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Abstract

We determine an optimal protocol for temozolomide using population variability and

dynamic optimization techniques inspired by artificial intelligence. We use a Pharmacokinet-

ics/Pharmacodynamics (PK/PD) model based on Faivre and coauthors (Faivre, et al., 2013)

for the pharmacokinetics of temozolomide, as well as the pharmacodynamics of its efficacy.

For toxicity, which is measured by the nadir of the normalized absolute neutrophil count, we

formalize the myelosuppression effect of temozolomide with the physiological model of

Panetta and coauthors (Panetta, et al., 2003). We apply the model to a population with vari-

ability as given in Panetta and coauthors (Panetta, et al., 2003). Our optimization algorithm

is a variant in the class of Monte-Carlo tree search algorithms. We do not impose periodicity

constraint on our solution. We set the objective of tumor size minimization while not allowing

more severe toxicity levels than the standard Maximum Tolerated Dose (MTD) regimen.

The protocol we propose achieves higher efficacy in the sense that –compared to the usual

MTD regimen– it divides the tumor size by approximately 7.66 after 336 days –the 95% con-

fidence interval being [7.36–7.97]. The toxicity is similar to MTD. Overall, our protocol,

obtained with a very flexible method, gives significant results for the present case of temozo-

lomide and calls for further research mixing operational research or artificial intelligence and

clinical research in oncology.

Introduction

One of the salient features of treatments in oncology is the persistent gap prevailing between

standard drug regimens, corresponding to the official recommendation, and the actual drug

regimens that are applied at bedside. For instance, Atkinson et al. [4] perform a retrospective

study on the drug regimens that have been administered to patients with metastatic renal cell

cancer. They conclude that in a significant number of cases, alternative protocols have been

administered at bedside due to the patient reaction to the standard protocol. Furthermore,

these alternative regimens are found to deliver in some cases more favorable outcomes than

the standard protocol. This gap between official recommendations and actual prescriptions
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calls for improvement in recommended protocol design, in terms of both efficacy and toxicity,

as well as for a better consideration of heterogeneity in patient drug responses (see [5] for a

review). As advocated by several authors in [6] and [7], computational oncology is a very

promising route to optimize the design of drug regimens since, given the large number of pro-

tocol possibilities, standard clinical trials are of little help for an exhaustive exploration. In this

perspective, Pharmacokinetics/Pharmacodynamics (PK/PD) models, that formalize the trade-

off existing between toxicity and efficacy for a given drug, are of particular interest and have

for instance shown to be helpful in the clinical design of protocols [8–10]. PK/PD models have

already been used to determine optimal protocols in some particular situations. In a first

approach (see [11] for a seminal reference or [12, 13] for reviews), these models have been

used to determine the optimal drug quantity, while the regimen schedule was considered as

given. A second approach consists in partly relaxing the constraint of fixed schedule and in

optimizing upon both drug quantities and treatment days. The cycle, i.e., the length and

sequence of treatment and rest periods, is still considered to be fixed. For instance, Barbolosi

and colleagues [14] consider the administration of vinorelbine, with a cycle of 7 days and a

fixed weekly total dose of 150 mg. They prove that the alternative protocol consisting of 60 mg,

30 mg and 60 mg on days 1, 2, and 4 provides a better efficacy, and a similar toxicity, than the

standard protocol consisting of the constant amount of 50 mg on days 1, 3, and 5. Further-

more, Meille et al. [15] and Hénin et al. [16] have used optimization results to provide guid-

ance in designing protocols for phase I/II clinical trials.

This paper belongs to this trend and also relies on a PK/PD model to determine optimal

chemotherapy regimen. We investigate the case of temozolomide, used in the treatment of

some brain cancers, notably for children. Our optimization exercise is innovative along two

dimensions. First, we fully relax the schedule constraint. We determine the optimal protocol

over a 336-day period, but we do not impose any cycle or weekly pattern. The period length of

336 days corresponds to a multiple of the cycle length of the standard Maximum Tolerated

Dose (MTD) protocol for temozolomide. More precisely, in every day of the simulation

period, we determine which treatment dose –including no dose– is optimal. Giving up cycles

enables us to quantify the possible gains from opting for a fully unconstrained approach. Even

though the existence of cycles are often considered as an important feature of clinical trials, we

believe that our computational approach is a very good opportunity to assess the benefits of

removing cycle constraints. The second innovation is that the optimal protocol is not only

designed for a “median” patient, but for an heterogeneous population. Indeed, we take into

account the individual patients specificities through heterogeneity in the population pharma-

cokinetics. We rely on the data of Panetta and coworkers [3], who investigate population phar-

macokinetics for temozolomide. Our selected protocol minimizes the tumor size in the

population, while limiting the toxicity for the whole population. The tumor size is our proxy

for efficacy and we measure toxicity by the minimal normalized absolute neutrophil count

(ANC) over the protocol period.

In our in-silico experiments, our optimized protocol yields unambiguously promising

results. We compare our results to the standard MTD protocol, which corresponds to the

administration of 200 mg/m2 from day 1 to day 5 for a total cycle of 28 days. Our optimal treat-

ment yields a tumor size on average 7.66 times smaller than with the MTD protocol –the 95%

confidence interval for the size factor being [7.36–7.97]. This smaller tumor size on average is

accompanied by a reduction in efficacy dispersion. The 95th percentile of the tumor mass dis-

tribution amounts to 111.4 grams with MTD and only 33.6 grams with our optimal protocol.

This better efficacy in terms of average and dispersion does not come at the cost of a greater

toxicity. Indeed, a smaller share of the population experiences a normalized ANC nadir below
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the acceptable threshold when our optimal protocol is administered. We set the acceptability

threshold for normalized ANC nadir to 2.7%, which corresponds to the 5th percentile of the

normalized ANC nadir for a population to which the MTD protocol has been administered.

With our protocol, only 1.78% of the population experiences a normalized ANC nadir below

the acceptability threshold, while by definition this proportion amounts to 5% with the MTD

protocol. For a reference point, note that a typical ANC value is 7000 cells/mm3 to 8000 cells/

mm3 [17]. [18] defines that an ANC of 1500 cells/mm3 should be considered to be abnormally

low and severe infections occur at values below 500 cells/mm3. [19] define a neutropenia

related event as an ANC nadir below 250 cells/mm3.

What does our optimal protocol look like? First, our protocol exhibits a pseudo-periodicity.

Every 5 weeks approximately, the protocol features several consecutive days of treatment –typ-

ically, three to five. Each of these periods of consecutive treatment days is followed by a period

lasting approximately 4 weeks, during which few –three to five– treatment days take place.

Even though we do not impose a priori any periodicity or any cycle, the optimal protocol fea-

tures some sort of regularity, which makes it look like a distant cousin of MTD. The two main

differences is that treatment period is not always exactly five days and there is no such a thing

as a 23-day rest period. Treatment days always occur between two periods of several consecu-

tive treatment days. Our optimal protocol can therefore be seen as an hybrid between the stan-

dard MTD and metronomic chemotherapy protocols –which loosely speaking involve the

administration of low doses with no prolonged break.

Even in-silico, determining the optimal treatment is not an easy task. Since we relax the

periodicity constraint, treatments can occur at any day. Because our simulation period covers

336 days, the number of possible protocols is vertiginous. Indeed, if only allowing for two pos-

sibilities per day (treatment or no treatment), the number of possible protocols over the period

amounts to 2336 which has an order of magnitude 10101. If we assume that computing the effi-

cacy and toxicity for one protocol and for one patient –and remember that we will deal with

patient’s heterogeneity, so that we will compute average performance over entire populations–

requires one second, testing for all protocol possibilities implies a computational time in the

order of magnitude of 1094 years. For the sake of comparison, the solar system is approxi-

mately 4.6 × 109-year old. Even if we could massively parallelize the computations, the result

would remain far out of reach at a human scale. In practical terms, this means that relying on

standard optimization techniques, such as dynamic programming, is not a feasible option to

determine optimal protocols, given current computational power. Interestingly, in-silico
experiments, in a first brute-force approach, are not of a greater help than clinical trials to

design optimal protocols, even though they are simpler and cheaper to implement. In-silico
experiments must therefore be accompanied by high-performance optimization heuristics

that enable to come up with a close-to-optimal solution in a reasonable time frame. The heu-

ristics we rely on in this article borrows from the field of artificial intelligence and in particular

from the class of the so-called Monte-Carlo tree search algorithms (see [20] for a seminal refer-

ence). This class of algorithms has initially be designed for two-player games. A famous appli-

cation is the program AlphaGo, that has defeated a number of Go champions –see [21] for a

description. We have modified and adapted Monte-Carlo tree search algorithms to handle

optimization problems in presence of uncertainty. This enables us to circumvent the curse of

dimensionality and to determine the (close to) optimal protocol for temozolomide administra-

tion in a reasonable amount of time, while taking into account population variability in phar-

macokinetics. As shown by our results on toxicity and efficacy, such optimizing heuristics are

very complementary to PK/PD models and offer a promising route for designing optimal pro-

tocols in oncology.

Optimal dynamic regimens with artificial intelligence
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Materials and methods

PK/PD model and simulations

The PK/PD model of temozolomide we rely on borrows from two sources. First, the pharma-

cokinetics of temozolomide, and the pharmacodynamics of efficacy come from Faivre and col-

leagues [1]. Second, for the pharmacodynamics of toxicity, we use the model of Panetta and

coworkers [2].

We now provide a brief description of the PK/PD model. First, pharmacokinetics follows

the original paper of Panetta et al. [3] and relies on a standard one-compartment model. We

use a population model for pharmacokinetics, implying that pharmacokinetic parameters –

that drive the temozolomide absorption and plasmatic concentration– are individual-depen-

dent. Second, the pharmacodynamics for efficacy is implemented by an interface model, à la
Meille et al. [22]. The principle of this two-interface model is that temozolomide affects both

endothelial and cancer cells, but that the latter are more sensitive to temozolomide than the

former. The tumor mass is assumed to follow a Gompertz model in absence of treatment. The

calibration is such that the tumor mass doubles within 40 days in absence of treatment. Temo-

zolomide is assumed to impede tumor growth through two channels. First, standard cytotoxic

effects on cancer cells diminish tumor size, but these effects are dampened down by drug resis-

tance due to repeated exposure. Second, anti-angiogenic effects, which come from the killing

of endothelial cells, contribute to limit tumor growth. Contrary to cancer cells, endothelial

cells do not exhibit any drug resistance in the model.

Finally, the pharmacodynamics of toxicity relies on a physiological model of hematopoiesis,

describing the myelosuppressive effect of temozolomide. The model was originally proposed

by Panetta and coworkers [2]. A physiological model is needed because approximating the tox-

icity measure by the area under the curve (AUC) of temozolomide plasmatic concentration,

even though partly successful [23], is found to actually be a very imperfect measure of the

actual toxicity (see [2]). The physiological model of hematopoiesis relies on a three-compart-

ment model that accounts for the successive development stages of proliferating cells in the

bone marrow. Starting as pluripotential stem cells, they progressively mature into differenti-

ated blood cells (platelets, red blood cells, and white blood cells). The granulocyte colony stim-

ulating factor (G-CSF) affects the growth of proliferating cells through a negative feedback

effect. Regarding toxicity, temozolomide acts as an on/off switch on the growth of proliferating

cells in the bone marrow. More precisely, whenever the plasmatic concentration of temozolo-

mide crosses a given threshold, the growth of proliferating cells is completely shut down,

which ultimately harms neutrophil counts. S1 Appendix contains the full-fledged mathemati-

cal formulation of the model, as well as the parameter calibration we use. A detailed numerical

analysis of the model can be found in [24], where the properties of the model are discussed in

regards to the medical literature.

We simulate the PK/PD model over a time length of 336 days, which corresponds to 12 full

cycles of the standard MTD protocol. All computations are implemented in C++. For each

protocol, we assess its efficacy and toxicity for a given patient as follows.

• Efficacy: the logarithm of the tumor size (in grams) at the final day of the 336-day period. A

high efficacy corresponds to a small tumor size.

• Toxicity: the normalized ANC nadir, i.e., minimal normalized ANC (in %) obtained over the

simulation period of 336 days. A high toxicity means a small normalized ANC nadir. Note

that the algorithm is flexible enough to handle multidimensional measures of toxicity and

for instance to also include the time length below a given ANC threshold, as well as the
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minimal ANC value before a new treatment sequence (as done in [15, 16]). We have chosen

to focus on the ANC nadir only, which is unambiguously considered as the relevant measure

of toxicity (see the full prescribing information [25] about Temodar1 capsules, which is the

original brand name of temozolomide).

Since we use a population model for the pharmacokinetics, the drug absorption is not con-

stant throughout the population and consequently, plasmatic concentration of temozolomide

for a given protocol also varies across patients. Therefore, even though the pharmacodynamics

for both toxicity and efficacy is constant in the population, the actual efficacy and toxicity of a

given protocol, that depend on the drug plasmatic concentration, vary across patients. A given

protocol is consequently not characterized by a unique pair of efficacy and toxicity, but by a

population distribution of efficacy and toxicity values.

We illustrate these aspects in panel A of Fig 1, where we show the evolution over time of the

normalized ANC and the tumor size for MTD, taking into account variability in population

pharmacokinetics. Grey areas correspond to treatment periods. In panel B of Fig 1, we simi-

larly show the normalized ANC and the tumor size in absence of variability, i.e. with parame-

ters set to the average values of the population distribution.

From Fig 1, we observe that the impact of population variability on both efficacy and tox-

icity is very sizable. The tumor size at the final date varies from 0.7 gram to 111.4 grams for

the 5th and 95th percentiles, while the median amounts to 33.0 grams. As for efficacy, the

variability in toxicity is also significant. The normalized ANC nadir for both percentiles are

2.7% and 10.7% respectively, while the median value is 6.7%. Finally, the comparison of both

panels of Fig 1 highlights that the pharmacodynamics of the median patient (panel B in Fig 1)

is quantitatively very similar to the median pharmacodynamics of the population (panel A in

Fig 1).

Fig 1. Tumor size (top) and normalized ANC (bottom) as a function of time. Grey areas are treatment periods. Panel A: Population variability. Solid line: median,

dashed lines: 5th and 95th percentiles. Panel B: No variability.

https://doi.org/10.1371/journal.pone.0199076.g001
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Optimization algorithm

We provide a detailed version of the pseudo-code in Algorithm 1. All statements following the

sign ‘//’ are comments. The algorithm relies on the PK/PD model for temozolomide described

above, that we do not make explicit here for the sake of conciseness. In the algorithm, a patient

is characterized by a set of particular values for pharmacokinetics parameters –that are fixed

over time– and a pair of efficacy and toxicity values that evolves over time, reflecting the

administered protocol and the dynamics imposed by the PK/PD model. A population is a col-

lection of patients and is characterized at every day by the distribution of efficacy and toxicity

values.

The algorithm consists of two main parts. The first part is the procedure PKPD, which is an

auxiliary module for the function dealing with the dynamic system. More precisely, the proce-

dure PKPD(Pop, NbDays, prot) updates the efficacy and toxicity for all patients of the popula-

tion Pop. At the current date, this population is characterized by a collection of PK/PD values,

such as the tumor size and the normalized ANC. We update these values by running the PK/

PD model (described above and whose exact formulation can be found in S1 Appendix)

applied to every patient of the population Pop for NbDays days, starting at the current date. In

these simulations, we assume that the protocol prot is administered to every patient. Note that

we denote by⌀ the protocol with no treatment dose. The second part is the core of the algo-

rithm. Function OPTIMPROTOCOL (P, Horizon, nadirmin, θ, NMC) computes the optimal protocol

for the patient population P, over the horizon Horizon. In most of our simulations, the horizon

is 336 days, while the population counts 360 patients randomly drawn from population phar-

macokinetics (we compare results after 336 days, but nothing in our algorithm implies a bor-

der effect at 336 days). The role of parameters nadirmin, θ, and NMC will be made explicit

below.

The core of the function is to determine, at a given day d of the simulation, which drug

dose, including no dose, is optimal. In all generality, we should test for a large number of possi-

ble doses, between no dose (i.e., 0 mg/m2) and the maximum tolerated dose, which is 200 mg/

m2 per day for temozolomide. However, we can take advantage of the PK/PD model for temo-

zolomide to simplify the dosing possibilities. Indeed, as shown in [24], it is always optimal, in

the case of the PK/PD model under consideration, to administer a dose very close to the maxi-

mum tolerated dose of 200 mg/m2. Medium or low temozolomide doses trigger the same tox-

icity as large doses, while their efficacy is much lower. This is mainly due to three properties of

the temozolomide PK/PD model we rely on. First, the toxicity of temozolomide is modeled as

shutting-down the production of proliferating cells in the bone marrow. This shut-down is

binary (either full production or no production) and is triggered by a relatively low plasmatic

concentration of temozolomide. Consequently, small dose administrations have a similar tox-

icity effect than large doses. Second, the major efficacy channels are also binary and become

effective only at large plasmatic drug concentrations. Therefore, small drug doses have barely

no impact on efficacy. Third, the plasmatic clearing of temozolomide is relatively fast. Large

drug doses therefore do not have long lasting effects. In consequence, as can be seen in OPTIM-

PROTOCOL, we can reduce our investigation of possible doses to a binary choice between a 200

mg/m2 dose and no dose. Note that the no-dose case corresponds to an optimal choice but

does not embed the possibility of a patient skipping one day of the treatment. Modeling miss-

ing treatment possibilities would require a specific probabilistic modeling, reflecting patients’

skipping behavior. Our algorithm is flexible enough to be able to take into account these

behaviors. However, we believe that this extension is of interest on its own and we leave it for

future research.
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Algorithm 1 Optimizing drug administration—Algorithm H.
Require: A PK/PD model with population data for pharmacokinetics.
1: procedure PKPD(Pop, NbDays, prot)
// Update the characteristics of the population Pop by simulating

the PK/PD model for NbDays days, and assuming that the protocol prot is
administered to every patient.
2: for p 2 Pop do
3: Simulate PK/PD model for patient p and protocol prot
4: end for
5: end procedure
6: function OPTIMPROTOCOL(P, Horizon, nadirmin, θ, NMC)

// Determine the optimal protocol for the patient population P,
for a length horizon equal to Horizon

// nadirmin: min. acceptable norm. ANC nadir; θ: max. population
share with a norm. ANC nadir below nadirmin

// NMC: horizon in simula-
tions for fictive populations
7: OptiP  empty vector of length Horizon
8: for d  1 to Horizon do
9: for i  1 to 4 do
10: Pi  Copy of population P
11: end for
12: Administer a 200 mg/m2 dose to populations P1 and P3 at day d
13: for i  1 to 2 do
14: Call PKPD(Pi, NMC, ⌀)
15: Call PKPD(Pi+2, NMC, MTD protocol)
16: end for
17: for i  1 to 4 do
18: %Toxi  Share of Pi with normalized ANC nadir � nadirmin
19: if %Toxi � θ then
20: Effi  1
21: else
22: Effi  Average of the log tumor size for Pi at day d + NMC
23: end if
24: end for
25: imin  argmin{Eff1, Eff2, Eff3, Eff4}
26: if imin 2 {1, 3} then
27: Call PKPD(P, 1, 200mg/m2) // Administration of a 200

mg/m2 dose at day d
28: OptiP(d)  1
29: else
30: Call PKPD(P, 1, ⌀) // No dose administration

at day d
31: OptiP(d)  0
32: end if
33: end for
34: Return OptiT
35: end function
In order to determine which of the 200 mg/m2 or no dose is optimal, function OPTIMPROTO-

COL compares the future toxicity and efficacy outcomes of the two dosing possibilities. If the

200 mg/m2 dose offers a better average efficacy than no dose, while exposing the population to

an acceptable toxicity level, then the recommended action for day d will be the administration

of a 200 mg/m2 dose. Conversely, if the no dose yields a better efficacy or if the toxicity with

the 200 mg/m2 dose is too high, then the recommended action is no dose for day d. The func-

tion OPTIMPROTOCOL therefore returns the optimal protocol ‘OptiP’, which is a vector of length

336, containing only 0 and 1, where 1 refers to a 200 mg/m2 dose and 0 to no dose.
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The issue in the previous operation is that assessing future outcomes for toxicity and effi-

cacy relies on future dose administrations that are unknown by construction. We therefore

need to make assumptions. We will suppose that the assessment of future outcomes relies on

future protocols that are a priori fixed and are set to either the no treatment protocol or MTD.

More precisely, this assumption is used as follows. The function OPTIMPROTOCOL compares the

efficacy and toxicity of four different fictive populations. Each of these fictive populations is a

copy of the population P at day d and they differ from each other by the initial dose (0 or 200

mg/m2) and by the continuation protocol (no treatment protocol or MTD). Then, the toxicity

and efficacy for these four populations are updated and computed NMC days later –at day d +

NMC. Next, we select the population featuring the best efficacy for an acceptable toxicity level.

The best efficacy corresponds to the smallest average log tumor mass after NMC days. Our effi-

cacy objective is indeed expressed in logarithm of the tumor size. With such a non-linear

objective function, a 10 gram decrease has a greater weight for an initial tumor mass of 20

grams than for an initial mass of 80 grams. The toxicity will be considered to be acceptable if

less than a proportion θ of the population experiences a normalized ANC nadir below

nadirmin. The proportion θ is simply computed as the number of patients in a given population

whose normalized ANC nadir is below the threshold, divided by the total size of the popula-

tion. The parameter nadirmin is therefore our acceptability threshold for normalized ANC

nadirs. In our simulations, we set NMC = 40 days. This value may seem small but increasing it

further has a negligible quantitative impact on results. We also set nadirmin = 2.69%, which

corresponds to the 5th percentile of normalized ANC nadirs for a population to which MTD

has been administered. Finally, we calibrate θ to 2%, which guarantees that the toxicity in the

actual population P remains acceptable. We provide a sensitivity analysis to the calibration of

the parameter θ in S2 and S3 Appendices. Sensitivity results are consistent with intuition and

confirm our findings.

Finally, the dose administered at day d will be determined by the selected fictive population.

If the selected population did receive an initial dose (no matter the continuation protocol), the

administered dose to population P for day d is 200 mg/m2. Conversely, if the selected popula-

tion did not receive any initial dose, population P is not administered any temozolomide at

day d. The population P is then updated until day d + 1. The process repeats until the end of

the 336-day horizon is reached.

In the remainder, we will refer to this optimal protocol as the heuristic –or H– protocol.

Results

Absence of variability

As a benchmark, we implement our optimization algorithm in absence of variability. The

pharmacokinetics is identical for all patients, as in panel B of Fig 1 for the administration of

the MTD protocol. In that case, we can readily apply Algorithm 1. However, since there is no

variability, parameters need to be slightly modified. First, the population size is reduced to 1,

since the pharmacokinetics for all patients is the same. Second, we correspondingly need to set

θ = 1 since we treat a unit population and we want this unique patient not to experience a nor-

malized ANC nadir below the acceptable threshold nadirmin. Also, we consider this toxicity

acceptable threshold to be the toxicity implied by the MTD protocol (7.00%).

Our results are summarized in Table 1. Compared to MTD, the H protocol features a simi-

lar toxicity level by construction, but a much smaller tumor mass. With the H protocol, the

tumor mass is divided by almost 6 compared to MTD and reaches the value of 6.51 grams,

compared to 38.15 grams for MTD.
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Pharmacokinetic variability

We now turn to the output of the H protocol in presence of pharmacokinetics variability

across patients. So as to observe its efficacy and toxicity, the H protocol is administered to a

population of 3,200 patients drawn from the pharmacokinetics distribution. We compare the

H protocol to MTD, administered to the same population of 3,200 patients. We summarize

our results in Table 2.

Our results are unambiguous. The H protocol delivers a much better efficacy than MTD.

The median tumor mass is 1.80 grams compared to 32.99 grams with MTD. The differences

though still impressive, are slightly smaller for the 5th and 95th percentile. On average, the H

protocol yields a tumor mass approximately 7.66 times smaller than MTD! The 95% confi-

dence interval for the size factor is [7.36–7.97]. Furthermore, this smaller average value comes

with a smaller dispersion of the tumor mass across patients. While with MTD the range of

tumor masses between the 5th and 95th percentiles varies from 0.72 gram to 111.40 grams, the

same range with the H protocol only covers the interval between 0.60 gram and 33.55 grams.

In other words, the H protocol offers a better efficacy in terms of average and of dispersion.

This better efficacy does not come at the cost of greater toxicity. Indeed, the population

share experiencing a toxicity below the acceptability threshold is smaller with the H protocol

than with MTD. More precisely, the 5th percentile of toxicity with the H protocol corresponds

to a normalized ANC nadir equal to 2.74%, which is very close to –and slightly above– the 5th

percentile in the MTD case. However, we can observe that, with no impact on our objective

measure, the dispersion of the normalized ANC nadir in the population with H protocol is

much smaller. Indeed, with the H protocol, 95% of the population experiences a normalized

ANC nadir below 6.2%, while with MTD this 95th percentile reaches 10.76%. Population tox-

icity is therefore more concentrated around the acceptability threshold with the H protocol

than with MTD. This better control of toxicity with the H protocol can be an important factor

in explaining its better efficacy in terms of average and dispersion.

Elements of Table 2 are confirmed by scatter plots in Fig 2, which represent the pair (effi-

cacy, toxicity) for each of the 3,200 patients of our sample population. Left-hand side and bot-

tom graphs are the empirical cumulative distribution function (cdf) for toxicity and efficacy

respectively. The comparison of both panels in Fig 2 makes it clear that the H protocol offers a

better efficacy in terms of average and of dispersion. If this can be seen on the scatter plot, this

is particularly visible on the cdf graphs for tumor sizes (bottom graph for both panels). We can

for instance observe that more than 90% of patients with H protocol involve a tumor mass

Table 2. Protocols comparison with pharmacokinetics variability. Median values and in square brackets, the 5th and

95th percentiles.

Protocol Norm. ANC nadir (%) Tumor mass (g)

MTD 6.74

[2.67 − 10.76]

32.99

[0.72 − 111.40]

H protocol 4.17

[2.74 − 6.22]

1.80

[0.60 − 33.55]

https://doi.org/10.1371/journal.pone.0199076.t002

Table 1. Protocols comparison in absence of variability.

Protocol Norm. ANC nadir (%) Tumor mass (g)

MTD 7.00 38.15

H protocol 7.00 6.51

https://doi.org/10.1371/journal.pone.0199076.t001
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smaller than 10 grams, while this proportion barely amounts to 40% with MTD. This better

efficacy comes from a better control of normalized ANC. Compared to MTD, a higher number

of patients reach a normalized ANC nadir close to the acceptability threshold, while a smaller

proportion crosses the threshold. This can be seen visible on the cdf graph for normalized

ANC (left graph for both panels), where the cdf is more tilted toward the toxicity threshold

with H protocol than with MTD. We also observe a sharp increase in the cdf for the H protocol

right above the threshold, reflecting than few patients will experience a below-threshold nor-

malized ANC nadir.

We can also compare more precisely the two protocols patient-wise, since populations to

which the MTD and H protocols have been administered are identical. First, regarding toxic-

ity, each patient experiencing a normalized ANC nadir below the acceptability threshold with

the H protocol, also experiences a below-threshold ANC nadir with MTD. In other words, if

the toxicity level for a given patient is too high with the H protocol, switching to MTD will not

restore an acceptable toxicity level. Second, patient-wise efficacy comparisons are also unam-

biguous. For each of the 3,200 patients in the population, the H protocol yields a strictly

smaller tumor size than MTD. Not only the H protocol has a better efficacy than MTD, in

terms of average and of dispersion, but the former also offers a strictly better efficacy than the

latter for each and every patient, with no toxicity aggravation.

Finally, we report in Fig 3 the evolution over time of the efficacy and toxicity for both the

MTD and H protocols. So as to ease the comparison between MTD and H protocols we have

reproduced the graph for the MTD case (panels B in Figs 1 and 3 are the same).

Fig 3 is another confirmation of the better efficacy-toxicity trade-off offered by the H proto-

col compared to MTD. In Fig 3, we plot the time evolution of the tumor size (top graph in

each panel) and the normalized ANC (bottom graph in each panel) for a population to which

Fig 2. Scatter plot of protocol efficacy and toxicity for 3,200 patients. Left-hand side and bottom graphs: Cdf of toxicity and efficacy respectively. Light grey

horizontal line in the central plot: 2.7% toxicity limit. Panel A: H protocol. Panel B: MTD protocol.

https://doi.org/10.1371/journal.pone.0199076.g002
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either the H protocol (left panel) or the MTD protocol (right panel) has been administered.

On each graph, the grey areas materialize the treatment dates, while blank areas correspond to

rest days. For MTD, we can observe the cycles of 5 consecutive treatment days followed by 23

rest days. Finally, we plot three lines on each graph. The plain black line corresponds to the

median value, while bottom and top dashed lines correspond to the 5th and 95th percentiles,

respectively. Of note, we use a log-scale for y-axis.

We can draw several lessons from Fig 3. First, it confirms the better efficacy of the H proto-

col compared to MTD. The median tumor size is stabilized at a low value, while with MTD the

median tumor size ends up increasing despite the treatment. The 95th percentile with H has

also a better behavior than with MTD, even though we do not observe a tumor size stabiliza-

tion. Second, the profiles of normalized ANC are also very different. Consistently with our tox-

icity constraint, the 5th percentile of normalized ANC has higher values with H than with

MTD –and thereby reflecting a less severe toxicity with H than with MTD. However, the

median and the 95th percentile for the H protocol feature smaller values than those for the

MTD protocol. This confirms that the H protocol better manages normalized ANC, which is

probably one of the reasons explaining its better efficacy.

Finally, regarding the patterns of treatment and rest periods, we can observe a pseudo-peri-

odicity for the H protocol. This pseudo-periodicity is reminiscent of the MTD protocol cycles.

Even though we do not impose any cycle, a pseudo-cycle naturally emerges in the H protocol.

However, despite the resemblance with MTD, periodicity of the H protocol is not as exact as

for MTD –hence, the term pseudo-periodicity. Periods of consecutive treatment days do not

always exactly last 5 days and the interval between those periods does not always exactly

amount to 23 days. Finally, and more substantially, the interval between the blocks of consecu-

tive treatment days is never a full rest period but always contains a handful of treatment days

(from 2 to 4). These interim treatment days seem to have a significant impact on the efficacy of

Fig 3. Tumor size (top) and normalized ANC (bottom) as a function of time. Grey areas: Treatment periods; solid line: Median; dashed lines: 5th and 95th

percentiles. Left panel: H protocol. Right panel: MTD protocol.

https://doi.org/10.1371/journal.pone.0199076.g003

Optimal dynamic regimens with artificial intelligence

PLOS ONE | https://doi.org/10.1371/journal.pone.0199076 June 26, 2018 11 / 15

https://doi.org/10.1371/journal.pone.0199076.g003
https://doi.org/10.1371/journal.pone.0199076


the protocol, by avoiding the tumor to recover too much between treatment periods. They also

influence the normalized ANC, which is, as discussed above, overall lower with H than with

MTD. These interim treatment days also connect the H protocol to metronomic chemother-

apy regimens, which involve low doses at a frequent schedule and without prolonged no treat-

ment period.

Comparison with other protocols

Since the curse of dimensionality prevents an actual optimization to be conducted in this set-

up, there is no obvious protocol to which we can compare the H protocol. For this reason, we

have chosen to compare the outcomes of our optimal protocol to those of a large family of pro-

tocols generalizing MTD. More precisely, we will consider the set of protocols {P(x, 28 − x):

x = 1, . . ., 27}. A protocol P(x, 28 − x) consists of 12 cycles of 28 days, where each cycle starts

with x consecutive days of treatments followed by 28 − x rest days. Of note, MTD can be seen

as P(5, 23).

We report the results in Table 3 for x varying from 1 to 10. For the sake of convenience, we

also repeat the results of the H protocol. The full results, for x varying from 1 to 27 can be

found in S3 Appendix. We observe that all protocols with fewer treatment days than MTD

have an acceptable toxicity severity (5th percentile of ANC nadir above 2.67%) but yield much

larger tumor sizes. Conversely, if some protocols with a higher number of treatment days than

MTD yield small tumor masses (e.g., P(8, 20)), this comes at the cost of a very severe toxicity.

The ANC nadir is overall very low. For instance, starting from P(7, 21), the median –not to

mention the 5th percentile– normalized ANC is below the normalized ANC threshold. We do

not report them them but all protocols with more than 11 treatment days lead to slightly lighter

tumor masses, but even more severe toxicity. Finally, P(6, 22) yields outcomes that look

“close” to those of the H protocol, but tumor masses are larger and toxicity is overall more

Table 3. Comparing H protocol to the protocol family {P(x, 28 − x)}. Median values and in square brackets, the 5th

and 95th percentiles.

Protocol Tumor mass (g) Norm. ANC nadir (%)

H protocol 1.80

[0.60,33.55]

4.17

[2.74,6.22]

P(1, 27) 301.83

[207.83,395.09]

42.33

[33.06,51.56]

P(2, 26) 180.65

[97.21,281.78]

22.68

[17.03,30.60]

P(3, 25) 113.104

[37.22,206.25]

14.17

[10.34,20.24]

P(4, 24) 67.7481

[1.44,153.14]

9.61

[6.69,14.43]

P(5, 23) (MTD) 32.99

[0.72,111.40]

6.74

[2.67,10.76]

P(6, 22) 2.76

[0.52,80.83]

3.54

[0.97,8.23]

P(7, 21) 1.56

[0.41,54.70]

1.27

[0.54,6.36]

P(8, 20) 1.26

[0.34,32.97]

0.71

[0.34,3.97]

P(9, 19) 1.11

[0.29,5.03]

0.46

[0.24,1.71]

P(10, 18) 1.02

[0.24,2.76]

0.32

[0.12,0.97]

https://doi.org/10.1371/journal.pone.0199076.t003
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severe. Overall, the H protocol clearly yields better outcomes than any of the P(x, 28 − x)

protocols.

Discussion

We have proposed a novel algorithm for the optimization of temozolomide protocols, by tak-

ing into account a multiple-objective criterion. Our H protocol features a much better efficacy

than the standard MTD. The efficacy, in terms of both average value and of dispersion is

unambiguously in favor of the H protocol compared to MTD. This better efficacy can partly

be explained by a better management of toxicity. On the one hand, a smaller share of the popu-

lation experiences a toxicity below the acceptability threshold, and on the other hand, the tox-

icity for all patients is overall closer to the acceptability threshold. It is noteworthy that our

algorithm is very flexible. In particular, the algorithm is able –with no added complexity– to

handle a multidimensional non-linear objective and to address population variability.

Our article can also be seen as a first and successful step toward the introduction of meth-

ods borrowed from operational research and artificial intelligence into the realm of protocol

design in oncology.
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S1 Appendix. PK/PD model. We describe the equations for the temozolomide PK/PD model
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Algorithm 1.
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S3 Appendix. Robustness check. We provide the detailed results of two other algorithm cali-

brations, which respectively correspond to a 0% and a 7% target population share. We also

provide the complete results for protocols {P(x, 28 − x): x = 1, . . ., 27}.

(PDF)
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