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Topoisomerase II Poisons for
Glioblastoma; Existing Challenges
and Opportunities to Personalize
Therapy
Amol Mehta, Chidiebere U. Awah and Adam M. Sonabend*

Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States

Despite advances in surgery, radiotherapy, and chemotherapy, glioblastoma (GBM)

remains amalignancywith poor prognosis. Themolecular profile of GBM is diverse across

patients, and individual responses to therapy are highly variable. Yet, patients diagnosed

with GBM are treated with a rather uniform paradigm. Exploiting these molecular

differences and inter-individual responses to therapy may present an opportunity to

improve the otherwise bleak prognosis of patients with GBM. This review aims to examine

one group of chemotherapeutics: Topoisomerase 2 (TOP2) poisons, a class of drugs that

enables TOP2 to induce DNA damage, but interferes with its ability to repair it. These

potent chemotherapeutic agents are currently used for a number of malignancies and

have shown promise in the treatment of GBM. Despite their robust efficacy in vitro, some

of these agents have fallen short of achieving similar results in clinical trials for this tumor.

In this review, we explore reasons for this discrepancy, focusing on drug delivery and

individual susceptibility differences as challenges for effective TOP2-targeting for GBM.

We critically review the evidence implicating genes in susceptibility to TOP2 poisons and

categorize this evidence as experimental, correlative or both. This is important as mere

experimental evidence does not necessarily lead to identification of genes that serve as

good biomarkers of susceptibility for personalizing the use of these drugs.

Keywords: topoisomerase 2 Poisons, glioblastoma multiforme, personalized therapy, drug delivery, tumor

susceptibility

INTRODUCTION

Glioblastoma (GBM) is the most common primary type of brain malignancy, representing 28%
of all Central Nervous System (CNS) tumors and 80% of the malignant subset (1). These tumors
carry a dismal prognosis; the average survival for GBM patients is 13 months, with a 2-year survival
of 27%, and a 5-year survival of 5.1% (2–4). All patients diagnosed with GBM undergo the same
non-curative treatment, consisting of surgery, chemotherapy and radiation. This homogeneous
treatment paradigm stands in stark contrast to the heterogeneous molecular profile found in
GBM which has led to the classification of these tumors into subtypes based on their patterns
of gene expression, genetic alterations, and DNA methylation (5, 6) .These expression patterns
and their underlying mechanisms could provide a unique tumoral vulnerability. These tumors
are also rather unpredictable with regards to their response to therapies, and a growing body
of literature is focused on the prediction of inter-individual response to treatment with the goal
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of personalizing therapies for GBM. This review aims to critically
examine one such class of chemotherapeutics: Topoisomerase-2
(TOP2) poisons, one of the most powerful and common groups
of chemotherapeutic agents used for cancer. We discuss these
drugs given recent evidence suggesting they are highly effective
for a subset of GBM, eliciting the idea that a refined assessment
of their efficacy in select patient populationsmay show their value
for treating this disease and provide a strategy for their use with
a personalized or precision-medicine approach. In this context,
we provide an overview of the literature that evaluates cancer
susceptibility to TOP2-targeting drugs.

TOP2 TARGETING DRUGS BACKGROUND

Topoisomerase Biology
Topoisomerases are ubiquitously expressed enzymes that execute
many crucial cellular functions. They are necessary, as the
double helical nature of DNA leads to torsional forces
that need to be relaxed for processes like DNA replication,
repair, transcription, and chromosomal segregation (7). Also,
by creating single or double stranded DNA breaks (DSB),
topoisomerases remove supercoils generated by the continuous
unwinding and rewinding of double stranded DNA (7, 8).
These enzymes also perform decatenating functions, which are
necessary to remove interlinked DNA products (catenanes)
formed during replication (Figure 1) (7, 8).

There are two main categories of Topoisomerases, TOP1 and
TOP2, each with their own subtypes (A/B), distinct functions,
and mechanisms of action. TOP2 decoils DNA by creating
transient DSB and passing a separate DNA duplex through
the breaks generated, enhancing chromatin accessibility (9, 10).
TOP2A/B differ in their catalytic sites; the etoposide binding site
of hTOP2A contains a methionine (M762) residue while hTOP2B
contains a Glutamine (Q778). This difference makes the DNA-
TOP2A complex more stable than the DNA-TOP2B complex,
and this stability has been shown to increase cellular susceptibility
to TOP2 poisions (11, 12). TOP2A is typically expressed by
cycling cells, whereas TOP2B is often expressed by post-mitotic
cells (7). Both enzymes are capable of re-ligating the break they
generate. The period between the cleaved and ligated states is
when these enzymes are susceptible to TOP2 poisons (13).

TOP2 Targeting Drugs’ Mechanism of
Action
TOP2 targeting drugs can be split into two broad categories;
catalytic inhibitors and TOP2 poisons. Catalytic inhibitors
impede an important catalytic step in the enzyme’s reaction
cycle (8, 9). Examples include Aclarubicin, which functions by
preventing TOP2 from initially binding to DNA, andMerbarone,
which prevents TOP2 from cleaving the DNA once bound (9).

Other drugs are called TOP2 poisons, as they kill cells
by stabilizing transient intermediates in which the enzyme is
linked to DNA and thus trigger DSB, essentially converting
the topoisomerase enzyme into an agent that damages DNA,
leading to apoptosis (14). Epipodophyllotoxins like etoposide
perform the above functions by covalently linking to DNA while
Anthracyclines do so by intercalating into DNA. Doxorubicin,

an Anthracycline, is a TOP2 poison that intercalates into DNA
and also dislodges histones from their chromatin, disrupting
the normal DNA damage response, interfering with epigenetic
regulation at damaged sites, and generating reactive oxygen
species (15, 16).

Some agents, like dexrazoxane and other bisdiozopiperazines,
inhibit TOP2 after it passes the duplex through its DNA break,
but before it hydrolyzes ATP. This effectively prevents the closed-
clamp structure of TOP2 from re-opening, and the enzyme from
turning over (17).

TOP2 POISONS IN BRAIN TUMORS

Pre-clinical and Early Clinical Data
There is some evidence to suggest that the use of TOP2-
targeting drugs may be efficacious in the treatment of GBM.
Numerous in vitro and animal studies have demonstrated the
anti-tumor effects of doxorubicin against GBM cell lines (18–
21). A human ex vivo study investigating the response to TOP2
poisons in short-term cultures derived from malignant gliomas
demonstrated that both etoposide and doxorubicin are toxic
to these tumor cells (18), while another study in rat models
designed to study combination TOP1 + TOP2 therapies showed
doxorubicin toxicity toward GBM cell lines (19).

Phase II studies tested the use of systemic etoposide in
recurrent gliomas and showed that a subset of recurrent GBM
patients partially responded to an etoposide-containing regimen
(22, 23). Other studies, however, demonstrated a lack of efficacy,
which may be partially explained by variable expression of
TOP2A within GBM. It is important to keep in mind some of
these trials usedmetronomic doses of etoposide (35mg/m2). This
dose is sub-optimal given that the majority of trials that have
demonstrated etoposide’s efficacy against GBM have used doses
of 50 mg/m2 and 100 mg/m2 (24). Additionally, many of these
trials used etoposide in combination with a number of other
agents (25). Additionally, a meta-analysis found that treatment
with etoposide is associated with overall increased survival (24).

To investigate the relative susceptibility of gliomas to
etoposide compared to other cancers, we conducted an analysis
and compared the susceptibility of 667 human cancer cell lines
to etoposide using publicly available data from https://www.
cancerrxgene.org (Figure 2) (27). Our analysis demonstrates that
testicular cancer is the most responsive to etoposide, and gliomas’
response is comparable to that of lymphoma, osteosarcoma, and
neuroblastoma. We found gliomas had a similar response to
etoposide as small cell lung cancer (SCLC) and myeloma, two
cancers that have traditionally been treated with etoposide.

Current Challenges in TOP2-Targeting
Therapy for Brain Tumors
While early data for TOP2 poisons is promising, their
pharmacokinetic profile and poor blood-brain barrier (BBB)
penetrance have limited their efficacy in the treatment of GBM.
The underperformance of etoposide can be attributed to low
levels and wide ranges of intra-tumoral drug concentrations.
Concentrations have been shown to range between 12 and 36% of
blood concentration, with intratumoral concentrations ranging
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FIGURE 1 | (A) TOP2 functions by relieving supercoils generated as a function of the double stranded nature of DNA. Additionally, TOP2 removes catenanes

(interlinked DNA products) formed during replication. This allows the cell to carry out vital functions like replication, repair, and transcription. Figure modified and

reproduced with permission from Nature Publishing Group. (B) TOP2 inhibitors function by interfering with various steps in the enzyme’s catalytic cycle.

Some Topoisomerase inhibitors work by inhibiting DNA binding, thus preventing the formation of the DNA-enzyme complex (1), while others act at the next step,

preventing ATP from binding to the DNA-enzyme complex which in turn does not allow for the formation of a closed clamp structure (2). Some agents prevent the

enzymatic generation of a double stranded DNA break (DSB) (3). Other downstream agents function by preventing the passage of the intact strand through the

already generated ds-DNA break (4). Etoposide, doxorubicin, and analogous agents function by inhibiting DNA religation, thus stabilizing the DSB-enzyme complex

and triggering apoptosis (5). Some inhibitors work at the last step of the catalytic cycle, and preventing the release of product from the enzyme (6). Figure reproduced

with permission from Nature Publishing Group.

between 2–6µM (28–30). Conventional systemic delivery
beyond this dosing is limited by toxicity. Similarly, the primary
explanation for doxorubicin’s disappointing efficacy in vivo has
been its lack of ability to penetrate the BBB, due to its high
molecular weight and low lipophilicity (31).

In order to circumvent these challenges, there have been a
number of attempts to optimize chemotherapeutic delivery to

the CNS. Attempts of using alternative delivery methods like
Convection Enhanced Delivery (CED) have yielded promising
results. A recent study by our group demonstrated direct
intratumoral delivery of high concentrations of etoposide and
increased anti-tumor effects against the proneural subtype of
GBM (25). In this study, we found that intratumoral delivery
of etoposide at a 4uM concentration, which is similar to
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FIGURE 2 | (A) This figure depicts the IC50 of Etoposide against human cancers derived from 900 cell lines. The data was derived from Cancerxgene. The IC50 for

each cancer group was averaged and the standard deviation was then determined. Testicular cancer demonstrated the highest susceptibility to etoposide. The

response of Glioma (red) was similar to many of these cell lines including SCLC and Osteosarcoma, both of which are traditionally treated with Etoposide (26). (B)

Chart derived from the same data comparing IC50 Etoposide for Glioma (Orange) and Testicular Cancer (Blue). Some glioma cell lines demonstrate a similar response

to etoposide as do testicular cancer cell lines.

what is achieved following intravenous delivery, only led to
transient decrease in tumor growth with no effect on survival.
Yet, a concentration of 80µM of etoposide delivered intra-
tumorally led to a robust survival benefit for transgenic mouse
models of proneural gliomas, a subtype of glioma that has
been shown to highly express TOP2A and TOP2B (5, 25).
Direct intra-tumoral delivery of 680µM led to cure of most
treated mice, and remained well tolerated (Figure 3) (25). It
is important to recognize that this study does not establish a
causal link between the proneural gene signature with etoposide
susceptibility. There is, in fact, causal evidence linking other
genes with etoposide susceptibility, and ultimately, there may
be better biomarkers to predict etoposide response than the
proneural gene signature.

Other attempts to optimize doxorubicin delivery include the
use of liposomes (32), nanoparticles (33, 34), focused ultrasound
(35), minicells (36), and direct injection (37). In a rat model,
MRI-guided focused ultrasound was demonstrated to achieve
intratumoral doxorubicin concentrations of 886 ± 327 ng/g
tissue which is within the therapeutic range of 819 ± 482 ng/g
tumor compared with the control intratumoral concentration
of 215 ± 119 ng/g tissue regardless of the dose administered
(35).

Combining TOP2 poisons with other agents is another
attempt to increase the narrow therapeutic window of these
drugs as certain combinations can enhance cytotoxicity as well
as increase selectivity (32, 38, 39). Nanoliposomal topotecan in

combination with pegylated liposomal doxorubicin administered
through CED was found to be associated with a significantly
increased median survival, and an additive effect was observed
between these two agents in a rodent model (40). Additionally, in
certain instances combination therapymay allow for intermittent
rather than continuous dosing regiments, allowing for better
tolerability while maintaining a similar efficacy. For example,
poly (ADP-ribose) polymerase (PARP) inhibition is typically
necessary throughout DNA damage and repair processes.
However, when combined with TOP2 poisons, which are DNA
damaging agents, continuous PARP inhibition may not be
necessary as long as a critical inhibitory level is met during
only DNA repair (41). This combination of TOP2 poison
and PARP inhibitors has been studied in ovarian cancer;
a phase 1 dose escalation study with pegylated liposomal
doxorubicin in combination with olaparib, a PARP inhibitor,
demonstrated that this combination was generally well tolerated,
with only 3 out of 44 patients demonstrating dose-limiting
toxicities, while 33% of the patients responded to therapy
(41).

Ongoing Trials Testing TOP2 Drugs for
GBM
There are currently four clinical trials investigating doxorubicin’s
role in the treatment of GBM. Some are investigating
doxorubicin in the setting of novel delivery mechanisms
such as Laser Interstitial Thermal Therapy (LITT) mediated
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FIGURE 3 | (A) In a recent study, we found that mice treated with 80µM etoposide via Convection Enhanced Delivery (CED) demonstrated prolonged survival when

compared control mice treated with 4µM (the mean concentration achieved in previous studies using etoposide). Additionally, mice treated with 680µM had a

significant survival benefit when compared to control mice, with a 75% cure rate. (B) Graphic illustrating different doses of etoposide delivered in this study; 4µM,

80µM, 680µM. (C) Mice treated with 680µM of etoposide using CED also demonstrated lower bioluminescence signal, measured by using bioluminescence

imaging to monitor luciferase signaling. Figures reproduced with permission from Oxford University Press.

disruption of the BBB (ClinicalTrials.gov-NCT01851733), and
nanoparticle delivery targeting cells using bispecific antibodies
(ClinicalTrials.gov-NCT02766699). Another is studying the
safety and efficacy of aldoxorubicin in subjects with unresectable
GBM whose tumors have progressed following prior treatment
with surgery, radiation, and temozolomide (ClinicalTrials.gov-
NCT02014844). Another trial is investigating the safety
and efficacy of prolonged administration of doxorubicin in
combination with radiotherapy, temozolomide, and histone
deacetylase inhibitor valproic acid in pediatric and adult patients
with newly diagnosed GBM and diffuse intrinsic pontine glioma
(ClinicalTrials.gov-NCT02758366).

A number of clinical trials studying the etoposide’s utility
are also ongoing. One trial is investigating combination
therapy with sodium thiosulfate in the treatment of gliomas
in order to determine if the addition of sodium thiosulfate

can protect against chemotherapy related thrombocytopenia
(ClinicalTrials.gov-NCT00075387). Another clinical trial is
studying the side effects and optimal method of delivering
vorinostat with isotretinoin and chemotherapy including
IV etoposide phosphate and other agents like carboplatin,
cisplatin, cyclophosphamide, thiotepa, vincristine sulfate, and
vorinostat against embryonal CNS tumors like medulloblastoma
and pineoblastoma. There is a trial investigating the use
of LITT to disrupt peritumoral BBB to enhance delivery
and efficacy of therapeutic agents including etoposide in
the treatment of pediatric brain tumors (ClinicalTrials.gov-
NCT02372409). Another clinical trial is investigating overall
survival after administration of various chemotherapeutic agents
(including etoposide) followed by autologous peripheral stem
cell transplantation in the treatment of numerous solid and CNS
tumors (ClinicalTrials.gov-NCT01505569).
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TOPOISOMERASE POISON
SUSCEPTIBILITY: BIOMARKERS TO
PERSONALIZE THERAPY

For many of the 1 million patients treated annually with a TOP2
poison, therapy is often ineffective and can lead to a number
of side effects (16). Many tumors are either initially resistant
to these therapies, or become resistant at time of relapse (42).
Recognizing underlying mechanisms of resistance/susceptibility
(Figure 4) and their tumor molecular signature presents an
opportunity to personalize our treatments, and expand our
currently narrow therapeutic window by increasing the benefit
of these drugs while decreasing unnecessary side effects. The
studies that have implicated these underlying mechanisms in
susceptibility can be split into two broad categories. The first
category, called “experimental” evidence, includes studies in
which the gene was experimentally disrupted, leading to cancer
cell resistance/susceptibility. The second category, “correlative”
evidence, includes genes that are implicated as their natural
disruption or variations of expression in some tumors correlates
with susceptibility (Table 1).

Levels of Expression of TOP2 Protein
A number of studies have thus far shown an association between
levels of topoisomerase expression and cellular susceptibility
to TOP2 poisons (48, 49). TOP2A suppression is thought
to result in resistance by decreasing the amount of enzyme-
DNA complex, in turn decreasing the amount of DNA damage
(42). Our group found a correlation between the transcript
levels of TOP2B and etoposide susceptibility across 139 human
cancer cell lines (25). We demonstrated that TOP2A levels
were significantly elevated in platelet-derived growth factor
(PDGF)+ and phosphatase tensin homolog (PTEN)−/− mouse

proneural tumors which were susceptible to intratumorally
delivered etoposide by CED (correlative evidence) (Figure 3)
(25). Several additional studies have demonstrated that TOP2
poison susceptibility is related to levels of TOP2 expression.
One particular study decreased levels of TOP2A expression
using gene suppressor elements (GSE’s) and demonstrated
a resistance to etoposide in different mammalian cell lines
(experimental evidence) (50). Another study explored the genetic
basis for response heterogeneity using a pool-based RNAi
screening approach, identifying TOP2A expression levels as
major determinants of doxorubicin response in amousemodel of
lymphoma. In addition, by decreasing TOP2A expression in vivo
using retrovirally encoded shRNAs (experimental evidence), this
study was able to demonstrate a relationship between TOP2A
levels and doxorubicin susceptibility (42). This same study noted
that tumors which relapsed after doxorubicin therapy displayed
highly reduced TOP2A levels (42).

Merely suppressing the expression of TOP2A and
demonstrating resistance does not prove that TOP2A expression
levels can be used as a biomarker to personalize therapy. Rather,
this only succeeds in demonstrating etoposide and doxorubicin’s
mechanisms of action. The more important question is whether
or not naturally occurring variations in TOP2A expression
correlate with etoposide/doxorubicin susceptibility, which does
not (25). This implies that TOP2A expression is necessary but
perhaps not sufficient for efficacious tumor cell killing by these
agents. It is possible that there are other molecular factors
limiting the effectiveness of these agents, and that even a small
amount of TOP2A expression is sufficient to elicit DNA damage
if other conditions are met. Importantly, many studies have
demonstrated that increased TOP2A expression is correlated
with improved prognosis in GBM, measured as survival at 2
years (51), 5-year progression free survival and overall survival
(52, 53) (correlative evidence).

FIGURE 4 | There are several processes that might modulate cancer susceptibility to etoposide, including levels of TOP2 expression (determined by transcription and

translation), genomic binding of TOP2 as well as its enzymatic activity and post-translational modifications. Mutations in KEAP1, SWI/SNF complex, and EZH2

influence TOP2 at a transcriptional level, consequently influencing TOP2 resistance/susceptibility. Additionally, etoposide delivery is influenced by resistance proteins

like the MDR1 efflux pump, which dictate intracellular concentration and therefore cytotoxicity. The cytotoxic effect of these agents largely stems from their ability to

stabilize double-stranded breaks (DSB) in DNA, triggering cellular apoptosis. Therefore, the cell’s existing DNA repair machinery, and its overall susceptibility to DNA

damage plays a role in determining the success of TOP2 poisons such as etoposide and mutations such as those in C9orf82 have been found to influence this

(43, 44).
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Other Genes Associated With
Susceptibility to TOP2 Poisons
KEAP1

Mutations in the KEAP1 (Kelch-like ECH-associated Protein-1)
gene are common abnormalities in non-small cell lung cancer
(NSCLC), gallbladder, liver (54), ovarian (55), endometrial (56),
and lung papillary cancers (57). Keap1 is an E3 ubiquitin
ligase involved in degrading Nrf2, which regulates transcription
of genes that mediate the response to oxidative stress (58).
Studies have suggested that decreased Keap1 expression and
increased Nrf2 expression enhances tumor cell growth. A
systematic analysis of the KEAP1 genomic locus in NSCLC
cell lines demonstrated bi-allelic inactivation in KEAP1 was
associated with constitutive activation of Nrf2-mediated gene
expression (59). Another study demonstrated similar findings
in biliary tract and gallbladder cancers. Amplifying alterations
in KEAP1 are found in approximately 0.8% of GBM tumors
(43, 44). Mutations in the Keap1-Nrf2 pathway have been
implicated in TOP2 poison resistance (60). For instance,
Wang, et. al demonstrated that stable overexpression of Nrf2
resulted in increased resistance to agents such as etoposide,
cisplatin, and doxorubicin. Conversely, they demonstrated
down-regulation of the Nrf2 response was associated with
increased susceptibility to the above therapies (experimental
evidence) (61). Also, a recent study used a genome wide
knock down approach and demonstrated that KEAP1 mutations
also confer resistance to TOP2 poisons by decreasing TOP2A
expression levels (experimental evidence) (16). Therefore,
assessing the mutational status of KEAP1 prior to initiating
therapymay provide amore informed and personalized approach
to treatment.

ABCB1

Drug efflux is a well-researched mechanism of resistance to
chemotherapy, where increased activity of a molecular pump
decreases the intracellular accumulation of a therapeutic
agent (62). In particular, three such transporters—multidrug
resistance protein 1 (MDR1), multidrug resistance associated
protein 1 (MRP1), and breast cancer resistance protein (BCRP)
have been implicated in cancer resistance to a number of
chemotherapeutic agents (62). MDR1 encodes P-glycoprotein,
a protein that functions as an active efflux pump, removing
lipophilic compounds from the cell, thus decreasing the
intracellular accumulation of chemotherapeutics. Many
studies have demonstrated a negative correlation between
P-glycoprotein and chemotherapeutic efficacy (correlative
evidence) (63–65). This protein is especially important for the
treatment of neurological malignancies as it removes drugs
at the BBB, preventing access of agents to the CNS (16).
Animal studies have demonstrated that specifically inhibiting
P-glycoprotein can increase the level of drug in the brain
while also improving the drug’s efficacy against implanted
human tumors (66, 67). However, later clinical attempts to
incorporate P-glycoprotein inhibitors into chemotherapy
protocols have shown contradictory and disappointing results

(68–70). This discrepancy may be explained by suboptimal
dosing of both the inhibitor and chemotherapeutic, with
possible contribution by other pumps on the luminal side
of brain capillary endothelial cells (71). The presence of
P-glycoprotein may be an important molecular biomarker
whose presence should be assessed before starting therapy
with a TOP2 poison, however, studies are yet to determine
a conclusive clinical benefit to targeting these resistance
mechanisms.

C9orf82

The activity of C9orf82 been recently implicated in resistance
to TOP2 poisons. There is currently no consensus as to its
precise function in the cell, with some data suggesting it
negatively regulates apoptosis mediated by caspases (72), and
other data suggesting it is involved with the repair of DNA after
DSB induced by TOP2 proteins (experimental evidence) (16).
Alterations in C9orf82, predominantly deletions, are found in
approximately between 6 and11% of GBM tumors (43, 44). A
mutation in the C9orf82 gene was shown to confer resistance to
TOP2 poisons (experimental evidence) (16). The role of C9orf82
needs to be examined further before its clinical use as a reliable
biomarker.

SWI/SNF Complex

The SWI/SNF complex is involved in regulating gene expression
via chromatin remodeling. This complex controls DNA
accessibility to transcription factors by altering histone-DNA
interactions in an ATP-dependent manner (73, 74). This
complex is composed of a number of subunits, including
SNF5/SMARCB1, SMARCE1, BRG1, PBRM1/BAF180 (75).
The SWI/SNF complex has been implicated in malignant
rhabdoid tumors (76), and specific subunits of this complex
(SNF5/SMARCB1, SMARCE1, BRG1, PBRM1/BAF180) have
been identified in approximately 20% of human cancers
including renal carcinoma (77), and NSCLC (78). Alterations
in individual components of the SWI/SNF complex are also
seen in GBM, with mutation, fusion, deletion, or amplification
occurring in between 0.25 and 3.5% of tumors depending on
the subunit and the underlying gene (43, 44). This complex
can influence susceptibility to TOP2 inhibitor therapy as units
like SMARCB1 are involved in loading TOP2A onto DNA, and
thus can determine how many DNA breaks a cancer cell will
have when exposed to a TOP2 poison (16). This is consistent
with in vitro findings (experimental evidence) (16) and clinical
observations, as malignant rhabdoid tumors are unresponsive to
doxorubicin (79).

EZH2

EZH2 (Enhancer of Zeste Homolog-2) is another chromatin
remodeler implicated in cancer resistance to chemotherapy (80).
This molecule is a subunit of a larger complex called the
Polycomb Repressive Complex 2 which is involved in the tri-
methylation of histone 3 at lysine 27 to negatively regulate
transcription (81). Evidence implicating EZH2 in oncogenesis
exists in a variety of cancer types including prostate, breast
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cancer, melanoma, and bladder cancer (82, 83). EZH2 has
been implicated in the sensitivity/resistance to TOP2 poisons;
NSCLC cell lines have demonstrated enhanced sensitivity to
EZH2 inhibition with etoposide therapy both in vitro and in vivo
(47).

CONCLUSION

As the prognosis of patients diagnosed with GBM remains
poor, further efforts should be dedicated to improving the
efficiency of our medical therapies. The genetic heterogeneity
of GBM cell lines presents a unique opportunity to investigate
possible biomarkers to personalize therapy. A precision
medicine approach to chemotherapy for brain tumors can
potentially enhance efficacy of these treatments, and avoid
unnecessary exposure to toxic agents that are not helpful for
some cases. The use of TOP2 poisons is an apt illustration of
this opportunity, with a growing body of research identifying
biomarkers and unique tumoral characteristics that influence
susceptibility. Additionally, the use of novel delivery techniques
may allow us to achieve therapeutic intratumoral concentrations
of TOP2 poisons without having to administer potentially
toxic systemic doses, which up to this point has limited
their effectiveness. Together, these offer a glimpse into
precision therapy and personalized medicine, allowing us
to enhance the efficacy of existing therapies in efforts to
make progress in a disease that has proved extremely difficult
to treat.
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