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1 |  INTRODUCTION

In non‐Cartesian MRI reconstruction, the acquired unequally 
spaced data are usually interpolated onto a Cartesian grid 
before performing a fast Fourier transform.1,2 Interpolation 
is most frequently performed by scanning the unequally 
spaced data, calculating the distance to neighbor points on 
the Cartesian grid, and adding the data with appropriate 
weights onto those points. This method suffers numerous 
bottlenecks:

• Large memory copies: Retaining k‐space coordinates with 
the sampled data increases the problem size, and data transfers 
are often the computational bottleneck on high‐end hardware.

• Cache misses: Nearby points in k‐space may not be contig-
uous in memory. Accessing distant array elements incurs 
“cache misses,” where requested memory addresses are 
beyond what remains in the CPU cache from the last main 
memory read. Since loading data from cache is roughly 
100× faster than loading it from the main memory, cache 
misses are expensive.
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Purpose: The non‐uniform fast Fourier transform (NUFFT) involves interpolation 
of non‐uniformly sampled Fourier data onto a Cartesian grid, an interpolation that is 
slowed by complex, non‐local data access patterns. A faster NUFFT would increase 
the clinical relevance of the plethora of advanced non‐Cartesian acquisition 
methods.
Methods: Here we customize the NUFFT procedure for a radial trajectory and GPU 
architecture to eliminate the bottlenecks encountered when allowing for arbitrary 
trajectories and hardware. We call the result TRON, for TRajectory Optimized 
NUFFT. We benchmark the speed and accuracy TRON on a Shepp‐Logan phantom 
and on whole‐body continuous golden‐angle radial MRI.
Results: TRON was 6–30× faster than the closest competitor, depending on test data 
set, and was the most accurate code tested.
Conclusions: Specialization of the NUFFT algorithm for a particular trajectory 
yielded significant speed gains. TRON can be easily extended to other trajectories, 
such as spiral and PROPELLER. TRON can be downloaded at http://github.com/
davidssmith/TRON.

K E Y W O R D S
golden angle, gridding, GPU, MRI, radial

www.wileyonlinelibrary.com/journal/mrm
mailto:
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Email: david.smith@vanderbilt.edu
http://github.com/davidssmith/TRON
http://github.com/davidssmith/TRON


   | 2065SMITH et al. Magnetic Resonance in Medicine
• Neighborhood searching: Sifting through all sampled un-

equally spaced coordinates for each grid location increases 
memory accesses and floating‐point operations simply to 
find the unequal data that lie within a gridding kernel radius 
of each Cartesian point. In principle, this information is al-
ready known from the trajectory, without needing to naïvely 
search. Even with imperfect coordinate trajectories caused 
by non‐ideal imaging gradient performance and eddy cur-
rents, this information is still approximately known.

• Write conflicts: When parallel threads must write to the 
same Cartesian grid point, the writes must be serialized 
to prevent data corruption, reducing parallelism by O(wd), 
where w is the kernel width, and d=2 or 3 for 2D or 3D. No 
such restriction exists for reading.

Several previous works have shown how to implement 
the NUFFT on the graphics processing unit (GPU) and used 
different techniques to optimize it. Gridding on the GPU was 
introduced by Sorensen et al.3 Gregerson4 then showed that 
optimizing the thread scheduling, data structures, and mem-
ory access patterns could significantly speed up a naïve GPU 
implementation of the gridding procedure. Kunis and Kunis5 
confirmed this result, and additionally found that further op-
timization through the use of shared or texture memory was 
not possible. Finally, Knoll et al.6 demonstrated gpuNUFFT, a 
GPU‐based gridder that was 60× faster than CPU methods.

The first to grid “in reverse,” i.e., from the uniform grid 
perspective, was Yang et al.7 Traditionally, gridding on parallel 
architectures had been implemented by mapping the non‐uni-
form data onto CPU or GPU threads because nearby Cartesian 
coordinates can be easily calculated, while the non‐uniform 
coordinates were difficult or impossible to calculate. Yang et 
al. showed that reversing the perspective and assigning one 
thread per Cartesian grid point was faster for PROPELLER 
data. Feng and Zhao8 again reversed the gridding procedure for 
PROPELLER data and renamed “reverse gridding” to “grid‐
driven gridding.” There they found that it was 8–10× faster 
than the traditional “data‐driven” gridding using CUDA.

Another popular way to accelerate the NUFFT is to take 
advantage of the Toeplitz structure of the combined NUFFT 
and adjoint NUFFT operation. GPU‐accelerated Toeplitz‐
based codes, such as IMPATENT,9,10 are especially useful 
for accelerating iterative reconstructions. Since the initial op-
erator construction is comparable to gridding, Toeplitz codes 
can never be faster than pure gridding for a non‐iterated, 
direct reconstruction that doesn’t require the inverse oper-
ation also. Here, we consider only “direct reconstruction” 
approaches that aim to apply the interpolative NUFFT oper-
ation as quickly and efficiently as possible in order to make 
code comparisons clearer and more relevant.

Another way to accelerate the NUFFT is to tune the grid-
ding parameters, such as oversampling ratio and kernel width, 
to create a NUFFT operation with a specified minimum 

desired accuracy with minimum computation. Since our pri-
mary aim is to measure the speed improvement due to assum-
ing a radial sampling pattern, we do not cover auto‐tuning 
strategies, such as gNUFFTW11 and instead merely choose a 
fixed oversampling ratio and kernel size throughout. TRON 
is compatible with such strategies, however.

TRON uses the same principles to accelerate both gridding 
and degridding. Since with degridding the approach is driven 
by the non‐uniform data (not the grid), the term “grid‐driven” 
will be eschewed to avoid confusion. Henceforth, we will use 
“input‐parallel” and “output‐parallel” to refer to the one‐to‐
one mapping of GPU threads to input or output, respectively.

No previous work has used an output‐parallel approach 
optimized for a radial trajectory. Radial sampling is benefi-
cial for, e.g., self‐navigated and abdominal and cardiac imag-
ing,12 self gating,13 and continuous MRI.14,15 Here we present 
TRON (for TRajectory Optimized NUFFT), an open‐source 
GPU‐based reconstruction code optimized for 2D linear‐ and 
golden‐angle radial MRI that uses an output‐parallel ap-
proach coupled with an assumed sampling pattern to achieve 
a significantly faster NUFFT.

2 |  METHODS

2.1 | Data
All experiments, unless noted, were performed on a healthy 
male subject under a protocol approved by the institutional 
review board on a Philips (Best, The Netherlands). Achieva 
3.0 T. Whole‐body, continuous golden angle radial gradient 
echo data were acquired using an X‐Tend table top (X‐tend 
ApS, Hornslet, Denmark) to enable a longer superior‐infe-
rior field of view and a 16‐channel Torso‐XL coil (Invivo, 
Gainesville, Florida) for a higher signal‐to‐noise ratio. In this 
scan, radial profiles are continuously acquired while the table 
is moved in the superior–inferior direction to image the en-
tire body. The radial acquisition dimensions were 16 chan-
nels ×512 radial samples ×20,271 spokes, reconstructed onto 
an image volume of 512 × 512 × 956, and then cropped to 
256 × 256 × 956. Other scan parameters were table speed: 
20 mm/s, TE/TR: 1.35 ms/3.70 ms, flip angle: 15∘, excited 
slice thickness: 12 mm, no slice gap, bandwidth: 854 Hz/
pixel, in‐plane (axial) voxel size: 1.56 mm × 1.56 mm, axial 
FOV: 40 cm × 40 cm, and scan time: 80 s. Pre‐scan optimi-
zation consisting of center frequency and RF drive scale de-
termination was performed in the abdomen at the position of 
the umbilicus. After the preparation phase, the table moved 
such that the head was slightly inferior to isocenter, followed 
by the whole‐body scan covering the 1.6 m z‐FOV. After ac-
quisition, the 16 channels of raw data were compressed to 6 
channels. Final channel combination was performed via sum 
of squares for simplicity and since the channel combination 
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technique used is independent of the gridding process for 
direct reconstruction methods. TRON does support a fully 
complex, adaptive channel combination16 if desired.

Optic nerve data were acquired with a 2‐channel body 
transmit, 8‐channel head receive coil. One 8 mm axial slice 
was planned based on T2 weighted scout images, such that 
the eye globes, complete extent of the optic nerve and the 
extraocular muscles were captured in the slice. Data were 
acquired with eyes sweeping from left to right and back 
(dextroversion/laevoversion) continuously with golden angle 
spacing for 15 s with a TR/TE of 5.7/1.4 ms, flip angle of 20∘, 
in‐plane field of view of 200 mm covering both the eyes and 
the brain and a readout resolution of 1 mm. A 15 s acquisition 
resulted in 2631 time contiguous data profiles.

Swallowing data were acquired using continuous golden 
angle radial with a single sagittal slice planned to include the oral 
cavity, laryngopharynx, and upper esophagus. Imaging was per-
formed with a 2‐channel transmit, 8‐channel receive head coil 
while the subject swallowed periodically. The imaging param-
eters were FOV: 230 mm × 230 mm, TR/TE: 5.7/1.58 ms, flip 
angle: 30∘, resolution: 1 mm × 1 mm, total scan duration: 20 s.

Phantom data were acquired with a 2‐channel body coil 
using radial gradient‐recalled echo imaging performed on an ex-
tended multi‐phantom setup that included the American College 
of Radiology MRI phantom. The imaging parameters were: 
zFOV: 1500 mm, table speed: 20 mm/s, in‐plane FOV: 400 mm 
× 400 mm, transverse orientation, in‐plane voxel size: 1.56 mm 
× 1.56 mm, TR/TE: 2.7/1.15 ms, flip angle: 20∘, radial readout 
points: 256, excited slice thickness: 8 mm, total scan time: 75 s. 
Power optimization was performed on the ACR phantom, and all 
shims were set to zero current to maintain a globally acceptable 
shim across the extended zFOV. The scan was performed with 
linear angle spacing and 256 profiles acquired per 180∘ sweep.

TRON accepts RawArray (RA)17 input, chosen for its 
speed and simplicity and the fact that it stores dimension 
information that is easily readable by CUDA code without 
requiring external libraries. The raw data used here are con-
tained in /data directory of the Git repository.18

2.2 | Gridding algorithm
TRON assumes perfect radial coordinates for the data and 
grids from the output‐parallel perspective, that is, one com-
pute thread per uniform point. With prior knowledge of the 
trajectory, array elements from the non‐uniform data can be 
calculated directly. Algorithm G describes the interpolative 
gridding algorithm in TRON.

Algorithm G (Parallel Gridding). This algorithm takes 
2D radial data and interpolates it onto a Cartesian grid. Each 
Cartesian grid point is assigned a separate GPU thread.

G1. [Assign thread location.] Map each parallel thread to a 
unique (kx, ky) coordinate pair on the Cartesian (uniform) grid. 

There is a one‐to‐one correspondence between threads and 
Cartesian grid locations. Only the designated thread writes its 
particular grid location, avoiding the need for atomic writes.

G2. [Find all contributing non‐uniform points.] For each 
thread, calculate the radial samples that lie within the ker-
nel radius of the thread’s assigned Cartesian location. For 
linear radial, these points can be directly calculated; for 
golden angle radial, the radial range can be calculated, but 
the angular coordinates must be searched. This is because 
the golden angle increment is large (111.246∘) and subse-
quent radial profile angles wrap around the circle, so the 
true angular distance in radians between the p‐th profile 
and a given Cartesian point (kx, ky) is

where φ is the golden ratio. Because of the modulo operation, 
this equation cannot be inverted to find the nearest values of 
p. But since the radial range of contributing data is narrowed, 
the search computation is reduced by a factor equal to the 
number of radial readout points, or typically >

∼
100×.

G3. [Interpolate.] For each contributing radial point, use 
the gridding kernel to the datum and add the resulting 
weighted datum to the grid at that location.

For degridding, the process is analogous except each non‐
uniform sample point is assigned to a unique thread and all con-
tributing points on the Cartesian grid can be easily calculated.

2.3 | Analytic deapodization
Instead of brute‐force computing the deapodization window 
by applying the NUFFT to a delta function in the frequency 
domain, TRON computes an analytic deapodization function 
directly in the image domain. This turned out to be faster and 
simpler than interpolating from precomputed lookup tables 
on our hardware. The Kaiser‐Bessel kernel used in TRON is 
given by

where β = 4.68w, w is the kernel width in grid points, k is the 
spatial frequency in units of FOV−1, and I0 is the zeroth‐order 
modified Bessel function of the first kind. We use the shape 
parameter (β = 2.34J and J = 2w in their notation) from 
Fessler et al.1 to simplify accuracy comparisons. TRON can 
be easily modified to use other shape parameters if desired. 
The inverse Fourier transform of the gridding kernel is the 
deapodization window and is given by
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where x  ∈  [−1/2, 1/2] is the spatial coordinate in units of 
FOV and sinc x≡ sin x/x. The identity  sin ix = i sinh x can 
be used to code this function to handle both signs of the radi-
cand, and the identity J1∕2(z) =

√

2∕�z sin z is useful for the 
derivation of Equation 3 from Equation 2.

2.4 | GPU Optimizations
Besides algorithmic improvements, three GPU‐specific opti-
mizations were applied.

First, the entire NUFFT was performed on the GPU, elim-
inating all but two host‐device transfers: the initial input of 
the non‐uniform data and the final output of the coil‐com-
bined image. Data transfers are often the bottleneck in GPU 
computing.

Second, the gridding process was split into multiple 
concurrent execution “streams.” Stream processing yields 
two advantages: the ability to overlap execution on a single 
GPU and the ability to use multiple GPUs in parallel. We 

empirically found that two streams per GPU was fastest. The 
two streams on a single GPU can execute memory transfers 
to prepare for future kernel execution while another kernel 
is still running, eliminating some memory transfer overhead. 
Adding pairs of streams for additional GPUs allowed parallel 
reconstruction of different slices on different GPU cards. Note 
that, while TRON can use mutiple GPUs simultaneously with 
concomitant speed gains, timing was performed on only one 
GPU with two streams so that comparisons between codes 
would be fairer and more relevant to typical use cases.

Third, the order of traversal of the Cartesian grid was op-
timized to reduce branch divergence. On the Nvidia CUDA 
architecture, execution is grouped into “warps” of 32 threads. 
Within a warp, when threads encounter a conditional statement 
in the code (e.g., an “if” statement), they must all take the same 
path. Therefore, if some threads satisfy the first branch and oth-
ers satisfy the second, all threads must wait while some exe-
cute the first branch, and then those must wait while the other 
threads execute the second branch. Since we could not entirely 

F I G U R E  1  Degridded k‐space data generated from a radial sampling of the Shepp‐Logan phantom. TRON was everywhere within 0.04% of 
the values generated by IRT. The small difference we attribute to using an analytic deapodization instead of a computed one
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eliminate branching, we assigned threads to Cartesian grid co-
ordinates such that they would take the same branches as much 
as possible. The key idea was to assign the threads to a neigh-
borhood in the grid that was as close to a square as possible 
so that all threads would have as similar radial coordinates as 
possible.

2.5 | Speed and accuracy benchmarks

We compared TRON to three popular NUFFT packages: the 
image reconstruction toolbox (IRT),1 gpuNUFFT,6 and the 
Berkeley Advanced Reconstruction Toolbox (BART).19 We 
had hoped to compare to IMPATIENT, a Toeplitz code, but 
we could not get it to compile on our platform, and the code 
supports only up to CUDA 4. We could use that CUDA li-
brary, but the comparison would not be fair, as the newer li-
braries are much faster, and there is no reason to make TRON 
work with an obsolete library.

Timing comparisons were performed on a dual 10‐core 
Intel Xeon E5‐2630 workstation with an Nvidia GeForce 
GTX TITAN V GPU using CUDA 9.1 and MATLAB 
R2018a. Only image production was timed, not input/output, 
and all timings were best of three. Density precompensation 
with a Ram‐Lak filter was included in all timings.

Accuracy was measured by radially sampling and then re-
covering a 256 × 256 Shepp‐Logan phantom using 512 radial 
frequencies per profile and 512 profiles. First, the synthetic 
k‐space was compared with that generated by IRT. Then, 
using the synthetic k‐space from IRT, an inverse NUFFT was 
performed with all codes, and the recovered phantom image 
was compared with the true phantom image using root mean 
square error. IRT was used as a ground truth for the inverse 
NUFFT to avoid missing code bugs that might cancel out 
when going from image to data and back.

For in vivo data, no gold standard was available, so we 
chose IRT as the ad hoc gold standard and measured agree-
ment between it and the other codes using structure similarity 
indices (SSIMs), which have been shown to correlate highly 
with reader image quality scores.20

3 |  RESULTS

Figure 1 shows a comparison of synthetic radial data produced 
by TRON and IRT. The maximum difference between the mag-
nitude of any two complex data was 0.04%. Both codes used 
identical oversampling ratios, kernel widths, kernel shapes, and 
kernel functions, except TRON used an analytic deapodization.

F I G U R E  2  Reconstruction of the Shepp‐Logan phantom by all four codes from the IRT‐degridded k‐space. The slight improvement due to 
using an analytic deapodization instead of a computed one can be seen in the lack of artificially generated phase in the TRON result. RMS errors 
relative to the true phantom image for IRT, gpuNUFFT, BART, and TRON were 0.1143, 0.1016, 0.1143, and 0.0814, respectively. The difference 
images are unscaled
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Reconstructions of a Shepp‐Logan phantom are shown in 
Figure 2. All four packages were compared by reconstruct-
ing synthetic radial data created using IRT. TRON produced 
the lowest RMS image error. We again attribute the differ-
ence to the analytic deapodization and note that only TRON 
avoided adding artificial phase to the phantom. The TRON 
reconstruction was almost perfectly real with virtually zero 
imaginary component, unlike the other codes that produced a 
small, spurious imaginary component.

A test with a larger, whole‐body continuous moving table 
data set is shown in Figure 3. Only the magnitude images 
are shown because a sum‐of‐squares channel combination 
was used. TRON produced the highest structural similarity 
(SSIM) coefficient (0.996) relative to IRT, with BART at 

0.989 and gpuNUFFT at 0.987. TRON reconstructed all 956 
slices of the 6‐channel 512 × 512 whole‐body data in 3.28 s 
(572 μs per coil image, or 458 megavoxels/s). This was >30× 
faster than gpuNUFFT. Using IRT as the gold standard, struc-
tural similarity coefficients (SSIMs) for gpuNUFFT, BART, 
and TRON were 0.987, 0.989, and 0.996, respectively.

Figure 4 shows the reconstruction of 15 dynamics and 
8 channels of 2× oversampled 400 × 400 optic nerve data. 
TRON was again much faster, but due to the smaller data set, 
the discrepancy is smaller, with TRON being only 5× faster 
than gpuNUFFT. SSIMs for gpuNUFFT, BART, and TRON 
were 0.971, 1.000, and 0.988, respectively.

Figure 5 shows the reconstruction of 155 dynamics and 
8 channels of 2× oversampled 464 × 464 swallowing data. 

F I G U R E  3  Reconstruction of whole‐body continuous moving table data from all four codes. Using IRT as the gold standard, structural 
similarity coefficients (SSIMs) for gpuNUFFT, BART, and TRON were 0.987, 0.989, and 0.996, respectively. Time to reconstruct 956 slices and 6 
channels of 2× oversampled 512 × 512 whole‐body continuous moving table data. TRON was over 30× faster than the nearest competitor, which 
also used the GPU
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F I G U R E  4  Reconstruction of 15 dynamics and 8 channels of 2× oversampled 400 × 400 optic nerve data. Using IRT as the gold standard, 
SSIMs for gpuNUFFT, BART, and TRON were 0.971, 1.000, and 0.988, respectively
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TRON was once again far faster than gpuNUFFT, with a 
speedup of over 25×. SSIMs for gpuNUFFT, BART, and 
TRON were 0.970, and 1.000, and 0.986, respectively.

Finally, Figure 6 shows a linear angle spacing exam-
ple, a reconstruction of 108 slices and 2 channels of 2× 

oversampled 512 × 512 linear‐angle radial continuous mov-
ing table phantom data. TRON is much faster again. SSIMs 
for gpuNUFFT, BART, and TRON were 0.956, 1.000, and 
0.963, respectively. We avoided cropping the phantom im-
ages so that any artifacts could be clearly seen.

F I G U R E  5  Reconstruction of 155 dynamics and 8 channels of 2× oversampled 464 × 464 swallowing data. Using IRT as the gold standard, 
SSIMs for gpuNUFFT, BART, and TRON were 0.970, and 1.000, and 0.986, respectively
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F I G U R E  6  Reconstruction of 108 slices and 2 channels of 2× oversampled 512 × 512 linear‐angle radial continuous moving table phantom 
data. Using IRT as the gold standard, SSIMs for gpuNUFFT, BART, and TRON were 0.956, 1.000, and 0.963, respectively. Images were not 
cropped so that any artifacts could be clearly seen
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T A B L E  1  Attributes Of Codes Tested

Code Language Hardware Lines of Code Trajectories Corrections

IRT Matlab CPU 1838 any any

BART C CPU 75,000+ any any

gpuNUFFT C++, CUDA GPU 16,000+ any any

TRON C++, CUDA GPU 1977 2D radiala noneb

aCan be extended to other fixed trajectories, including 3D; bGradient delay correction can be added.
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While exact the speed improvement varied, TRON was by 

far the fastest code in all examples.

4 |  DISCUSSION AND 
CONCLUSIONS

Using the GPU, reducing memory transfers, eliminating write 
conflicts, and assuming an input sampling pattern, we dramat-
ically accelerated the radial NUFFT. TRON was slightly more 
accurate, likely due to the analytic deapodization, but impor-
tantly it was much faster without sacrificing accuracy. Table 
1 summarizes the different codes tested and their attributes.

TRON can be extended to any trajectory that can be 
known a priori, including 3D trajectories, and even simple 
corrections, such as gradient delays, can be handled. Other 
trajectory errors (e.g.,21) could be corrected in the data prior 
to gridding as a pre‐processing step. The paradigm enabled 
by TRON is having a separate gridding function for each tra-
jectory used, instead of one generic function that handles all 
trajectories. Metaprogramming could also be used to gener-
ate the CUDA kernal code on the fly before gridding.

As an aside on code complexity and accessibility, TRON is 
only 1977 lines long, while the minimal subset of IRT used here 
comprised 1838 lines, and gpuNUFFT included over 16,000 
lines. We hope this demonstrates that GPU codes need not be 
complex and impenetrable. Smaller code bases lead to easier 
debugging and safer clinical application. Also, TRON does not 
require MATLAB, and it has a permissive license that allows it 
to be incorporated into commercial clinical software if desired.

The tremendous speed of TRON allows real‐time recon-
struction of radial data at a framework higher than typical video 
frame rates of 24–60 frames per second. TRON could make it 
possible to explore and optimize data collection in real time and 
remove the clinical barrier of complex, non‐linear reconstruc-
tions that may contain artifacts that are difficult to interpret. And 
since TRON will run on even low‐end Nvidia GPUs, it could be 
easily and cheaply integrated into a clinical reconstruction pipe-
line without the requirement of expensive or scarce hardware 
(although better GPUs will naturally yield better performance).

TRON can be downloaded at http://github.com/
davidssmith/TRON.18
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