in the serum of smokers, especially those with mild to mod-
erately severe COPD [36]. PUFAs, as already noted, are sensitive to oxidative damage,
and, accordingly, a decrease in their levels can be considered as a marker of oxidative
stress [37,38].

In addition to abnormalities in fatty acid levels in healthy smokers and smokers with
mild to moderate COPD, changes in serum eicosanoids levels were also found. These
changes in smokers included increased levels of 11,12-dihydroxy-5Z,8Z,14Z-eicosatrienoic
acid (11,12-DHET), 4,15-dihydroxy-5Z,8Z,11Z-eicosatrienoic acid (14,15-DHET) (dihydrox-
yeicosatrienoic acids) and 15-Hydroxy-5Z 8Z,11Z,13E-eicosatetraenoic acid (15-HETE) and
reduced levels of 9-Hydroxy-10E,12Z-octadecadienoic acid (9-HODE) and 13-hydroxy-
9Z,11E-octadecadienoic acid (13-HODE) (hydroxyoctadecadienoic acids) [36]. Changes in
lipid profiles have demonstrated associations with clinical characteristics of COPD, e.g.,
PUFAs showed positive correlations with lung function [36].



Int. J. Mol. Sci. 2021, 22, 12803 5 of 31

It is known that the fatty acid composition of erythrocyte plasma membranes is
influenced not only by smoking. It was shown that obese children had higher levels of ω-6
polyunsaturated fatty acids (mainly arachidonic acid) and lower levels of monounsaturated
fatty acids, resulting in an increased saturated fatty acid ratio (SFA)/MUFA [39].

These and other data suggest a presumed important role for fatty acids in inflammation
in COPD and, consequently, in the development of pulmonary and extrapulmonary clinical
manifestations of the disease.

In addition to their involvement in inflammation, fatty acids are an important source
of energy in COPD. The decrease in plasma free fatty acids in patients with COPD [40],
may be related to the increased need in these patients for high-energy substrates, due
to the need to maintain inflammation and more intensive respiratory work. In distal
airway epithelial cells, acute exposure to cigarette smoke results in increased carnitine
palmitoyltransferase (CPT1A) activity and increased β-oxidation of fatty acids. This leads
to a switch of cellular energy metabolism from glucose, which is the main energy source,
to lipids [41,42]. Given that carbohydrate catabolism is accompanied by the formation of
large amounts of carbon dioxide, the use of fatty acids as an energy substrate contributes
to less CO2 production. Given the impaired CO2 excretion in COPD, using fatty acids as
an energy source may reduce some of the negative effects of the disease related to muscle
dysfunction and shortness of breath [43,44]. And a diet low in carbohydrates but with the
addition of medium chain triglycerides and predominantly monounsaturated fatty acids
in the diet help improve pulmonary function in patients with COPD [45].

Interestingly, but exposure of lung endothelial cells to cigarette smoke decreases β-
oxidation of fatty acids, which leads to increased ceramide synthesis and endothelial cell
apoptosis [46]. Endothelial cell apoptosis is one of the key events in the development of
emphysema. It has been shown that these processes may be associated with elevated levels
of ceramides in the lungs of COPD patients, which are regarded as a marker of the disease.
It should be noted that ceramides may have several pathways of formation, including
those associated with the action of acid sphingomyelinase and also as a result of synthesis
involving palmitate on exposure to cigarette smoke [46]. Ceramides form lipid rafts in
plasma membranes with specific biophysical properties on which certain apoptosis-related
signaling pathways are organized. The physical properties of ceramides are affected by the
length of the fatty acid chain [47–50]. Moreover, fatty acids with 16-24 carbon atoms are
most frequently included in the ceramides of plasma membranes, due to the fact that they
are the least polar and the most hydrophobic [50,51].

In contrast to ceramides, high levels of ω-3 PUFAs in plasma are associated with
decreased progression of emphysema [52].

Unsaturated fatty acids are involved in inflammation not only because of their bio-
physical properties. They can act as precursors for the formation of many lipid mediators
associated with inflammation. For example, arachidonic acid is a substrate for the synthe-
sis of prostaglandins (PG) and leukotrienes (LT), which are involved in the initiation of
acute inflammation [53,54]. However, arachidonic acid is a precursor for the formation of
lipoxin A4 (LXA4), which is considered to be an important participant in the resolution of
inflammation [55–58]. In this regard, arachidonic acid demonstrates a differential pattern of
involvement in inflammation. Interestingly, exposure to arachidonic acid in the experiment
resulted in increased release of IL-6 and CXCL8 from fibroblasts, and the release of IL-6
and CXCL8 was reduced in COPD compared with patients without COPD. The lower
production of cytokines in COPD compared with pulmonary fibroblasts without COPD
suggests differences in the involvement of arachidonic acid in inflammation in different
diseases [59].

Thus, free fatty acids and fatty acids in the phospholipids of plasma membranes can be
considered as depots for mediator biosynthesis. In response to tissue damage, unsaturated
fatty acids can be mobilized by phospholipase A2 from phospholipids for subsequent
conversion into lipid mediators [60].
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3. Specialized Pro-Resolving Mediators

All aspects of the delicate balance of lipid mediator involvement in inflammation have
yet to be studied, but it is already known that members of the family of lipid mediators,
which have been named “specialized pro-resolving mediators” (SPMs), play a key role in
the active resolution of inflammation [61].

This class of endogenously produced bioactive lipids is diverse and includes Lipoxins,
Resolvins, Protectins, and Maresins, which are formed enzymatically from ω-3 and ω-
6 PUFAs, such as arachidonic acid, eicosapentaenoic acid, docosahexaenoic acid and
docosapentaenoic acid (Figure 2).
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lines indicate receptor activation. Abbreviations: lipoxin A4 (LXA4); lipoxin B4 (LXB4); resolvin D1 (RvD1); resolvin E1
(RvE1); resolvin E2 (RvE2); maresin 1 (MaR1); protectin D1 (PD1) or neuroprotectin D1 (NPD1); N-formyl peptide receptor
2/ALX receptor (FPR2/ALX); G protein-coupled receptor 32/resolvin D1 receptor (GPR32/DRV1); Toll-like receptor 4
(TLR4); leucine-rich repeat containing G protein–coupled receptor 6 (LGR6); series E resolvin receptor/chemerin receptor
23 (ERV/ChemR23); leukotriene B4 receptor 1 (BLT1); G-protein coupled receptor 37 (GPR37).

Lipoxins are synthesized from arachidonic acid, E-series resolvins from eicosapen-
taenoic acid, D-series resolvins and protectins, and maresins from docosahexaenoic acid.
Thus, PUFAs, are an important source of not only proinflammatory but also anti- inflam-
matory mediators. The factors that provide this balance are still largely unclear, but their
better study may be the key to understanding the pathogenesis of many diseases.

The data available to date highlight the significant role of SPMs in inflammation,
which is provided by the regulation of numerous downstream signaling pathways [10].

In addition, the proresolving effects of some SPMs are, in part, related to their ability
to regulate redox states in cells by inhibiting oxidative stress. Moreover, this protection is
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related not only to the reduction of ROS production but also through the enhancement of
several natural antioxidant defences such as modulation of superoxide dismutase, heme
oxygenase-1 and nuclear factor erythroid 2-related factor 2 expression [62].

Taking into account the information about impaired resolution of inflammation in
COPD, the role of lipid mediators is of great clinical interest. Analysis of the known
data suggests that lipid mediators are involved in inflammation in a coordinated manner.
The appearance of lipid mediators of inflammation (leukotrienes and prostaglandins) are
coordinated with neutrophil recruitment. Leukotriene B4 (LTB4), which is a chemoat-
tractant [63,64], is involved in neutrophil recruitment [61,65]. Prostaglandin (PGE2) then
promotes the switch of biosynthesis from LTB4 involving 5-lipoxygenase (5-LO), to LXA4
involving 15-LO, which leads to a decrease in tissue infiltration by neutrophils [66,67].

Thus, lipid mediators demonstrate a coordinated role in ensuring the phase change of
inflammation. At the same time, SPMs affect a decrease in the secretion of proinflammatory
cytokines, contribute to an increase in the production of anti-inflammatory cytokines,
through switching macrophages to the M2 phenotype, and also increase phagocytosis,
which is important, given that tobacco smoke stimulates macrophages proinflammatory.

3.1. Lipoxins

Lipoxins, the first identified class of SPMs, are synthesized from arachidonic acid
by the sequential action of lipoxygenase (LOX) enzymes, including 5-, 12- and 15-LOX
(Figure 3).
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Lipoxin A4 (LXA4) and lipoxin B4 (LXB4), and their epimers: 15-epi-LXA4 and 15-epi-
LXB4 have been identified so far. The structure of lipoxins is based on their origin from
ω-6 arachidonic acid and includes three hydroxyl residues and four double bonds, which
distinguishes them from other SPMs originating fromω-3 fatty acids. Thus, arachidonic
acid, which is a metabolite for the synthesis of both pro- and anti-inflammatory mediators,
is at the crossroads of the inflammatory pathways.

The receptor through which the lipoxins LXA4 and 15-epi-LXA4 exert their action
is FPR2 (also called ALX receptor, ALX/FPR, ALX/FPR2, and FPRL1). ALX/FPR2 is a
receptor with seven transmembrane domains and is expressed in airway epithelial cells as
well as other cells involved in inflammation, including neutrophils, mast cells, monocytes,
macrophages, lymphocytes, and dendritic cells [68–76].

LXA4 exhibits multiple anti-inflammatory relationships. It promotes inhibition of
chemotaxis, transendothelial, and transepithelial migration of neutrophils [61,77,78], and
inhibits their interaction with epithelial cells [61,71,77,79]. In addition, LXA4 stimu-
lates monocyte chemotaxis and adhesion [80] and increases the uptake of apoptotic neu-
trophils by macrophages [81]. These actions promote clearance of apoptotic leukocytes by
macrophages at the site of inflammation [81–83].

LXA4 plays a role in bronchial epithelial repair by triggering the migration and
proliferation of epithelial cells [71,83,84]. The effects of LXA4 in restoring the epithelium
and airway surface liquid are mediated by apical release of ATP and activation of the
purine receptor P2Y11 [83,85].

The anti-inflammatory effect of LXA4 also consists in the suppression of IL8 produc-
tion by leukocytes and bronchial epithelial cells [83,86–89].

LXB4, as well as LXA4, can inhibit the migration of polymorphonuclear neutrophils
stimulated by LTB4 and also weaken the adhesion of polymorphonuclear neutrophils to
endothelial cells mediated by P-selectin [78].

In addition, aspirin-triggered lipoxin A4 (ATLs) can inhibit proliferation and migration
of endothelial cells, disrupting angiogenesis [90]. 15-epi-LXA4 also increases the resolution
of pulmonary inflammation by promoting neutrophil apoptosis [91].

COPD has been shown to be characterized by decreased lipoxin production. Decreased
concentrations of LXA4 in induced sputum have been shown in patients with COPD
compared with healthy individuals [92,93]. A decrease in LXA4 was also found in the
exhaled breath condensate of moderate to severe COPD patients [94]. This may be one of
the causes of persistent inflammation in the airways.

In addition, COPD patients have decreased levels of lipoxin receptor in alveoli, which
may explain the persistence of inflammation in COPD. At the same time, asymptomatic
smokers were found to have increased levels of FPRL1 in alveolar walls, which may be an
adaptive anti-inflammatory mechanism [95]. In addition, in smokers, the number of cells
with FPRL1 correlated with airflow obstruction, FEV1% [95].

Interestingly, LXA4 may be associated with the regulation of reverse cholesterol
transport through a dose-dependent increase in ATP binding cassette transporter A1
(ABCA1) and Liver X receptor alpha (LXRa) expression in «foam cells» derived from THP-1
macrophages [96]. These findings significantly broaden the view on the function of LXA4,
considering the negative effect of cellular cholesterol accumulation on inflammation. The
tobacco smoke-induced decrease in ABCA1 expression and functional activity in lung
macrophages is associated with impaired reverse cholesterol transport and their inflamma-
tory activation. Thus, increased ABCA1 expression mediates the anti-inflammatory role of
LXA4.

The effect of lipoxins on cholesterol metabolism may be mediated by increased ex-
pression of another member of the large family of ABC transporters, Abcb11, through a
post-transcriptional and post-translational mechanism involving MAPK p38 activity [97].
Abcb11 is involved in lipid homeostasis through regulation of biliary lipid secretion.
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It has also been shown that decreased serum LXA4 levels correlate with the develop-
ment of metabolic syndrome, therefore, assessment of LXA4 levels can be used for early
detection and prevention of metabolic syndrome [98].

These and other findings have expanded the understanding of LXA4 in the pathogene-
sis of COPD from the perspective of the analysis of pulmonary and extrapulmonary clinical
heterogeneity of the disease and comorbid relationships. Given that the most significant co-
morbid conditions of COPD include cardiovascular disease and above all those associated
with atherosclerosis, understanding the role of lipid mediators brings the discussion of the
problem to a new level. Recent data on deficient production of 15-epi-LXA4 in patients
with peripheral arterial disease suggest a protective role of LXA4 in atherogenesis [99].
These data reinforce the importance of lipoxins, given the frequent comorbid links between
COPD and peripheral atherosclerosis.

3.2. Resolvins

Resolvins are small lipid molecules that are synthesized from ω-3 PUFAs such as
eicosapentaenoic acid and docosahexaenoic acid. The term “resolvins” itself reflects their
role as a key participant in the resolution phase of acute inflammation. Resolvins belonging
to the D series (formed from docosahexaenoic acid) (Figure 4) and E series (formed from
eicosapentaenoic acid) (Figure 5) and epimers of these classes formed when aspirin inhibits
cyclooxygenase have now been identified. D-series resolvins include RvD1,2,3,4,5,6 [10],
and E-series resolvins include RvE1,2,3,4 [100].
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The receptors for RvD1 are the lipoxin receptor FPR2/ALX and DRV1 (also known as
GPR32) [101], but activation of the GPR32 receptor requires lower concentrations of RvD1
than are necessary to activate FPR2/ALX [102,103]. DRV1 is expressed on neutrophils,
lymphocytes, monocytes, and macrophages [69,101]. In addition to RvD1, this receptor is
also activated by other ligands, such as AT-RvD1, RvD3, AT-RvD3, and RvD5 [69,104–107].
It is believed that RvD1 interacts with DRV1 during periods of homeostasis and via
ALX/FPR2 during the resolution of inflammation [69].

At present, there are numerous data confirming the involvement of resolvins in the reg-
ulation of inflammation. It has been shown that RvD1 is a powerful regulator of neutrophil
activity, controlling their migration through the endothelium [107,108]. In addition, RvD1
reduces inflammation by inhibiting the release of proinflammatory cytokines induced by
LPS in macrophages [109–111]. By acting on human alveolar macrophages, RvD1 and
RvD2 reduce the production of inflammatory mediators such as interleukin-6 (IL-6) and
tumor necrosis factor-α (TNF-α), while promoting the production of anti-inflammatory
cytokines. These resolvins are involved in alternative M2 activation of macrophages and
can also attenuate the resulting effects of oxidative stress induced by cigarette smoke [112].
In addition, RvD1 and RvD2 enhance phagocytosis of apoptotic cells by macrophages,
which is impaired by smoking [113–116]. The anti-inflammatory effect of RvD2 can also be
realized through modulation of NF-κB signaling pathways [112].

In experiments on mouse models with long-term exposure to cigarette smoke, RvD1
has been shown to reduce inflammation and emphysema development [117]. This is
associated with decreased formation of proinflammatory mediators, decreased neutrophilic
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inflammation, and increased production of the anti-inflammatory cytokine IL-10. RvD1
promoted efferocytosis of neutrophils and alternative activation of M2 macrophages [118].
An epimeric aspirin-triggered RvD1 showed similar results in experiments on mice with
cigarette smoke-induced emphysema [119]. In addition, RvD1 reduces apoptosis and
inflammation of alveolar epithelial type 2 cells caused by LPS exposure [120].

During chronic P. aeruginosa lung infection in an experimental mouse model, RvD1
regulated the expression of Toll-like receptors in macrophages, their downstream genes
and microRNA (miR)-21 and 155, which led to a decrease in inflammatory signaling. In
in vitro experiments, RvD1 demonstrated similar actions, enhancing phagocytosis of P.
aeruginosa by neutrophils and macrophages [121].

At the same time, in COPD patients the concentration of RvD1 was reduced in bron-
choalveolar lavage fluid and serum [112]. Exogenous administration of RvD1 can signifi-
cantly reduce the number of neutrophils induced by cigarette smoke exposure, as well as
reduce inflammation, oxidative stress manifestations and cell death [10,112,122].

Another member of the resolvins, RvD2 also promotes alternative M2 activation of
monocyte-derived macrophages and prevents M1 polarization when exposed to cigarette
smoke extract [112].

The best-known E series resolvins are resolvin E1 (RvE1) and resolvin E2 (RvE2). The
receptor for this series of resolvins is the resolvin E series receptor (ERV), which is also
known as chemokine-like receptor 1 (CMKLR1) and chemerin receptor 23 (ChemR23) [123].
ERV is widely present in various lung cell types, including airway epithelial cells as well as
cells of the immune system, including neutrophils, monocytes, macrophages, and dendritic
cells [69,70,124–130].

Resolvin E1 demonstrates an anti-inflammatory effect that consists in decreasing
the recruitment of neutrophils, by inhibiting their transepithelial and transendothelial
migration [124,131–135]. Another mechanism is the stimulation of efferocytosis of apop-
totic neutrophils by macrophages [133,134], and inhibition of proinflammatory cytokine
release [136,137]. Studies have shown that the implementation of the resolution phase of
inflammation by RvE1 is mediated by its effect on migration and activation of the monocyte-
macrophage system, through its specific binding to two types of receptors, ChemR23 and
LTB4 receptor 1 (BLT1) [138–140].

In addition, RvE1 stimulates the expression by apoptotic leukocytes of the chemokine
receptor CCR5. Thus, RvE1 demonstrates anti-inflammatory activity and promotes the
resolution of inflammation. A study in a mouse model of pneumonia showed that RvE1
reduces the levels of several proinflammatory chemokines and cytokines in the lungs and
improves survival [141].

Resolvins may also be involved in atheroprotection. RvD2 has been shown to be
involved in the regulation of nitric oxide production, through which, as well as direct
modulation of leukocyte adhesion receptor expression, it reduces leukocyte-endothelial
interaction [140]. In addition to nitric oxide, RvD2 stimulates the release of prostacyclin
from vascular endothelial cells [142,143].

RvE3 is also a potent inhibitor of polymorphonuclear leukocyte chemotaxis in vitro [144],
in addition to this it also reduces allergic airway inflammation through the IL-23/IL-17A
pathway, suggesting promise for this resolvin for asthma treatment [145]. These data are of
interest given the frequent combination of COPD and asthma.

In addition, recently identified RvE4 is a potent stimulator of efferocytosis of senescent
erythrocytes and apoptotic M2 neutrophils by macrophages [100,146].

Together, these data indicate an important and diverse role of resolvins in the reso-
lution of inflammation. Disruption of their regulation may be part of the pathogenesis of
COPD, and their synthetic analogues can be considered as promising means for treatment.

3.3. Protectins

Protectins (PDs), another member of the family of specialized pro-resolution mediators,
are synthesized from twoω-3 polyunsaturated fatty acids, such as docosahexaenoic acid
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(DHA) and docosapentaenoic acid (DPA) (Figure 4) [147]. According to their chemical
structure, they are E,E,Z-docosatrienes, because they have three conjugated double bonds
located between the 10th and 17th carbon atoms. There are a total of 6 double bonds in the
protectin molecule. The PD1 biosynthesis pathway begins with the enzymatic conversion of
a fatty acid by 15-lipoxygenase (ALOX15) to 17S-hydroperoxy-DHA and then by enzymatic
apocsidation to 16S,17S-epoxy-DHA, which after enzymatic hydrolysis is converted to
10R,17S-dihydroxy-docosa-4Z,7Z,11E,13E,15Z,19Z-hexaenoic acid (10R,17S-DT) or PD1.
The subsequent products of PD1 metabolism have not been studied in vivo, but there are
reports of a metabolite called 22-OH-PD1, which also exhibits powerful anti-inflammatory
activity [148].

PD1 was first described in brain and retinal tissues as neuroprotectin D1 (NPD1),
which was considered to be a mediator of protection against oxidative stress [149,150]. It
was later found that PDs are formed in many tissues and have different functions. PD1 has
been found in human lung tissue and exhaled breath condensate, in inflammatory exudate,
in peripheral blood, and in a wide range of other cells and tissues.

Several types of protectins are distinguished-PD1 or NPD1, PD1-d5, 17(R)-PD1 and
PDX, as well as conjugated protectins such as PCTR1, PCTR2 and PCTR3. Proteins have
an anti-inflammatory effect by acting on the GPR37 receptor, also called PAELR (Parkin-
associated endothelin receptor-like receptor) [147]. Protectins differ from one another in
the severity of their anti-inflammatory effect, which is explained by differences in the
stereochemistry of the molecules, for example the R-epimer PD1 is more active than the
S-epimer PD1 [147,151].

The anti-inflammatory effects of PD1 include inhibition of neutrophil migration [152],
reduction of TNF-α and interferon (IFN)-γ production by neutrophils [153]. In addition, it
regulates CCR5 expression in neutrophils [154] and stimulates macrophage phagocytosis
and efferocytosis [61,105,155], as well as reducing angiogenesis and promoting epithelial
barrier integrity [11,61,156,157].

Thus, protectins are of research and clinical interest, and their role in the pathogenesis
of COPD requires further research.

3.4. Maresins

Maresins (MaRs), other members of SPMs, are synthesized fromω-3 docosahexaenoic
acid (DHA) (Figure 6) [158]. Several types of maresins are distinguished-MaR1, MaR2,
MaR1-d5, MaR2-d5, as well as maresin conjugate in tissue regeneration (MCTR), such as
MCTR1, MCTR2, MCTR3. The formation of certain types of maresins depends on enzymes,
e.g., epoxide hydrolysis is the key enzyme for conversion to MaR1 [159], soluble epoxide
hydrolase for MaR2 [160], leukotriene C4 synthase and glutathione S-transferase MU 4 for
MCTR1, gamma-glutamyltransferase for MCTR2 and dipeptidase for MCTR3 [161–163].

MaR1 was the first identified maresin and is described as a DHA product formed by
macrophage cultures derived from human monocytes [158]. Its biosynthesis is initiated by
a lipoxygenation process (the key enzyme is 12-lipoxygenase) at carbon-14 position, which
introduces oxygen into the molecule. A 13S, 14S-epoxide-maresin intermediate is formed,
which is further converted to one of the maresins by enzymatic transformations [161].
MaR1 and MaR2 share the chemical formula, C22H32O4, but differ in structure (position of
the hydroxyl group at the 7 and 13 positions, respectively) and molecular configuration. As
well as in their chemical structure, they have similarities and differences in the functions
they perform. For example, MaR1 and MaR2 limit the recruitment of polymorphonuclear
leukocytes and enhance macrophage phagocytosis and efferocytosis [160,164–166]. MaR1
contributes to decreased levels of proinflammatory cytokines in a mouse model of sepsis,
such as IL-6, TNF-α, and IL-1β [161]. MaR1 is additionally involved in pain regulation [167]
and also protects against lung damage by inhibiting oxidative stress, which can be partially
explained by activation of the Nrf-2-mediated HO-1 signaling pathway [168].
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MaR1 is considered an activator for leucine-rich repeat containing G protein-coupled
receptor 6, which is expressed in phagocytes and which enhances phagocytosis and effero-
cytosis [169,170]. In addition, MaR1 can participate in the regulation of inflammation by
decreasing TLR4 activation [171].

MCTR1, MCTR2, and MCTR3 have been studied to a lesser extent, but there is infor-
mation on their role in tissue regeneration and regulation of neutrophil infiltration [161].
In a mouse model, MCTR1 accelerates the resolution of inflammation induced by LPS
stimulation through M2 polarization of resident alveolar macrophages [172]. In addition, it
contributes to a decrease in the production of inflammatory cytokines such as TNF-α, IL-1β,
and IL-6. In an LPS-induced sepsis model in mice, it also contributes to the reduction of
lung endothelial glycocalyx damage through the ALX/SIRT1/NF-kB/HPA pathway [173].

Thus, SPMs are a new promising direction for the study of COPD pathogenesis and
search of new tools for treatment.

4. Participation of Fatty Acids in Immunometabolic Reprogramming of Macrophages

Macrophages are important participants and regulators of inflammation in COPD. The
lungs have both their own population of alveolar macrophages and cells differentiated from
blood monocytes. Macrophages are differentially involved in inflammation, demonstrating
multiple functions related to their functional phenotype. The polarization of macrophages
is related to their metabolic profile and is characterized by different production of biolog-
ical factors involved in inflammation. The best-known are M1 and M2 (subtypes M2a,
M2b, M2c, M2d) phenotypes of macrophages, which have pro- and anti-inflammatory
functions, respectively. M1 macrophages are called “classically activated (proinflammatory)
macrophages”. They produce high levels of proinflammatory cytokines such as TNF-α, IL-
1ß, IL-6, IL-12, and also have strong bactericidal properties. M2 macrophages, in addition
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to producing anti-inflammatory factors such as IL-10, participate in tissue remodeling and
are called “alternatively activated macrophages” [174–176].

Studies in recent years have shown that this classification is very simplistic, but it
may be useful for the purpose of understanding the differentiated role of macrophages in
inflammation.

Interestingly, the polarization of macrophages is related to their metabolic repro-
gramming, including the differential nature of fatty acid utilization (Figure 7) [177]. Non-
activated M0 macrophages are known to gain energy for ATP production mainly through
oxidative phosphorylation, whereas M1 macrophages gain energy more by glycolysis, and
M2 macrophages are characterized by moderate glycolytic activity and enhanced oxidative
phosphorylation and fatty acid oxidation [178–184].
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During M1 polarization, fatty acid synthesis is activated due to proinflammatory
stimuli [185,186]. Fatty acid synthesis in these macrophages is carried out using substrates
derived from other metabolic pathways, such as the truncated glycolytic pathway and the
defective tricarboxylic acid (TCA) cycle, which lead to the accumulation of biosynthesis in-
termediate products [187,188], including citrate and succinate. These intermediates are used
for both fatty acid synthesis [189,190] and proinflammatory mediators [187,189,191,192]. In-
deed, carbon atoms derived from glucose at an increased rate of glycolysis in LPS-activated
macrophages are preferentially incorporated into fatty acids and sterols [186,193].

In contrast to proinflammatory M1 macrophages, alternatively activated M2 macrophages
use fatty acid oxidation [178–181]. In this case, fatty acid oxidation occurs in the mitochon-
dria, as opposed to synthesis, which occurs in the cell cytoplasm.

Thus, the metabolic pathways in which fatty acids are involved and the phenotype of
immune cells are closely linked, demonstrating different involvement in inflammation.

5. Short-Chain Fatty Acids

It is of interest to know that there is a metabolic and immune axis linking the lungs and
the gut. These links are bidirectional, with the gut microbiome playing an important role in
this interaction. The intestine is the principal site of localization for most of the commensal
bacterial mass of the human microbiome [194,195]. This microbiome is metabolically active,
being a source of several substances, such as short-chain fatty acids (SCFAs).

Short-chain fatty acids (SCFAs) are fatty acids with a straight or branched chain with
less than six carbon atoms. The most common are acetate, propionate and butyrate, which
are found in the colon in a molar ratio of approximately 57:22:21 [196,197]. SCFAs are
produced by the intestinal microbiota as a result of anaerobic fermentation of dietary fiber.
Important substrates for SCFAs formation are resistant starch, cellulose, and pectin [198].
In addition to carbohydrates, the formation of butyrate and propionate in the intestine
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also occurs as a result of the metabolism of organic acids and amino acids [199]. Protein
fermentation can lead to the formation of branched-chain SCFAs, such as isobutyrate,
2-methylbutyrate, and isovalerate, derived from branched-chain amino acids (valine,
isoleucine, and leucine) [200]. Metabolites of these amino acids may be associated with the
development of insulin resistance [201].

SCFAs are found to a greater extent in the large intestine, where their concentration
ranges from 70 to 130 mmol/kg, as well as in the bloodstream, but in much smaller amounts,
amounting to approximately 0.1–5 µmol/L [197,202]. Most of the butyrate formed is used
by colonocytes as an energy source, and these cells can obtain up to 60–70% of their energy
from the oxidation of SCFAs [196,203]. Passing through the portal vein, propionate is
metabolized by the liver, where it is used in gluconeogenesis [204,205], whereas most of
the acetate enters the systemic bloodstream, where it is the most abundant SCFAs. The
ratio of acetate, propionate, and butyrate in the portal vein is approximately 69:23:8 [196].
In plasma, the concentrations of acetate, propionate, and butyrate are approximately
25–250 µmol/L, 1.4–13.4 µmol/L, and 0.5–14.2 µmol/L, respectively [197,206]. It should
be noted that plasma acetate may also have other origins, such as those associated with
fatty acid oxidation and amino acid metabolism [207], ketogenesis in hepatocytes [208], or
ethanol oxidation by microsomal cytochrome P450 enzymes [206,209].

The entry of SCFAs into the systemic bloodstream may be due both to passive diffusion
and to the participation of special transporters, such as monocarboxylate transporter 1
(MCT1) and sodium-bound monocarboxylate transporter 1 (SMCT1) [198]. MCT1 has
also been detected in cells of the immune system, including lymphocytes, monocytes, and
neutrophils [210,211].

SCFAs are thought to realize their action through inhibition of histone deacetylase
(HDAC) and through interaction with the G-protein-related receptors GPR43 and GPR41,
also known as free fatty acid receptor (FFA)2 and FFA3, respectively [211–214]. In addition,
the receptors for SCFAs are GPR109a (also known as HCA2) and olfactory receptor 78
(Olfr78) [215–217]. GPR43 is expressed in immune cells, including neutrophils, monocytes,
and lymphocytes [211–213,218].

Butyrate, acetate, and propionate are considered to be histone deacetylases (HDAC)
inhibitors, which are a class of enzymes that inhibit transcription through the removal of
acetyl groups from chromatin [211,219]. Because of this, they are involved in the regulation
of many cellular functions such as migration [211,220,221] and survival [211,222,223]. Bu-
tyrate, which is the strongest HDAC inhibitor [224,225], can cause macrophages to metabol-
ically switch toward an anti-inflammatory M2 phenotype by inhibiting HDAC3 [226,227].
Another HDAC-related effect of butyrate is the inhibition of nitric oxide production (via
iNOS) and lipopolysaccharide-induced proinflammatory cytokines (IL-6, IL-12) [227,228].
In addition, the anti-inflammatory effect of butyrate is associated with inhibition of the
NF-kB signaling pathway as well as production by mononuclear cells and neutrophils of
anti-inflammatory cytokines such as IL-10 [225,227].

Thus, SCFAs are believed to have anti-inflammatory and immunomodulatory ef-
fects [229]. SCFAs are involved in the regulation of differentiation, recruitment and activa-
tion of neutrophils, dendritic cells, macrophages and monocytes as well as T cells [206,215].
Butyrate reduces excessive airway infiltration by neutrophils through the GPCR-dependent
receptor and by altering CXCL1 production [230].

SCFAs inhibit the maturation of monocytes, macrophages, and dendritic cells by
altering their ability to capture antigens and reducing their ability to produce proinflam-
matory cytokines such as IL-12 and TNF-α [206,215,225]. Monocytes cultured in the
presence of SCFAs show anti-inflammatory effects characterized by increased production
of PGE2 [215,231].

The effect of SCFAs on cellular metabolism is of particular interest. Butyrate has been
shown to promote memory potential in activated CD8+ T cells by influencing cellular
metabolism [232].
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A demonstration of the gut-lung connection is the detection of SCFAs in sputum [233].
In this connection, it is interesting to know that SCFAs can alter metabolic programming
in LPS-exposed alveolar macrophages, which contributes to the maintenance of lung
immunometabolic tone [234].

Interestingly, both butyrate and propionate restored and even improved the barrier
function of the damaged airway epithelium, which may be mediated by increased expres-
sion of zonula occludens-1 (ZO-1) tight junction proteins [235]. Airway epithelial barrier
dysfunction and dense contact disruption have been reported in asthma and in smoking
and COPD [236,237]. In this regard, restoration of barrier function under the influence of
SCFAs may have some clinical significance [235].

Other data suggest that the effect of SCFAs on lung cells can be not only anti-
inflammatory but also pro-inflammatory, which depends on the type of cells studied
and the concentration of SCFAs [238]. Interestingly, SCFAs in high concentrations caused
significant inhibition of P. aeruginosa growth, which was enhanced at lower pH. At the
same time, low concentrations of SCFAs resulted in enhanced bacterial growth [233].

These and other data suggest that SCFAs can act as pro- or anti-inflammatory molecules,
depending on the cell type as well as on the conditions [215]. Research findings suggest
that there is specificity in the immunomodulatory effects of butyrate, which may depend
on the state of proliferation and activation in different cell types [239].

Given the link between the gut microbiome and lung function, there is increasing
evidence of possible abnormalities in gut microflora in smoking and COPD [240,241]. In
addition to smoking, chronic exposure to inhaled particulate matter, which is another
important risk factor for COPD, in an experimental model in rats, causes gut dysbacteriosis
and metabolic disorders [242].

It is believed that the most common bacteria in the intestine are representatives of
Bacteroidetes, Firmicutes, which are mainly localized in the proximal colon [243–245]. They
are involved in the production of SCFAs, and representatives of the Bacteroidetes type mainly
produce acetate and propionate, while the Firmicutes type produces butyrate [196,246].

The available data suggest certain links between the intestinal and pulmonary mi-
crobiome [247]. Moreover, the diet may affect not only the gut microflora but also the
respiratory tract microbiota [247,248]. Patients with chronic diseases show changes in the
composition of the gut microflora with an increase in the number of harmful bacteria [249].
Interestingly, the proportion of Bacteroidetes is significantly reduced in COPD, which may
contribute to the course of the disease [250,251]. In addition, the species diversity of the
intestinal microflora and the number of Bacteroides decreases in the elderly [252,253].

It has also been shown that a high fat content in the diet leads to a decrease in the
number of representatives of Bacteroidetes type [254–256]. Thus, the nature of the diet may
influence not only the structure of the intestinal microbiota, but also the course of COPD
through the regulation of many links of lipid metabolism (Figure 8).
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6. The Importance of Nutrition in the Progression of COPD

The modern Western diet is considered an independent risk factor for many chronic
noncommunicable diseases. Low levels ofω-3 PUFAs in the Western diet [257,258], may
contribute to the development of some diseases, such as atherosclerosis, and may also
be a factor associated with the prognosis of COPD. Several studies have demonstrated
the association of ω-3 PUFAs levels in COPD with systemic inflammation and clinical
outcomes [259–261]. In this case, adequate dietary intake ofω-3 PUFAs can be considered as
a protective factor against the deterioration of lung function in smokers and the progression
of COPD. Consumption ofω-3 PUFAs by COPD patients may be associated with weight
gain and lower IL-6 levels compared with placebo [262].

PUFAs intake may also be associated with the severity of respiratory symptoms. A
diet high inω-3 PUFAs may help to reduce airway hypersensitivity and reduce the severity
of exercise-induced bronchospasm [263–265]. It has also been shown that ω-3 PUFAs
(eicosapentaenoic acid and docosapentaenoic acid) are associated with a reduced risk of
non-specific bronchial hyperresponsiveness, whereas some ω-6 PUFAs, such as linoleic
acid, dihomo-γ-linolenic acid, and arachidonic acid, are associated with an increased risk
of non-specific bronchial hyperresponsiveness [265]. However, higher levels of eicosapen-
taenoic acid and docosahexaenoic acid were associated with a decreased likelihood of
chronic cough [266]. These findings are of clinical interest given the frequent association of
COPD with bronchial asthma and even the isolation of a separate phenotype, the so-called
Asthma-COPD Overlap Syndrome (ACOS).

Despite these findings, there are still insufficient studies that can convincingly demon-
strate the benefits of a diet rich inω-3 PUFAs on the course and prognosis of COPD [141,267].

In addition to ω-3 PUFAs, nutritional support research in COPD patients has also
focused on the role of sources of SCFAs. It has been shown that consumption of fruits,
vegetables, oily fish, and whole-grain cereals may help protect against declining lung
function in adults, especially in male smokers and patients with COPD [268]. High fiber
intake has been inversely related to the incidence of COPD in both current and former male
smokers [269]. At the same time, high fruit and vegetable intake in men was associated
with decreased COPD incidence in both smokers and ex-smokers [270]. Interestingly,
among women, reduced risk of COPD was associated with prolonged consumption of fruit
rather than vegetables [271].
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Weight loss and cachexia are important clinical characteristics of the adverse course
of COPD [272]. Decreased body weight includes not only loss of adipose tissue, but also
loss of muscle mass, which further impairs the physical activity and exercise capacity of
patients. Decreased body mass index (BMI) values correlate well with predicted FEV1%
and FEV1/FVC. Meanwhile, serum levels ofω-6 PUFAs metabolites such as linoleic acid,
γ-linoleic acid, and arachidonic acid and ω-3 PUFAs metabolites such as eicosapentaenoic
acid and docosahexaenoic acid show correlations with BMI and lung function [273]. PUFAs
have also been shown to have a positive effect on exercise capacity in patients with COPD,
which may be of clinical significance [274].

It has been suggested that overweight and obesity may be associated with changes in
the composition of the intestinal microflora, including the ratio of Bacteroidetes, Firmicutes
and others [275]. This can lead to changes in the production of SCFAs and their resulting
effects. Plasma levels of butyrate/isobutyrate have been shown to be related to BMI [276].
An increase in BMI is accompanied by an increase in plasma butyrate/isobutyrate concen-
trations [276]. The results of low-fat/high-fiber diet experiments on a pig model showed
increased production of SCFAs, especially butyrate by beneficial bacteria. Meanwhile, a
high-fat/low-fiber diet for 7 weeks promoted increased bacterial development associated
with negative health effects [277].

In another study, overweight and obese human volunteers were associated with a
change in the ratio of individual SCFAs in favor of propionate [278]. Moreover, the total
concentration of SCFAs in fecal samples was more than 20% higher in obese than in lean
volunteers [278].

It has been shown that anorexia nervosa, demonstrates a decrease in intestinal mi-
crobial diversity associated with the production of SCFAs, primarily butyrate and propi-
onate [279,280].

These findings are of particular interest given the paradoxical links between obesity
and prognosis in COPD patients. Increased body weight and even obesity in these pa-
tients demonstrates better clinical outcomes. At the same time, decreased body weight in
starvation, including anorexia nervosa, stimulates the development of emphysema.

It should be noted that there are associations between dietary precursors of SCFAs
and the quantitative composition of plasma SCFAs. These relationships may be due to the
fact that different sources of fermentable fiber can be differentially utilized by different
composition of the gut microflora [276,281,282]. It has been shown that a diet high in fiber
attenuated emphysema by suppressing airway inflammation. This could be due to the
formation of SCFAs in the colon due to diet [251].

These data emphasize the importance of a comprehensive approach to the diet of
COPD patients, taking into account the metabolic characteristics of individual food compo-
nents [195].

7. Conclusions

The review of the literature suggests that COPD is characterized by the disruption
of multiple lipid metabolic links (Table 1). Analyzing these data, one cannot ignore
the heterogeneity of the disease itself. Many pathophysiological mechanisms of COPD
heterogeneity are not yet clear, but the available data suggest that lipids may be involved
in various links in the pathogenesis associated with COPD heterogeneity. Their complex
links with emphysema, exacerbations, and comorbid diseases, such as the development
of atherosclerosis, have been shown but not fully understood. There is no doubt that
these links are multifaceted and include many links, the keys to understanding which may
become more accessible with further study.
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Table 1. Anti-inflammatory function of fatty acids and their metabolites in chronic obstructive pulmonary disease.

Lipids Anti-Inflammatory Mechanisms Changes in COPD References

Long-chain
polyunsaturated

fatty acids

modulation of biophysical properties of
plasma membranes (lipid ordering,

fluidity, lipid rafts);
regulation of membrane proteins

function;
gene expression (NF-kB, SREBP);

substrate for synthesis of specialized
pro-resolving mediators.

modification of the fatty acid
composition of phospholipids of

plasma membranes;
lipid peroxidation;

changes in the composition of free
fatty acids;

increased utilization of fatty acids.

[18–22,25,28,29,31–33,35–
37,53–57]

Short-chain fatty
acids

cell metabolism;
cell differentiation;
HDAC inhibition;

modulation of mucosal inflammation;
epithelial cell proliferation;

junctional permeability.

changes in the composition of the
intestinal microflora;

eating disorders.

[204,209–214,221–225,229–
233,236–241,244–249,254]

Specialized
pro-resolving

mediators

inhibition of neutrophil chemotaxis;
inhibition of transendothelial and

transepithelial migration of neutrophils;
stimulation of phagocytosis and

efferocytosis by macrophages;
inhibition of cytokine production;

influence on the proliferation of epithelial
cells;

participation in cholesterol homeostasis.

decreased production of
pro-resolving mediators leads to:
persistence of inflammation in the

bronchi;
development of emphysema;

provides comorbid relationship
with metabolic syndrome and

atherosclerosis.

[9,10,60,67–73,75–95,98–
101,103,105–122,129–

138,141–143,150,151,153–
159,162–

165,167,168,170,171]

The links between fatty acid metabolism and the course of COPD are of great clinical
interest and have been the subject of numerous studies. Their results demonstrate asso-
ciations between decreased lung function and inflammation with dietary intake of ω-6
PUFAs [33,283,284]. Many studies have focused on assessing the clinical effectiveness of
ω-3 PUFAs intake in COPD. However, these data cannot confirm with great certainty the
existence of positive correlations between fatty acid intake and lung function as well as
COPD progression and prognosis [285,286].

Lipid mediators associated with the resolution of inflammation are a promising new
class of bioactive substances. They can be involved in many links of COPD pathogen-
esis and in doing so are considered as possible new targets for therapeutic action on
inflammation.

Short-chain fatty acids are an important and interesting avenue for further scientific
inquiry into the links between nutrition and COPD progression. Their better study may
expand our understanding of the links between metabolism and inflammation and help
improve nutritional support for COPD patients as an effective therapeutic intervention.

The available data suggest that some lipids, such as ceramides, are important mark-
ers of the course of COPD [287,288]. A better study of the role of fatty acids and their
lipid mediators would allow integration of these data with clinical observations and an
understanding of the natural history of COPD.

This review has shown that fatty acids and their metabolites exhibit multiple functions
in inflammation. The understanding that fatty acids and lipid mediators may be involved
in different phases of inflammation has greatly expanded the concepts of the complexity of
their involvement in the pathogenesis of COPD.
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