
REVIEW
published: 18 October 2021

doi: 10.3389/fvets.2021.736739

Frontiers in Veterinary Science | www.frontiersin.org 1 October 2021 | Volume 8 | Article 736739

Edited by:

Shourong Shi,

Chinese Academy of Agricultural

Sciences (CAAS), China

Reviewed by:

Deying Ma,

Northeast Agricultural

University, China

Fuchang Li,

Shandong Agricultural

University, China

Yunqi Xiao,

Jiangsu Institute of Poultry Science

(CAAS), China

*Correspondence:

Aiwei Guo

g.aiwei.swfu@hotmail.com

Specialty section:

This article was submitted to

Animal Nutrition and Metabolism,

a section of the journal

Frontiers in Veterinary Science

Received: 05 July 2021

Accepted: 16 September 2021

Published: 18 October 2021

Citation:

Liu L, Li Q, Yang Y and Guo A (2021)

Biological Function of Short-Chain

Fatty Acids and Its Regulation on

Intestinal Health of Poultry.

Front. Vet. Sci. 8:736739.

doi: 10.3389/fvets.2021.736739

Biological Function of Short-Chain
Fatty Acids and Its Regulation on
Intestinal Health of Poultry
Lixuan Liu 1, Qingqing Li 1,2, Yajin Yang 1 and Aiwei Guo 1*

1 Faculty of Life Sciences, Southwest Forestry University, Kunming, China, 2 Kunming Xianghao Technology Co., Ltd.,

Kunming, China

Short-chain fatty acids (SCFAs) are metabolites generated by bacterial fermentation of

dietary fiber (DF) in the hindgut. SCFAs are mainly composed of acetate, propionate and

butyrate. Many studies have shown that SCFAs play a significant role in the regulation

of intestinal health in poultry. SCFAs are primarily absorbed from the intestine and

used by enterocytes as a key substrate for energy production. SCFAs can also inhibit

the invasion and colonization of pathogens by lowering the intestinal pH. Additionally,

butyrate inhibits the expression of nitric oxide synthase (NOS), which encodes inducible

nitric oxide synthase (iNOS) in intestinal cells via the PPAR-γ pathway. This pathway

causes significant reduction of iNOS and nitrate, and inhibits the proliferation of

Enterobacteriaceae to maintain overall intestinal homeostasis. SCFAs can enhance

the immune response by stimulating cytokine production (e.g. TNF-α, IL-2, IL-6, and

IL-10) in the immune cells of the host. Similarly, it has been established that SCFAs

promote the differentiation of T cells into T regulatory cells (Tregs) and expansion by

binding to receptors, such as Toll-like receptors (TLR) and G protein-coupled receptors

(GPRs), on immune cells. SCFAs have been shown to repair intestinal mucosa and

alleviate intestinal inflammation by activating GPRs, inhibiting histone deacetylases

(HDACs), and downregulating the expression of pro-inflammatory factor genes. Butyrate

improves tight-junction-dependent intestinal barrier function by promoting tight junction

(TJ) assembly. In recent years, the demand for banning antibiotics has increased in poultry

production. Therefore, it is extremely important to maintain the intestinal health and

sustainable production of poultry. Taking nutrition strategies is important to regulate SCFA

production by supplementing dietary fiber and prebiotics, SCFA-producing bacteria

(SPB), and additives in poultry diet. However, excessive SCFAs will lead to the enteritis

in poultry production. There may be an optimal level and proportion of SCFAs in poultry

intestine, which benefits to gut health of poultry. This review summarizes the biological

functions of SCFAs and their role in gut health, as well as nutritional strategies to regulate

SCFA production in the poultry gut.
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INTRODUCTION

Increasing evidence has revealed that the gut microbiota is a
key contributor to health and gut homeostasis of the host.
This positive effect may be achieved by producing short-
chain fatty acids (SCFAs), which are the main metabolites
produced by anaerobic bacteria in the hindgut by fermenting
dietary fibers (DFs) (1). SCFAs can also be produced during
protein fermentation, however, the main products of proteolysis
have adverse effects on the host because they are related to
carcinogenic and inflammatory activities. Importantly, SCFAs
have been demonstrated to exert decisive effects on regulating
the gut internal environment, improving the immune system,
and inhibiting intestinal inflammation (2). The gastrointestinal
tract (GIT), the largest organ of the host, is important for
digestion and absorption of dietary nutrition (3), and also
prevents the invasion and colonization of pathogens and
toxins (4). Furthermore, a significant population of microbiota
and immune cells are also present in the gut. Therefore,
maintaining a healthy gut is important for overall health and
enhanced productivity of poultry. In the context of banning
antibiotics, nutrition regulation has become an effective strategy
for maintaining intestinal health and reducing antibiotic use
in poultry production (5). This paper reviewed the production
pathways and biological functions of SCFAs, and poultry
intestinal health, and the regulation of the production of SCFAs
to maintain poultry intestinal health.

PRODUCTION OF SCFAS

The gut microbiota is a complex community with hundreds of
diverse microorganisms (6) which contributes to the breakdown
of food and energy metabolism and affects the immune system
and homeostasis (7). Gut microbes in the cecum ferment
indigestible carbohydrates in food components to produce
a series of metabolites (8). Among the various metabolites,
SCFAs have received extensive attention because of their
positive effects on health. SCFAs are defined as groups of
fatty acids comprising less than six carbons, mainly acetate,
propionate, and butyrate (9). These three fatty acids accounted
for more than 95% of the total SCFAs, with a ratio of 60:20:20
(10). However, this proportion was not constant, as it relies
on many factors, such as dietary components, microbiota
composition, and the site of fermentation (11). Acetate is
most abundant in the colon, accounting for more than half
of the total SCFAs detected in feces (12) and can be formed
through two major pathways: the acetyl-CoA and Wood-
Ljungdahl pathways (13). Bacteroides spp., Bifidobacterium spp
Ruminococcus spp., Blautia hydrogenotrophica, and Clostridium
spp. are involved in these two pathways (14, 15). Aacetogenic
bacteria can also synthesize acetate from carbon dioxide
and formate through the Wood-Ljungdahl pathway (15).
Propionate formation consists of two pathways: propionate can
be produced by succinate, which involves the descarboxylation
of methylmalonyl-CoA to propionyl-CoA (16). Firmicutes and
Bacteroidetes participate in this pathway. Propionate can also
be synthesized through the acrylate pathway, in which lactate is

converted to propionate, however, only a few members of the
family, such as Veillonellaceae and Lachnospiraceae, participate
in this pathway (17, 18). Butyrate is produced from acetyl-
CoA (the classical pathway) by several Firmicutes (19). Previous
studies have indicated that many gut microbiota members,
such as Actinobacteria, Proteobacteria, and Thermotogae,
may be potential butyrate-producing bacteria, since these
microbiotas contain vital enzymes, including butyryl coenzyme
A dehydrogenase, butyryl-CoA transferase, and butyrate kinase,
to synthesize butyrate (20). In addition, butyrate can also be
synthesized from proteins through the lysine pathway, which
demonstrates that gut microbiota can accommodate changes in
the fermentation substrate, with the aim of retaining metabolite
synthesis (20). The synthesis pathway of the SCFAs is shown in
Figure 1.

Furthermore, protein fermentation in the hindgut can also
produce SCFAs, as well as branched-SCFAs (BCFAs), such
as 2-methylbutyric acid, isobutyric acid, and isovaleric acid.
BCFAs are derived from branched-chain amino acids (such
as valine, leucine and isoleucine) (21). Excessive amino acid
or protein fermentation in the hindgut generates nitrogenous
metabolites which can be harmful to gut integrity (22). Studies
have demonstrated that the addition of dietary fiber [e.g. resistant
starch 4 (RS4)] decreases the BCFAs (e.g. isobutyrate and
isovalerate) in feces, and increases butyrate and total SCFAs.
Prior research has shown that RS4 inhibits the fermentation
of colonic proteins and reduces isobutyrate and isovalerate in
feces, and increases butyrate and total SCFAs. The reduction of
BCFAs in the colon indicates that it is beneficial for nutrient
metabolism and gut health (23, 24). Nonetheless, there is a
contradictory view of BCFAs in that IL-18 mRNA expression in
intestinal epithelial cells can be inhibited by BCFAs, which can
also ease the inflammatory response to lipopolysaccharide (LPS)
challenge (25).

BIOLOGICAL FUNCTION OF SCFAS

Current research shows that SCFAs have important biological
functions in the body. SCFAs play a major role in the host energy
metabolism. Although acetate and propionate can perform a
certain degree of energy metabolism, most studies have focused
mainly on the role of butyrate. About 70–80% of butyrate are
metabolized by colon cells, thus promoting colon cell growth and
function (26). In the colon cells of GF mice, energy deprivation
(a state of decreased enzymes in the tricarboxylic acid cycle)
resulted in reduced ATP levels, while using butyrate-producing
bacteria to colonize GF mice and butyrate to treat GF mice
colonocytes ex vivo contributes to an increase in oxidative
phosphorylation, suggesting the importance of butyrate and
butyrate-producing bacteria in colonocyte energy metabolism
(27). Butyrate also improves body gain and fat mass induced by a
high-fat diet (HFD). Supplementation with 5% sodium butyrate
(SB) in food can effectively decrease body gain in obese mice
(28). Another research group reported that after feeding mice
with a butyrate-enriched diet, the level of energy expenditure
considerably increased, which reduced the prevalence of obesity
(29). The positive effect of butyrate onmetabolic changes induced
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FIGURE 1 | The synthesis pathway of SCFAs. Acetate, propionate and butyrate are main SCFAs produced by dietary fibers of microbial fermentation in gut.

Production of acetate involves in pyruvate by Acetyl-CoA and Wood-Ljungdahl pathway. Butyrate is synthesized from Acetyl CoA that is subsequently reduced to

Butyryl-CoA, which can be converted to butyrate by so-called classical pathway via Butyryl-phosphate. Propionate can be formed from succinate that is converted to

methylmalonyl-CoA by succinate pathway. Furthermore, as a precursor lactate also participate the synthesis of propionate by acrylate pathway.

by HFD appears to depend on the down-regulation of PPARγ

(per-oxisome proliferator-activated receptor), which promotes
the switch from lipid synthesis to lipid oxidation (28). SCFAs
can regulate hormones involved in appetite regulation. After
infusing SCFAs into the rat colon, the gut transit rate and
appetite are significantly decreased; however, the concentration
of PYY in the peripheral circulation is increased. These findings
suggest that the inhibitory effect of SCFAs on gut motility and
appetite may be mediated by PYY (30). Glucagon-like peptide-
1 (GLP-1) may cause a decrease in appetite and food intake
(31) because higher levels of GLP-1 in the systemic circulation
are positively correlated with slower gastric emptying time
(32). Acetate can induce the expression of neuropeptides such
as proopiomelanocortin (POMC) and agouti-related peptide
(AgRP) to regulate appetite and reduce food intake via a central
homeostatic mechanism (33). Moreover, SCFAs modulate the
expression of leptin, which is secreted by adipose tissue, to
decrease food intake. Butyrate has been shown to promote leptin
production in adipose tissue by activating GPR41 and GPR43,
thus reducing food intake and controlling weight gain (34).

SCFAs AND POULTRY GUT HEALTH

SCFAs and Gut Barrier
The gut barrier separates the intestine from the body and
exerts immunity and physical defense against pathogens, viruses,
and environmental toxins. Four interlinked and interdependent
barriers collectively form an intact gut barrier. These include
the microbial barrier, chemical barrier, mechanical barrier, and
immunologic barrier. The microbial barrier refers to various
microorganisms attached to the intestinal surface. Here, there
is competition between beneficial microbiota and pathogens
for nutrients and attachment sites (35). A study indicated that
acetate may play a critical role in the competitive process
between bifidobacteria and enteropathogens, which helps to build
a balanced gut microbiological environment (36). It was reported
that the colonization of Salmonella enterica and Clostridium

perfringens, driver of necrotic enteritis, were inhibited by
butyrate in chickens gut (37, 38). Further an increase in some
beneficial microbiota (such as Christensenellaceae, Blautia and
Lactobacillus) was also reported after SB intervention (39). It is
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worth noting that changes in chicken gut microbiota induced
by SCFAs were related to the reduced inflammatory response
as SCFAs can reduce levels of LPS - a main component of
Gram-negative bacteria and stimulater of inflammation response.
SCFAs also indirectly regulate the gut microbiota microbial
barrier by promoting secretion of mucins and antimicrobial
peptides in the gut (40).

The gut chemical barrier, the so-called mucus layer, consists
mainly of a layer of mucus covering the intestinal epithelial
cells, which plays an important and unique role in maintaining
intestinal barrier function and homeostasis. Mucins (high
molecular weight glycoproteins) that are synthesized and
secreted by goblet cells are the main components of the chemical
barrier (41, 42). The producedmucins are stored in the goblet cell
cytoplasm in the form of granules and are transported to the cell
surface (43). The importance of mucus on gut health is reflected
in the following aspects: (1) It forms a skin covering the intestinal
cells, which protects against microbes, for example, colonization
and invasion of pathogens is facilitated in mice lacking a mucus
layer compared with wild typemice (44, 45); (2) it is characterized
by moisturizing and lubricating properties that protect intestinal
cells from dehydration when they pass through the lumen (46);
(3) it plays a role in immune functions. A study indicated that
mucins bind to luminal antigens, particularly bacteria, and are
associated with galectin-3 to inhibit inflammatory responses (47).
Under normal conditions, mucins are constantly produced by
goblet cells, whereas SCFAs can regulate this process by affecting
mucin gene expression. A study showed that when butyrate was
used as the sole carbon source, the production of Muc2 was
increased significantly in the colon, which may rely on GPR109A
in goblet cells (48). Adding a mixture of butyrate and acetate into
drinking water can significantly improve the gut chemical barrier
function of mice with colitis by enhancing Muc2 gene expression
(49). Hansen et al. (50) indicated that supplementation tributyrin
as a therapeutic measure can significantly increase ileum Muc2
mRNA expression in coccidia-infected broilers. Interestingly, the
regulation of mucin production by SCFAs does not appear to be
dose-dependent; lower concentrations of SCFAs will dramatically
increase Muc2 levels in mice, however, higher concentrations
had the opposite effect (51). Similarly, an in vitro study showed
that butyrate (0.05–1 mmol/L) could stimulate the synthesis
of Muc2 in normal colon tissue, while 10 mmol/L butyrate
could restore the synthesis of Muc2 to the basic level (52),
likely because of the induction of apoptosis at higher butyrate
levels. Although the mechanism by which SCFAs regulate Muc2
production remains unclear, some studies have shown that SCFAs
can induce Muc2 transcription by AP-1 binding and histone
acetylation at theMuc2 promoter (51). These results indicate that
SCFAs regulate the gut chemical barrier mainly by promoting
the levels of Muc2, thereby enhancing the host’s resistance to
foreign pathogens.

The gut’s mechanical barrier is a layer of polarized cells
consisting of intestinal epithelial cells and stem cells, goblet cells,
and Paneth cells (53). These cells are linked by tight junctions
(TJ), adhesion junctions (AJ), gap junctions, and desmosomes,
which decrease gut permeability and maintain gut mechanical
barrier stability (54). Propionate promotes the production of

related proteins consisting of tight junction proteins ZO-1
and occludin, thus improving gut barrier function (55). When
pigs received gastric infusion of SCFA, the gene expression of
occludin and claudin was increased, which positively improved
the gut mechanical barrier (42). Butyrate as a preventive
treatment can effectively decrease gut permeability characterized
by reduced concentrations of D (–)-lactate in DSS-induced
broilers, and this beneficial changes are closely related to
restoration of tight junction function (56). Although underlying
mechanism of butyrate to enhance tight junction function
is not clear, a study indicated that MLCK (Myosin Light
Chain Kinase) may play an important role in regulating tight
junction (57). Research showed that tributyrin can enhance cell
tight junction and reduce intestinal permeability by promoting
mRNA relative expression of mucosal barrier related genes,
such as occludin, claudin-1, claudin-4 and JAM-3 (junctional
adhesion molecule-3), in coccidia-infected broilers (50, 58). In
addition, dietary supplementation with Clostridium butyricum
improves growth performance and intestinal mechanical barrier
by upregulating various genes including claudins 2, 15, 19,
and 23, tight junction proteins 1, 2, and 3 in broilers (59).
The studies demonstrated that butyrate-producing bacteria or
butyrate can also play a same role in supplying butyrate to
improve gut barrier of poultry. In brief, regulation of SCFAs
on the gut mechanical barrier is mainly through promoting
the gene expression of relevant junction tight proteins, thereby
reducing intestinal permeability and improving the animal’s gut
barrier functions.

The gut immunologic barrier consists of various immune cells
localized in the epithelium or below the intestinal epithelial cells
(IECs), such as T cells, B cells, macrophages, and dendritic
cells, which collectively protect against pathogen invasion and
maintain gut health (60). Macrophages can be recruited to
the injured intestinal wall to promote the division and growth
of intestinal epithelial cells (61). Regulation of SCFAs on gut
immunity mainly relies on the differentiation and recruitment
of immune cells and downstream expression of immune factors.
SCFAs play an important role in inhibiting gut inflammation,
as they can induce T cells to differentiate into Tregs (62).
The differentiation and metabolism of macrophages and an
enhancement of antibacterial peptide gene expression are
attributed to butyrate regulation (63). Butyrate independently
regulates IgA production and assists in the increased expression
of IL-10 (62).

SCFAS and Gut Microbiota
The microbial barrier, composed of intestinal microorganisms,
is an important part of the intestinal barrier. One crucial
property of gut microbiota in poultry is to establish colonization
resistance against pathogen invasion by fermenting non-
digestible carbohydrates into SCFAs. SCFAs can release H+

and decrease the pH of the hindgut, which inhibits pathogen
invasion and colonization. SCFAs (mainly butyrate) consume
luminal oxygen to create an anaerobic environment, thereby
reducing aerobic pathogens such as Salmonella expansion in
the gut lumen (64). Studies have demonstrated that SCFAs can
inhibit colonization by several pathogens, such as Salmonella
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spp., Escherichia coli, and Shigella spp., to maintain a stable
microbial environment. SCFAs play an inhibitory role in
the colonization of pathogens such as Escherichia coli and
Shigella, thus contributing to gut protection (36). Propionate
inhibits Salmonella typhimurium proliferation by disrupting
intracellular pH homeostasis (65). Experiments have shown
that supplementation with 0.25–0.7% butyrate, formate, and
caproate significantly decreased the abundance of Salmonella
typhimurium and Salmonella enteritidis in the cecum of broilers
and piglets (37, 66–68). In addition, studies have indicated
that the abundance of Escherichia coli in broiler chicken
crops of butyrate-treated groups (0.2, 0.4, and 0.6%) decreased
significantly, whereas that of Escherichia coli in the small
intestine and cecum decreased in butyrate-treated groups (0.4
and 0.6%) compared to 0.2% butyrate and control groups
(69). SCFAs promote the proliferation of some beneficial
bacteria in poultry, such as Bifidobacteria and Lactobacilli.
These beneficial bacteria in turn stimulate SCFA synthesis,
while produced SCFAs not only reduce luminal pH and
inhibit pathogen colonization, but also improve gut microbial
barrier function contributing to gut homeostasis. Dysbiosis
of gut microbiota is controlled by several factors, including
antimicrobial peptides and immunoglobulins, and leads to a
series of gut diseases such as intestinal inflammation (70).
Interestingly, butyrate may induce a positive alteration in
gut microbiota composition (71). Butyrate can regulate the
expression of antimicrobial peptides that are involved in the
control of gut microbiota composition (72) and can induce the
production of IL-18, which regulates gut microbiota composition
and antimicrobial peptides (73). Butyrate can promote the
production of secretory immunoglobulin A (sIgA) cells by
activating B cells, while sIgA is linked to the composition
of the gut microbiota (74). In summary, the interaction
between butyrate and many factors positively contributed
to the gut microbiota composition, thereby maintaining
microbial homeostasis.

SCFAs and Gut Immune
It is difficult to understand the effects of SCFAs on intestinal
immunity because of the complex interaction with multiple
signaling molecules. There are two main mechanisms involved
in the regulation of host health or disease by SCFAs. One is
the regulation of target cell epigenetics after SCFAs enter the
cells, such as the inhibition of HDACs via SCFAs regulating the
expression of relevant genes (75). SCFAs as a signal molecule
combine with GPRs and then play an important role in the
regulation of various host physiology (76). Furthermore, the
activator and expression of GPRs is dissimilar. The most
powerful activator for GPR43 mainly expressed in immune
cells, enteroendocrine cells and adipocytes is propionate (77)
and the order of ability to activate GPR41 that is widely
expressed in adipose, spleen as well as colon is: propionate
> butyrate > acetate (78, 79), yet GPR109A highly expressed
in adipocytes, immune cells, and colon is only activated by
butyrate at low level (80). Many studies have verified the
effect of SCFAs on immunoregulation by the activation of
GPRs and regulation of cytokines. A study conducted by (81)

revealed that IL-22 production was elevated by the activation of
GPR41 via SCFAs, which promotes gut homeostasis and protect
against inflammation. Another researcher (82) demonstrated
the importance of SCFAs to active GPR43 on the production
of microbiota antigen-specific Th1 cell IL-10 production, in
addition they also indicated that Gpr43−/− mice showed
a severe intestinal inflammation induced by DSS (Dextran
Sulfate Sodium) than wild-type mice. Butyrate combines with
GPR43 to stimulate potassium ion flow, which leads to a
hyperpolarisation of the intestinal epithelial cell membrane,
activation of the NLRP3 inflammasome, and upregulation IL-
18, thus maintaining intestinal epithelial integrity and mucosal
homeostasis in mice with colitis (73). Moreover a research has
also proven the ability of butyrate to alleviate gut inflammation
by differentially controling differentiation of Th1 and Th17 and
enhancing IL-10 production (83). In addition to GPRs, SCFAs
also regulate the immune response by inhibiting HDAC activity.
A study has reported the effect of SCFAs on immunoregulation
by inhibiting HDAC (84). The effective effect of butyrate
to protect against gut inflammation by inhibiting HDAC
in macrophages and dendritic cells indicated that butyrate
can down-regulate pro-inflammatory cytokines e.g. IL-1β, IL-
6, and IL-8 by the inhibition of HDACs, which regulates
macrophage function (85, 86). In addition, a series of recovery
effect of gut inflammation, such as decreased TNF-α level,
suppressed NF-κB activity, and elevated IL-10 concentrations,
were ovserved in mononuclear cells and neutrophils by
inhibition of HDACs via butyrate and propionate intervention
(87). Foxp3 (forkhead box P3) is a characteristic marker
molecule that maintains Treg function, and HDACs can cause
degradation of Foxp3 by affecting its deacetylation level, which
affects the immunity homeostasis caused by the dysfunction
of Treg function (88). This dysfunction can decrease the
expression of HDACs in Tregs in mice and increase the degree
of histone acetylation, thus promoting Treg differentiation
and overall enhancement of the immune response (89). To
conclude, SCFAs can regulate the production of inflammatory
cytokines to improve immunity by inhibiting HDACs and
activating GPRs.

SCFAs and Gut Inflammation
The inflammatory response is a natural defensive mechanism
that protects against pathogen infection. Under normal
circumstances, immune cells recruit and secrete pro- or anti-
inflammatory cytokines to protect the body from damage
when pathogens invade a particular site. However, when the
balance between immune and inflammation is altered, a serious
inflammatory response can arise and lead to the development
of pathological diseases by the secretion of pro-inflammatory
cytokines (90). As an important immune organ in the host, the
gut is easily affected by inappropriate inflammatory activation
caused by feed, environment, bacteria, and metabolites (91).
Therefore, effective approaches to regulate pathogenic factors
may be used to relieve intestinal inflammation. The levels of
pro-inflammatory cytokines, such as IL-6, IL-1β and TNF-α,
were decreased in pathogen-free chickens with Salmonella
infection after inulin supplementation, which may be related
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to SCFA production (92). In a Clostridium difficile-induced
colitis mice model, butyrate alleviated gut inflammation and
reduced gut permeability by steadying HIF-1 (hypoxia inducible
factor) and increasing tight junctions (93). Another study
has shown that propionate has protective effects in mice with
colitis by the regulation of expression of Reg3 mucosal lectins
(94). The positive effect of SCFAs on intestinal inflammation
has been proven in SCFA-receptor knockout inflammation
model mice (95). Moreover, compared to wild-type mice,
GPR43−/− mice show a stronger reaction to the LPS infection
characterized by greater intravascular neutrophil rolling and
adhesion (96). The production of several cytokines induced
by SCFAs may be involved in the inflammatory response. In
particular, GPR43 and GPR109A activation by acetate and
butyrate, respectively, may suppress the inflammatory response,
which is completed by avoiding chemotaxis of monocytes to
the inflammatory site (97) and enhancing the production of
chemokines and cytokines (98). GPR109A also contributes to
preventing the deterioration of colitis (99). A mouse model
has shown that GPR43 and GPR109A activated by SCFAs can
induce the NLRP3 inflammasome to promote the production
of IL-18 (73). IL-18 promotes the expression of anti-microbial
peptide and alleviates colitis (100). Oral administration of
butyrate alleviates colitis in mice by promoting Treg cell
differentiation (101), while butyrate enemas inhibited NF-κB
activation in mice with colitis (102). These results indicate
that SCFAs can bind with GPRs to regulate the inflammatory
response, providing sufficient evidence for the inhibition of
intestinal inflammation by the SCFAs-depended GPRs pathway.
Even though a previous study showed that GPR43-deficient
mice are at a lower risk of developing chronic colitis than
normal mice (103). HDACS counterweight the acetylation
level of histones and influence the expression of many genes
in intestinal epithelial cells and immune cells (104). The
inhibition of HDACs is mainly attributed to an increase in
acetylation of specific lysine residues in histones, thus promoting
gene transcription, while inhibited HDACS are related to
decreased production of pro-inflammatory cytokines (70).
Some studies have indicated that the development of colitis is
related to higher expression of HDACS9 in the inflammatory
area, however HDACS9-deficient mice are not influenced by
induced colitis (105, 106). In addition, HDACS2-deficient mice
show stronger resistance to DSS-induced colitis (107). SCFAs
(mainly butyrate), a histone deacetylase inhibitor (HDACSi),
have been shown to significantly inhibit the production of
pro-inflammatory cytokines e.g. IL-6 and IL-12 in intestinal
epithelial cells as well as immune cells, thus alleviating gut
inflammation (108). NF-κB regulates the release and synthesis
of inflammatory cytokines (109). HDACSi can reduce the
inflammatory reaction by inhibiting NF-κB activation and
blocking nuclear translocation (70). SCFAs, especially butyrate,
can inhibit the NF-κB pathway, which effectively downregulates
the expression of a series of pro-inflammatory cytokines in
broilers, including IL-6 and TNF-α (110). Adding butyrate
to the piglet diet can reduce the concentration of TNF-α and
IL-6 in serum, thereby weakening the function of NF-κB in
the gut and inhibiting colonization of pathogens (111). Thus,

the inhibitory effect of HDACSi on NF-κB is involved in its
anti-inflammatory effect (112). Regulation of mammalian target
of rapamycin (mTOR) by SCFAs is related to the inflammatory
response. SCFAs can regulate the mTOR pathway to increase
T cell secretion of IL-10 and promote T-cell differentiation
into Treg and Th cells by inhibiting HDACs, which plays
an effective anti-inflammatory role (62). In summary, as an
inhibitor of HDACs, SCFAs can alleviate a variety of intestinal
inflammatory responses by regulating multiple pathways. This
field may be a hot area for poultry nutrition in the future.
However, there is a controversial result of SCFAs on the gut
inflammation regulation, although SCFAs (especially butyrate)
have been examined to prevent inflammation (113). The studies
showed that the activation of GPR41/43 by SCFAs resulted in
the activation of downstream mTOR, PI3K, or MAPK signaling
pathways, thus exerting pro-inflammatory effects (114, 115).
Acetate seems to involve in the production of pro-inflammatory
cytokines and chemokines (e.g. IL-6, CXCL1, and CXCL2) by
the activation of GPR41 or GPR43 and downstream signal
pathway of extracellular signal-regulated kinase 1/2 (ERK1/2)
and MAPK/p38 (116). Potential mechanisms for the opposite
outcome of SCFAs in inflammation require further investigation.
According to current reports, we speculate that it may be
associated with variation in gut microbiota composition and the
SCFAs concentrations (117).

In conclusion, the SCFAs have great significance to the
intestinal health of poultry. The role and potential benefits of
SCFAs on poultry intestinal health and the regulation of SCFAs
production are shown in Figure 2.

REGULATION OF SCFAs PRODUCTION IN
INTESTINAL TRACT OF POULTRY

Dietary Fiber and Prebiotics
Dietary fiber is a comprehensive topic, so the effect of gut
microbiota on dietary fiber varies depending on the type
of fiber. In general, gut microbiota can ferment soluble dietary
fiber to produce metabolites, such as SCFAs. Soluble dietary
fiber mainly includes β-glucan, pectin, and arabinoxylans,
which are usually found in oats, barley, apples and carrots
(118). Dietary fibers that promote SCFA production have
been widely reported. The effects of cassava root chips on
SCFAs in broiler chick cecum showed that acetate, butyrate,
and total SCFA contents were highest at 25% inclusion,
and propionate content was highest at 37.5% inclusion
(119). Research conducted by (120) showed that Sarcodiotheca
gaudichaudii and Chondrus crispus significantly elevated acetate
production (52.21 and 51.53 mmol/kg, respectively) (P <
0.05) in layer hens cecum, compared with the control group
(29.94 mmol/kg). Walugembe et al. (121) indicated that
two mixtures of wheat bran and DDGS (60 and 80 g/kg,
respectively) resulted in an increase in total SCFAs and acetate
concentrations in broiler and layer cecum. Prebiotics can also
help to produce SCFAs in the gut of poultry. Song et al.
(92) demonstrated that supplementation with inulin (1%)
markedly increased acetate and butyrate concentrations in the
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FIGURE 2 | Roles and potential benefits of SCFAs on gut health of poultry. Dietary fibers, SCFAs-producing bacteria and additives collectively regulate SCFAs

production in gut. SCFAs (mainly acetate) can reduce luminal pH, thus inhibiting pathogens colonization. Butyrate, as the major energy source, not only provide

energy for epithelial cells metabolism, but also promote mucin production by binding to GPR109A in goblet cell, thus improving gut mucosa barrier. In addition,

butyrate can play an anti-inflammatory and immunoregulatory effect by GPRs or HDAC inhibition, which maintains gut homeostasis. Luminal acetate or propionate

sensed by GPR41 and GPR43 sited on L cells releases PYY and GLP-1, affecting appetite and gut transit.

cecum of chickens infected with Salmonella (P < 0.05), while
1% inulin significantly decreased propionate concentrations
(P < 0.05). A similar study also indicated that different doses of
inulin (0.25, 0.5, 1.5, and 2%) increased acetate concentrations
in the chicken cecum, however, butyrate concentrations in
the cecum were higher at doses of 0.5, 1.5, and 2% (122).
A study showed that supplementation with 0.3% isomalto-
oligosaccharides significantly increased butyrate and isobutyrate
in the jejunum of broilers (P < 0.05) (123). Research has
also indicated that 0.05% xylooligosaccharides simultaneously
stimulate acetate and butyrate production in the cecum of
laying hens, but the propionate content was not affected by
xylooligosaccharides (124). These findings suggest that the
structure and chemical properties of dietary fibers are associated
with the metabolism of the gut microbiota, and that specific
feeding pattern and doses may impact SCFA production.

SCFAs-Producing Bacteria
SCFA-producing bacteria (SPB) are known to be involved in
the fermentation of dietary fibers by partially converting sugars,

proteins, and peptides to SCFAs (22, 125). Considering that the
production of SCFAs is closely related to intestinal microbes,
it may be feasible to control the production of SCFAs by
adding SPB.

Numerous studies have also demonstrated the positive effect
of probiotics in promoting the production of SCFAs. Supplement
Lactobacillus salivarius ssp. (107 CFU/g) can significantly
increase the concentrations of propionate and butyrate in
broiler cecum (126). A study revealed that supplementation with
Clostridium butyricum (2.5 × 109 CFU/kg) in broiler chickens
had a tendency (P = 0.063) to reduce cecal propionate contents
(8.90 to 8.07 µmol/g) compared with the control group (127).
Effects of Bacillus subtilis PB6 (0.5 g/kg) on cecal SCFAs contents
in broiler chicks is effective, because it significantly increased
acetate and butyrate contents (P < 0.05) (128). The effects
of supplementation (107 CFU/g) of multi-strain probiotics (L.
acidophilus LAP5, L. fermentum P2, P. acidophilus LS, and L.
casei L21) on SCFA production in young chicken cecum have
also been reported (129). Their results showed that the contents
of total SCFAs and acetate were elevated in the multi-strain
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TABLE 1 | Effects of dietary fiber, prebiotics, probiotics and additives on SCFAs production.

Ingredient Inclusion level Specie Age, d Sample site Effects Reference

Wheat bran + DDGS 80 g/kg Broiler 0-21d Cecum ↑Total SCFAs

↑Acetate

Walugembe et al., (121)

60 g/kg Laying hen

Inulin 20 g/kg Broiler 0-40 d Cecum ↑Propionate

↑Butyrate

Li et al., (140)

Wheat bran 100 g/kg ↑Isobutyrate

Inulin 10 g/kg Chickens 0-56 d Cecum ↑Acetate

↑Butyrate

↑Propionate

Song et al., (141)

Isomalto-Oligosaccharide 3 g/kg Broiler 0-56 d Jejunum ↑Isobutyrate

↑Butyrate

Zhang et al., (123)

Xylooligosaccharides 0.5 g/kg Laying hen 0-56 d Cecum ↑Acetate

↑Butyrate

Ding et al., (124)

Soybean oligosaccharide 6 g/kg Broiler 0-49 d Cecum ↑Acetate

↑Propionate

Zhu et al., (142)

Stachyose

Raffinose

Bacillus subtilis PB6 0.5 g/kg Broiler chick 0-40 d Cecum ↑Acetate

↑Butyrate

Aljumaah et al., (128)

Clostridium butyricum 1 × 109 CFU/kg Broiler

chicken

0-42 d Cecum ↑Acetate

↑Propionate

↑Total SCFAs

Zhang et al., (143)

Clostridium butyricum 2.5 × 109 CFU/kg Broiler chick 0-37 d Cecum ↓Propionate Molnár et al., (127)

Lactobacillus plantarum B1 2 × 109 CFU/kg Broiler

chicken

0-42 d Cecum ↑Acetate

↑Butyrate

↑Lactate

Peng et al., (144)

Multi-strain probiotics

(L. acidophilus LAP5, L. fermentum

P2, P. acidophilus LS, L. casei L21)

1 × 107 CFU/g Chickens 0-10 d Cecum ↑Acetate

↑Total SCFAs

Chang et al., (129)

Sodium butyrate 1 g/kg Broiler

chicken

0-42 d Jejunum ↑Butyrate González-Ortiz et al., (133)

Ileum ↑Acetate

↑Lactate

Sodium butyrate 1 g/kg Broiler 0-42 d Jejunum ↑Propionate

↑Butyrate

Wu et al., (132)

Sodium butyrate 20 g/kg Laying hen 0-28 d Cecum ↑Acetate

↑Butyrate

Wang et al., (134)

40 g/kg

Organic acids

(acetate, formate, propionate,

sorbate, vegetal fatty acids)

2 g/kg Turkey 0-70 d Cecum ↑Propionate

↑Butyrate

Milbradt et al., (135)

Organic acid blend

(SCFAs, MCFAs, β1-4 mannobiose)

3 g/kg Broiler 0-35 d Cecum ↑Acetate

↑Butyrate

Aljumaah et al., (136)

probiotic-treated group than in the control group, however, the
contents of butyrate and propionate were not different from those
in the control group. Kan et al. (130) investigated the effects of
Bacillus licheniformis on SCFAs content, and found that 3.2× 109

CFU/kg Bacillus licheniformis resulted in a significant increase
in formate in the cecum of broilers (P = 0.027). In conclusion,
the effects of probiotics on SCFAs production have been proven.
However, there were fewer researches of probiotics on SCFAs
production in poultry and fewer studies about combination
of probiotics. In future studies, more attention should be
paid to the effect of the combined use of probiotics on the

formation of SCFAs in poultry, so as to exert the great potential
of probiotics.

Additives
Current studies have shown that directly supplying short acids
and short acid salts to poultry diets can increase the amount
of SCFAs in the hindgut. At present, the common additives
in poultry diets are butyrate, SB, tributyrin, propionate, and
caproate. However, directly adding butyrate into feed faces huge
challenges as butyrate has an unpleasant taste, potentially labile
volatility, and high cost (131). To solve these problems, an
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increasing number of studies have focused on the regulation
of SCFAs additives, such as SB and organic acids (OA), on
butyrate production in the gut. Wu et al. (132) indicated that
high level of SB (1 g/kg) significantly increased (P < 0.05)
concentrations of propionate and butyrate in broiler jejunum,
whilemedium level (0.8 g/kg) and low level (0.4 g/kg) contributed
to an increase in butyrate and acetate, respectively. González-
Ortiz et al. (133) showed that 1 g/kg SB not only significantly
increased lactate and acetate concentrations (P < 0.05) in broiler
chicken ileum, but also elevated butyrate contents in the jejunum.
Wang et al. (134) showed that SB (20 and 40 g/kg) increased
the contents of acetate, butyrate, and isobutyrate in laying hen
cecum. Furthermore, some studies have also reported the effects
of OA on SCFA production in the gut. A study showed that
the use of 2 g/kg OA composed of acetic acid, formic acid,
propionic acid, sorbic acid, and vegetal fatty acids can increase
propionate and butyrate concentrations in the cecum of turkey
(135). Alkhulaifi et al. (136) demonstrated that supplementation
with 3 g/kg mixture (SCFAs, medium-chain fatty acids, and
β-1,4 mannobiose) significantly increased the concentration of
acetate and butyrate in the cecum of broilers (P < 0.05). Butyrin
also serves similar functions to affect SCFA production in the
gut, but most research has focused on rodents and mammals.
A previous study showed that acetate content in the cecum of
weaned pigs challenged with LPS was elevated after tributyrin
supplementation (2 g/kg) (137). Although tributyrin (4 g/kg)
had no significant effects on SCFA concentrations in the piglet
cecum, it tended to increase the concentrations of acetate
(P = 0.53), propionate (P = 0.86), and butyrate (P = 0.59) (138).
However, a study showed an inverse result, which showed that 5
g/kg monobutyrin decreased acetate, propionate, and isovalerate
concentrations in rat cecum, while 5 g/kg tributyrin decreased
valerate and isobutyrate contents (139). At present, nutritionists
are paying increasing attention to improving the intestinal health
of poultry via nutritional strategies. It is important to regulate
the production of SCFAs in the hindgut by supplementing
dietary fiber and prebiotics, SCFA-producing bacteria, and
additives to poultry formulations. This will help maintain the
intestinal health of poultry and alleviate intestinal inflammation,
so as to maintain the healthy and sustainable development
of the poultry industry after banning antimicrobial growth
promoters (Table 1).

CONCLUSIONS AND FUTURE
PERSPECTIVES

In conclusion, SCFAs are important biomarkers to monitor
intestinal health of poultry. SCFAs can improve barrier function,
regulate microorganisms, enhance immune function and prevent
inflammation of gut in poultry. The influence of dietary factors,
through dietary interventions such as increasing dietary fiber,
butyric acid, and acid-producing bacteria, can increase the
SCFAs in the intestine, however, excessive SCFAs (butyrate
and acetate) in the hindgut will promote the development of
metabolic syndrome via the gut microbiota–brain–β-cell axis.
So, an appropriate amount of SCFAs in the intestine may be
beneficial to poultry gut health. The content and ratio of SCFAs
in the intestine are affected by the characteristics of dietary
fibers (solubility and fermentability of dietary fibers), undigested
protein, and lipids. Therefore, theremay be a threshold for SCFAs
in the intestine. In the future, it is necessary to study how to
regulate the production of SCFAs through nutritional strategies
and determine the optimal level and proportion of SCFAs for
maintaining intestinal health and preventing enteritis in poultry
production after the banning of antibiotic.
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