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Background: Systemic allergic reaction is characterized by vasodilation and

vascular leakage, which causes a rapid, precipitous and sustained decrease in

arterial blood pressure with a concomitant decrease of cardiac output.

Histamine is a major mediator released by mast cells in allergic inflammation

and response. It causes a cascade of inflammation and strongly increases

vascular permeability within minutes through its four G-protein-coupled

receptors (GPCRs) on endothelial cells. High mobility group box-1 (HMGB1),

a nonhistone chromatin-binding nuclear protein, can be actively secreted into

the extracellular space by endothelial cells. HMGB1 has been reported to exert

pro-inflammatory effects on endothelial cells and to increase vascular

endothelial permeability. However, the relationship between histamine and

HMGB1-mediated signaling in vascular endothelial cells and the role of HMGB1

in anaphylactic-induced hypotension have never been studied.

Methods and results: EA.hy 926 cells were treated with different

concentrations of histamine for the indicated periods. The results showed

that histamine induced HMGB1 translocation and release from the endothelial

cells in a concentration- and time-dependent manner. These effects of

histamine were concentration-dependently inhibited by d-chlorpheniramine,

a specific H1 receptor antagonist, but not by H2 or H3/4 receptor antagonists.

Moreover, an H1-specific agonist, 2-pyridylethylamine, mimicked the effects of

histamine, whereas an H2-receptor agonist, 4-methylhistamine, did not.

Adrenaline and noradrenaline, which are commonly used in the clinical

treatment of anaphylactic shock, also inhibited the histamine-induced

HMGB1 translocation in endothelial cells. We therefore established a rat

model of allergic shock by i.v. injection of compound 48/80, a potent

histamine-releasing agent. The plasma HMGB1 levels in compound 48/80-

injected rats were higher than those in controls. Moreover, the treatment with

anti-HMGB1 antibody successfully facilitated the recovery from compound 48/

80-induced hypotension.
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Conclusion: Histamine induces HMGB1 release from vascular endothelial cells

solely through H1 receptor stimulation. Anti-HMGB1 therapy may provide a

novel treatment for life-threatening systemic anaphylaxis.
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Introduction

Histamine, 2-(4-imodazole)-ethylamine, is synthesized from

L-histidine exclusively by histidine decarboxylase and can be

produced by various cells, including central nervous system

neurons, vascular endothelial cells (VECs), gastric mucosa

parietal cells, mast cells, basophils and lymphocytes (1).

Histamine plays an important role both in normal human

physiology as well as in various pathologies, such as allergic

inflammation and response (2–4), gastric acid secretion (5),

neurotransmission in the central nervous system (6, 7), and

the regulation of innate immune response (8, 9). Anaphylactic

shock (AS) often results from an immunoglobulin E (IgE)-

mediated systemic allergic reaction. AS is characterized by

vasodilation and vascular leakage, and causes a rapid decrease

in systemic arterial blood pressure that contributes to the onset

of hypotension (10–12). Histamine is a major inducer of

vascular hyperpermeability, and thus it is a central component

of permeability-related human pathologies, such as allergy and

anaphylaxis (13). Histamine released from mast cells and

basophils triggers acute symptoms due to its very rapid

activity on the vascular endothelium and bronchial and

smooth muscle cells, which leads to a rapid increase in

vascular permeability within minutes. Histamine-induced

production of NO through eNOS in the VECs also results in

NO diffusion into the smooth muscle cell layer in the vessel wall

and dilates smooth muscle cells by activating cytosolic guanylate

cyclase (14).

Histamine acts through its four G-protein-coupled receptors

(GPCRs), histamine receptors 1 to 4 (H1R to H4R) (15, 16).

These vascular effects of histamine are in general mediated by

histamine H1-receptor and constitute the main actions of

histamine on blood vessels (14), whereas the H2-receptor

modifies gastric acid secretion, airway mucus production, and

vascular permeability (16). The H3-receptor has been shown to

be involved in neuron-inflammatory diseases (17). The H4-

receptor p lays an impor tant ro le in a l l e rgy and

inflammation (18).

High mobility group box-1 (HMGB1) is a ubiquitous

nuclear protein that binds to chromatin DNA, thereby

regulating transcription activity and maintaining chromatin
02
structure (19, 20). Under injurious stimuli and stress, HMGB1

is translocated from nuclei to the extracellular space through the

cytosolic compartment (21). Extracellular HMGB1 is now

recognized as a representative damage-associated molecular

pattern (DAMP) and has been shown to be involved in many

diseases as an inflammation enhancer through the direct

stimulation of TLR-4/2 and RAGE as well as through complex

formation with IL-1b and CXCL12, with subsequent

enhancement of the activation of cognate receptors (22). In

addition, HMGB1 may carry LPS to Kupffer cells, leading to the

efficient production of inflammatory cytokines in a gasdermin-

and caspase-dependent manner (23). Among the diverse range

of effects of HMGB1 on cellular responses, the effects on

capillary blood vessels are especially notable. In an ischemic/

reperfusion model in rats, it was demonstrated that HMGB1

released from neurons and other cells directly affected the BBB-

constituting cells, VECs and pericytes, leading to increased

permeability and brain edema formation (24, 25). In

peripheral capillary endothelial cells in culture, an HMGB1-

induced contractile response and subsequent increase in

permeability were observed (26). However, whether histamine-

induced vascular permeability is related with HMGB1 release

from endothelial cells has never been investigated.

VECs should be controlled precisely depending on the

micromilieu. Under a resting condition, the luminal surface of

VECs is maintained in an anti-coagulation state. At the same

time, the interaction between endothelial cells and blood cells is

expected to be kept minimal. However, once the disruption of

vascular walls occurs or agonistic stimuli reach the endothelial

cells, rapid changes in the cellular phenotype should occur,

including phenotypic changes related to the direction of

coagulation or facilitation of inflammation through the

migration of infiltrating leukocytes. To elucidate these

phenomena, numerous bioactive factors on VECs that finely

tune the state of VECs have been identified. In the previous

study (27), we demonstrated that LPS and TNF-a induced the

release of HMGB1 from VECs in culture, associated with the

production of the inflammatory cytokines and the expression of

adhesion molecules on their surface although the signaling

pathways leading to the translocat ion of HMGB1

remain unclear.
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In the present study, we found that a classical mediator of

inflammation, histamine, concentration-dependently caused

HMGB1 release from VECs in culture through the stimulation

of specific H1-receptor. Moreover, our findings suggest that the

hypotensive response induced in vivo by a liberator of histamine

from mast cells may be mediated in part by HMGB1. These

findings will provide new insights into our understanding of

vascular biology and could lead to therapeutic strategies for

histamine-induced vascular reactions in allergy and anaphylaxis.
Materials and methods

Chemicals and reagents

Histamine dihydrochloride was obtained from Nakalai Tesque

(Kyoto, Japan). 2-Pyridylethylamine dihydrochloride and 4-

methylhistamine dihydrochloride were gifts from Drs. W.A.M.

Duncan and G.J. Durant (The Research Institute, Smith Kline &

French Laboratories, Welwyn Garden City, Herts). d-

Chlorpheniramine maleate and famotidine were obtained from

Takeda Pharmaceutical Company (Osaka, Japan) and

Yamanouchi Pharmaceuticals (Tokyo), respectively. Compound

48/80 trihydrochloride was obtained from Funakoshi (Tokyo).
Cell cultures

EA.hy 926 endothelial cells (ATCC Cat# CRL-2922, RRID:

CVCL_3901), a hybridoma of human umbilical vein endothelial

cells (HUVECs) and the human epithelial cell line A549, were

cultured using Dulbecco’s modified Eagle medium (DMEM,

#D6546, Sigma, St. Louis, MO) supplemented with 10% fetal

bovine serum (Gibco, Grand Island, NY), 5% L-glutamine

(#G7513, Sigma), and 10% penicillin/streptomycin (Gibco) in

5% CO2 at 37°C. After reaching confluence, the EA.hy 926 cells

were detached from culture flasks using 0.25% Trypsin-EDTA

(Gibco), washed, and resuspended in DMEM. The cells were

used between the third and sixth passage in our experiments.
Immunostaining assay

EA.hy 926 cells were pretreated with FBS-free medium for

1 h before being stimulated with different concentrations of

histamine (Nakalai Tesque) for the indicated periods. The cells

were then fixed with 4% paraformaldehyde (Wako Pure

Chemical Industry, Osaka, Japan) and blocked with 3% bovine

serum albumin (BSA), after which the cells were stained by anti-

HMGB1 Ab (rabbit, Sigma, RRID:AB_444360) for 1 h at 37°C

followed by Alexa Fluor 488-labeled anti-rabbit/mouse IgG. Cell

nuclei were stained with DAPI for 5 min, and then observed

using a confocal microscope (LSM 780, Carl Zeiss).
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Cell viability

EA.hy 926 cells were plated in 96-well plates at 5×105 overnight,

and then pre-incubated with histamine at the indicated

concentrations. The cells were then incubated with MTT at 37 °C

for 4 h by adding 10 ml of 5 ng/ml MTT solution to each well. After

removal of the cell supernatant, 200 ml of DMSO was added to each

well to dissolve the crystals. The absorbance of each well was

measured using a microplate reader (model 680; Bio-Rad) at 570

nm wavelength, and the optical density (OD) value was recorded.
Quantitative real-time polymerase chain
reaction (qRT-PCR)

EA.hy 926 endothelial cells were harvested and mRNA was

extracted using an RNeasy mini kit (Qiagen). Total RNA (1 mg/
sample) was incubated with the components of the PrimeScriptR

RT reagent kit (Takara Bio, Shiga, Japan; Code No. RR036A) at

37°C for 15 min. The cDNA was then amplified with a SYBRR

Premix Ex Taq™ (Tli RNaseH Plus) Kit (Takara Bio, Shiga,

Japan; Code No. RR420A) with a Light Cycler (Roche, Basel,

Switzerland). All operations followed the manufacturer’s

protocol. The mRNA expressions of all genes were normalized

to the housekeeping gene, b-actin. The fold changes between

groups were calculated using the Ct value with the 2−DDCt

method (DCt = Ct target gene – Ct b−actin). Primers were

designed according to published sequences (see the

Supplementary materials and methods; Table S1).
Enzyme-linked immunosorbent assay
(ELISA)

To determine HMGB1 levels in plasma, blood samples were

collected through the rat heart under deep anesthesia, then

centrifuged for 10 min at 3000 rpm. The cell culture medium

was collected after treatment to measure the release of HMGB1

from the cell to the supernatant, and then centrifuged for 10 min

at 3000 rpm. HMGB1 was detected by using an ELISA kit

(Shino-Test Co., Sagamihara, Japan) according to the

manufacturer’s instructions.
Effects of histamine receptor subtype-
selective agonists and antagonists on
HMGB1 mobilization

EA.hy 926 cells were prepared as described above. To

determine the effects of receptor subtype-selective antagonists

on histamine-induced translocation of HMGB1, EA.hy 926 cells

were preincubated with 1 mM d-chlorpheniramine (H1-selective

antagonist), famotidine (H2-selective antagonist) or
frontiersin.org
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thioperamide (H3/H4-selective antagonist) for 1 h. The cells were

then stimulated with histamine (1 mM) for 12 h. To determine

the effects of receptor subtype-selective agonists, 2-

pyridylethylamine (H1-selective agonist) or 4-methylhistamine

(H2-selective agonist) was used instead of histamine.

Immunostaining of HMGB1 was performed as described above.
Animals

Experiments were performed using 8-week-old maleWistar rats

(body weight: 250 ± 15 g) housed in groups of three in

polypropylene cages with a 12-h light-dark cycle at 24–26°C and

ad libitum food and water. After a 1-week acclimatization, rats were

divided among three groups of six rats each: an experimental group

consisting of sensitized rats treated with PBS 1 min after shock

induction; an anti-HMGB1 mAb group consisting of sensitized rats

treated witha-HMGB1mAb (2mg/kg) 1min after shock induction;

and an anti-KLH mAb group consisting of sensitized rats treated

with a-KLH mAb (2 mg/kg) 1 min after shock induction.
Anaphylactic shock animal model

Rats were anesthetized with pentobarbital sodium solution

(40 mg/kg) administered intraperitoneally. Then, the tissue was

bluntly separated, the white ligament of the left leg was found,

and the femoral artery was exposed by clamping the hemostatic

forceps. Approximately 2 cm of the femoral artery was isolated, a

NO. 4-0 surgical suture was passed through the radial and distal

ends, and ligation was performed at the distal ends. Arterial

puncture was performed with a 24G trocar between the two

wires, and then the needle was removed. A blood pressure

measuring device was connected to the end of the trocar, and

the trocar was fixed to a real-time blood pressure recording

system (Shino Test Co.) via a pressure transducer to measure the

systolic, diastolic, and mean arterial blood pressure (MAP) and

heart rate (HR). To prepare the anaphylaxis model, rats were

administered a mast cell degranulation agent, compound 48/80,

at a dose of 0.5 mg/kg body weight through the tail vein. After

AS induction, rats in the three groups were administered with

PBS, anti-KLH antibody (2 mg/kg) or anti-HMGB1 antibody (2

mg/kg) through the tail vein, respectively. Measurement of

hemodynamic parameters was performed every 5 min for a

period of 30 min before the compound 48/80 challenge. The

hemodynamic parameters were recorded for 60 min at 1 min

intervals after the compound 48/80 challenge.
Statistical analysis

The data were analyzed with GraphPad Prism software ver.

6.01 (GraphPad, San Diego, CA). All values are presented as the
Frontiers in Immunology 04
means ± SEM and were analyzed by an analysis of variance

(ANOVA) followed by Bonferroni’s test or post hoc Fisher test

when the F statistic was significant. Probability (p) values <0.05

were considered significant. At least three independent

experiments were performed for all of the assays.
Results

Histamine induced HMGB1 translocation
and release from VECs

HMGB1 was exclusively localized in the nuclear compartment

in the EA.hy 926 VECs under a resting condition (Figure 1A).

Histamine (1 mM) time-dependently induced the translocation of

HMGB1 from the nuclei to cytosolic compartment. The

translocation of HMGB1 was quantified by the fluorescence

intensity of HMGB1 remaining in the cell nuclei of endothelial

cells after histamine stimulation (Figure 1B). It appeared that the

immunoreactivity of HMGB1 in the nuclei was time-dependently

decreased whereas that in the cytosolic compartment was increased

(Figure1A). The effects of histamine on HMGB1 translocation at

12 h were concentration-dependent at concentrations from 0.01

mM to 10 mM (Figures 1C, D). To determine whether HMGB1 was

further released into the cell culture media, we determined the

HMGB1 levels in the supernatant with ELISA. As shown in

Figure 1E, HMGB1 was released from VECs into the media after

stimulation with histamine in a concentration-dependent manner.

HMGB1 can be actively released from cells in response to

various stimuli and also passively released from cells during cell

necrosis or apoptosis (27). In order to clarify whether HMGB1

was actively or passively released from the VECs after the

stimulation with histamine, we evaluated the cell viability after

the histamine stimulation (Figure 1F). The results showed that

the stimulation with different concentrations of histamine did

not change the cell viability of VECs (Figure 1F), which means

that histamine actively induced the translocation and release of

HMGB1 from VECs.
Involvement of H1 receptor in the effects
of histamine on HMGB1 translocation
and release from VECs

Histamine acts through its four G-protein-coupled receptors

(GPCRs), histamine receptors 1 to 4 (H1R to H4R) (9). To

examine the effects of histamine on HMGB1 translocation and

release from VECs, we first used RT-PCR to confirm the

expression of histamine receptor subtypes H1, H2, and H3 in

EA.hy 926 cells (Figure 2A). The expressions of H1R and H2R

mRNA were increased 5-fold and 45%, respectively, after the

incubation with histamine (1 mM) for 12 h, whereas that of H3R

mRNA was not changed (Figure 2A). To examine which
frontiersin.org
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FIGURE 1

HMGB1 translocation and release from VECs after histamine stimulation. (A) EA.hy 926 endothelial cells were stimulated with histamine (1 mM)
for the periods indicated. HMGB1 was observed by immunostaining with green fluorescence and cell nucleus was observed by blue
fluorescence after staining with DAPI. Scale bar = 10 mm, (n=5 per group). (B) The translocation of HMGB1 was quantified by the residual
presence of the HMGB1 (green fluorescence) in the cell nucleus in each cell. The results were quantified by ImageJ software and are expressed
as the ratio of total nuclear HMGB1 intensity/cell numbers. (C, D) EA.hy 926 cells were stimulated with the indicated concentrations of histamine
for 12 h, and the HMGB1 in the nucleus was determined by the immunostaining (n=5 per group). (E) Endothelial cells were cultured for 12 h
with different concentrations of histamine. The cell culture medium was collected and analyzed for HMGB1 release by ELISA. All results are the
means ± SEM of five different experiments. (F) Effects of histamine on the viability of EA.hy 926 cells. EA.hy 926 cells were stimulated with
different concentrations of histamine for 12 h. The cells were then incubated with MTT at 37°C for 4 h by adding 10 ml of 5 ng/ml MTT solution
to each well. After removal of the cell supernatant, 200 ml of DMSO was added to each well to dissolve the crystals. The OD value was recorded
using a microplate reader at 570 nm wavelength. All results are the means ± SEM of three different experiments, (n=5 per group). Statistical
analyses were conducted by one-way ANOVA followed by the post hoc Fisher test. *p<0.05, **p<0.01 vs. control in the absence of histamine.
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receptor was responsible for the histamine-induced

translocation and release of HMGB1 from VECs, the receptor

subtype-specific antagonists, d-chloropheniramine for H1R,

famotidine for H2R and thioperamide for H3/4R, were used.

The cells were preincubated with one of the antagonists for 1 h

before stimulation with histamine (1 mM). The translocation and

release of HMGB1 were evaluated 12 h thereafter (Figures 2B–

D). An H1R-selective antagonist, d-chloropheniramine (1 mM),

but not either famotidine (1 mM) or thioperamide

(1 mM), inhibited the translocation induced by histamine (1

mM) (Figure 2B). The inhibitory effects of d-chloropheniramine

were concentration-dependent (0.01–1 mM) (Figure 2C). We

also confirmed that the secretion of HMGB1 into media induced

by histamine (1 mM) was antagonized solely by d-

chloropheniramine (1 mM). Moreover, an H1R-selective

agonist, 2-pyridylethylamine (28), but not an H2R-selective

agonist, 4-methylhitamine (29), mimicked the effects of

histamine in regard to HMGB1 translocation (Figures 3A, B)

and release into media (Figure 3C). These results as a whole

indicated that the receptor subtypes involved in histamine-

induced translocation and release of HMGB1 in VECs was

H1 receptor.
Calcium-dependency of the effects of
histamine on HMGB1 translocation and
release from VECs

The intracellular signaling systems mediated by H1R have

been well documented (14, 15). H1R stimulation activates

phospholipase Cb via Gq/11 and the resultant production of

IP3 in turn induces calcium mobilization from ER calcium

stores. Therefore, if the event of HMGB1 mobilization induced

by H1R stimulation occurs downstream of calcium mobilization,

the blocking of calcium signals may lead to the diminution of

HMGB1 mobilization. Figure 4 shows that a membrane-

permeable calcium chelator, BAPTA-AM (5 mM), significantly

inhibited the mobilization as well as the release of HMGB1

induced by histamine (1 mM) (Figures 4A–C), suggesting that

free calcium in the cytosolic compartment plays a fundamental

role in the mobilization of HMGB1.
Effects of adrenaline and noradrenaline
on histamine-induced translocation of
HMGB1 in VECs

Because HMGB1 has been reported to induce endothelial

contraction and hyperpermeability

(25, 26), the results obtained above imply a novel

mechanism of histamine-induced anaphylactic shock—namely,

histamine could cause the HMGB1 release from VECs through

H1R and lead to the hypotension. In an anaphylactic emergency,
Frontiers in Immunology 06
adrenaline administration is the first-choice treatment for

restoring the blood pressure. Accordingly, we examined the

effects of adrenaline and noradrenaline on the histamine-

induced HMGB1 in endothelial cells. The results showed that

both adrenaline (5 mM) and noradrenaline (5 mM) effectively

inhibited the HMGB1 translocation (Figures 5A, B).

Adrenomedullin is a potent long-acting vasodilatory peptide

which contains 52 amino acids and is produced in vascular

endothelial cells. Although adrenomedullin has anti-

inflammatory activity, however, adrenomedullin (5 mM) did

not show any effects on histamine-induced translocation

of HMGB1.
Effects of anti-HMGB1 mAb on
compound 48/80-induced anaphylactic
shock in rats

H i s t am i n e i s a m a j o r i n d u c e r o f v a s c u l a r

hyperpermeability, and is thus a central component of

permeability-related human pathologies, such as allergy and

anaphylaxis. Histamine in the granules of mast cells and

basophils is released from preformed stores in an antigen-

IgE-dependent manner, leading to a rapid increase in vascular

permeability within minutes and causing hypotension. We

established an anaphylactic shock model in rats by the

intravenous injection of compound 48/80, a mast cell

degranulator. We first collected blood samples from rats

10 min after injection with compound 48/80, and found that

plasma HMGB1 levels were significantly increased in the

compound 48/80-treated rats compared with the non-treated

controls (Figure 6A). The post-treatment of rats with the anti-

HMGB1 mAb (2 mg/kg, i.v.) reduced the increase in plasma

HMGB1 levels compared with the control IgG- and PBS-

treated groups (Figure 6A). Then, we measured the mean

arterial blood pressure of rats and observed a sharp drop of

blood pressure from 120 to 30 mmHg at 10 min after the

injection of compound 48/80. This hypotensive state in PBS-

treated rats continued until 20 min post-injection and then

gradually recovered to the level of 60 mmHg by 60 min post-

injection (Figure 6B). The post-treatment of rats with the anti-

HMGB1 mAb reduced the maximal decreased level of mean

arterial blood pressure and accelerated the recovery of

hypotension significantly. At the end of the recording period

(at 60 min), the mean arterial blood pressure in the anti-

HMGB1 mAb-treated group was above 100 mmHg

(Figure 6B). Figure 6C shows the magnitudes of recovery of

the mean arterial blood pressure at the indicated time points

from the lowest blood pressure. These results demonstrated

that the compound 48/80-histamine-induced rapid

hypotension was at least partly caused by the HMGB1

release, and that the neutralization of circulating HMGB1 by

anti-HMGB1 mAb inhibited the anaphylactic hypotension.
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FIGURE 2

The involvement of histamine receptor subtypes in the histamine-induced HMGB1 release in VECs. (A) EA.hy 926 cells were cultured with
histamine (1 mM) for 12 h. The mRNA expression of each histamine receptor in the presence or absence of histamine in the cells was measured
by quantitative RT-PCR. The results were normalized to the expression of b-actin and are expressed as the mean ± SEM (n=5 per group). (B)
EA.hy 926 cells were preincubated with each antagonist for 1 h before stimulation with histamine (1 mM). HMGB1 translocation was determined
by immunostaining at 12 h after histamine stimulation. Scale bar = 10 mm. (C) Different concentrations of d-chloropheniramine were
preincubated with the EA.hy 926 cells for 1 h before stimulation with histamine (1 mM) for 12 h. HMGB1 in the cell nucleus is quantified in the
right panel of each group as the means ± SEM (n=5 per group). (D) EA.hy 926 cells were preincubated with each antagonist (1 mM) for 1 h. At
12 h after stimulation with histamine (1 mM), the amount of HMGB1 released into the medium was determined. Statistical analyses were
conducted by one-way ANOVA followed by the post hoc Fisher test. *p<0.05, **p< 0.01 vs. control in the absence of histamine, #p<0.05,
##p<0.01 vs. histamine-PBS group.
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Discussion

The results of the present study clearly demonstrated that

histamine induced the mobilization of HMGB1 from nuclei to
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the extracellular space through the cytosolic compartment in

VECs (Figure 1). The release of HMGB1 induced by histamine

was concentration- and time-dependent. The translocation of

HMGB1 appeared to proceed in a manner quite similar to those
B C

A

FIGURE 3

Effects of selective histamine receptor agonists on HMGB1 release from VECs. (A) EA.hy 926 cells were incubated with 2-pyridylethylamine (H1R-
selective agonist) or 4 methylhitamine (H2R-selective agonist) for 6 h. HMGB1 translocation was observed with immunostaining as described in Figure 1.
Scale bar = 10 mm. (B) The results were quantified by ImageJ software and are expressed as the ratio of total nuclear HMGB1 intensity/cell numbers. (C)
The cell culture medium was collected and the HMGB1 released into media was measured by ELISA. All results are the means±SEM of five different
experiments, (n=5 per group). One-way ANOVA followed by the post hoc Fisher test. **p<0.01 vs. control in the absence of agonist.
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B C

A

FIGURE 4

Histamine-induced HMGB1 release occurred in a Ca2+- dependent manner. (A) Confluent EA.hy 926 cells were preincubated with the Ca2+

chelator BAPTA-AM (5 uM) or PBS for 1 h. The cells were then stimulated with histamine (1 mM) for 12 h. HMGB1 translocation in VECs was
observed by immunostaining. Scale bar = 10 mm. (B) The results were quantified by ImageJ software and are expressed as the ratio of total
nuclear HMGB1 intensity/cell numbers. (C) The release of HMGB1 into the cell culture medium was measured by ELISA. The results shown are
the means ± SEM of three experiments, (n=3 per group). One-way ANOVA followed by the post hoc Fisher test. **p<0.01 vs. control in the
absence of histamine, ##p<0.01 vs. histamine-PBS group.
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B

A

FIGURE 5

Effects of adrenaline and noradrenaline on histamine-induced HMGB1 translocation in VECs. (A) EA.hy 926 cells were preincubated with
adrenaline, noradrenaline or adrenomedullin (5 mM) for 1 h before stimulation with histamine (1 mM). The translocation of HMGB1 was
determined by immunostaining. The results are representative of ≥5 experiments. Scale bar = 10 mm. (B) The HMGB1 translocations were
quantified by ImageJ software and expressed as the ratio of nuclear HMGB1 intensity against the total cell number. The results shown are the
means ± SEM of five different experiments, (n=5 per group). One-way ANOVA followed by the post hoc Fisher test. *p<0.05, **p<0.01 vs.
control in the absence of histamine, ##p<0.01 vs. histamine-PBS group.
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B

C

A

FIGURE 6

Effects of anti-HMGB1 mAb on a compound 48/80-induced rat model of anaphylactic shock. Wistar Rats were given compound 48/80, a mast
cell degranulation agent, at a dose of 0.5 mg/kg through the tail vein to induce anaphylactic shock. One minute after compound 48/80
injection, the rats were treated with PBS, anti-KLH mAb (2 mg/kg) or anti-HMGB1 mAb (2 mg/kg) through the tail vein. Measurement of
hemodynamic parameters was performed every 5 min for a period of 30 min before the compound 48/80 challenge. The hemodynamic
parameters were recorded for 60 min at 1 min intervals after the compound 48/80 challenge. (A) Plasma levels of HMGB1 in rats at 10 min after
compound 48/80 injection were determined by ELISA. (B) Records of mean arterial blood pressure (MAP, mmHg) of rats treated with PBS,
control mAb or anti-HMGB1Ab. MAP was recorded every minute until the end of the experiment at 60 min. Each point represents the means ±
SEM of six rats, (n=6 per group). All results are the mean ± SEM of five different experiments. One-way ANOVA followed by the post hoc Fisher
test. **p<0.05 vs. PBS, ##p<0.05 vs. Control IgG. (C) The absolute increase in the value of MBP from the lowest after AS induction to the
indicted time was quantified in each group. one-way ANOVA followed by the post hoc Fisher test. **p<0.05 vs. control, ##p<0.05 vs. Con IgG.
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induced by LPS and TNF-a (27). The experiments using

receptor subtype-specific agonists showed that 2-pyridyl

ethylamine was a specific agonist for H1-receptors, and

produced a similar HMGB1 mobilizing activity to histamine,

whereas H2-receptor agonist (4-methylhistamine) (30) did not

(Figures 3A, B). Also, d-chlorpheniramine, a specific antagonist

for H1-receptor, concentration-dependently inhibited the

HMGB1 translocation induced by histamine, while an H2-

receptor antagonist (famotidine) or H3/4 antagonist

(thioperamide) (31) did not produce any effects (Figures 2B–

D). Taken together, these results indicated that the only receptor

subtype involved in the action of histamine on HMGB1

mobilization in VECs was the H1-receptor.

It is well known that H1 receptor stimulation by histamine

causes remarkable functional changes in VECs, including NO

production, eNOS induction, upregulation of surface expression

of E-selectin, IL-8 secretion and cell contraction (32). The

expression of E-selectin induces the rolling of leukocytes on the

endothelial cells through the interaction with PSGL-1 (33), which

facilitates the inflammatory responses (34). Moreover, NO

produced in the endothelial cells diffuses into the smooth muscle

cells, leading to the dilatation of vessels (35). The contraction of

endothelial cells of postcapillary venules leads to the leakage of

plasma proteins and the formation of tissue edema. A previously

reported in vivo experiment showed that histamine-induced

hyperpermeability was dependent predominantly on NO-

mediated dilation of vascular smooth muscle and the subsequent

blood flow increase, and partially on PKC/ROCK/NO-dependent

endothelial barrier disruption (36). HMGB1 can be actively released

from the VECs upon exposure to various stimuli, such as LPS or

TNF-a (29). The released HMGB1 can further activate endothelial

cells, leading to up-regulation of the cell adhesionmolecules ICAM-

1, VCAM-1, and E-selectin, and is involved in the cytokine

secretion in cells (37, 38). The released HMGB1 has also been

found to induce early EC barrier disruption, with a potential

molecular mechanism being activation of the RhoA/ROCK1

signaling pathway by HMGB1 via RAGE (39). These similarities

between HMGB1 and histamine in the regulation of cell

inflammatory and endothelial cell permeability indicate a possible

relationship between them in the vascular system.

Anaphylaxis is triggered by a specific antigen binding to IgE

antibody on the surface of mast cells and basophils (40). Histamine

is a biogenic amine stored in the granules of mast cells and

basophils and a well-known mediator of anaphylaxis (41). The

massive release of granule constituents from these cells causes a

rapid decrease in arterial blood pressure (42). In the present study,

we mimicked the anaphylactic response by intravenous injection of

compound 48/80, a mast cell stimulator, in rats. The compound 48/

80-induced hypotension was accompanied by an elevation of

plasma HMGB1 (Figure 6A). The post-treatment of rats with a

neutralizing antibody against HMGB1 significantly accelerated the

recovery from the hypotensive response induced by compound 48/

80 (Figure 6B). These results strongly suggest that HMGB1 is
Frontiers in Immunology 12
involved in the hypotensive response to compound 48/80. They also

suggest the possibility that histamine released from mast cells in

response to compound 48/80 induced the translocation and

extracellular release of HMGB1 from VECs.

HMGB1 is expressed ubiquitously in almost all kinds of cells,

while not all kinds of cells can actively release HMGB1 after

stimulation. Although there is little information about the

HMGB1 release from mast cells, one report showed the lack of

release of HMGB1 from the murine mast cell line C57 and the

human mast cell line HMC-1.2 after stimulation with different

cytokines and antigen-IgE (43). In our study, we observed that

HMGB1 can be released from vascular endothelial cells after

stimulation with histamine in vitro. During the anaphylactic

response, histamine released from mast cells and basophils gets

into blood stream and can easily access to the vascular endothelial

cells, therefore, we speculated that the HMGB1 was mainly released

from vascular endothelial cells in this process although the release of

HMGB1 from other types of cells could not be excluded.

Piao et al. reported that recombinant HMGB1 alone induced a

release of b-hexosaminidase associated with the up-regulation of

TLR4, Myd88 and NF-kB nuclear translocation in rat basophil

leukemic cell line, RBL-2H3, whereas the knockdown of HMGB1

in RBL-2H3 by siRNA of HMGB1 suppressed the expression of

TLR4/Myd88-signaling molecules and reduced the secretory

response induced by antigen-IgE (44). These results suggested that

endogenous HMGB1 may be involved in activation of signaling

machinery in basophils and play an important role in the secretory

response of basophils. On the other hand, there is little information

about the involvement of endogenous HMGB1 in mast activation

and secretion. Further works are necessary on this line. Collectively,

the results of this study suggest that HMGB1 released fromVECs into

the blood stream by histamine is at least partly involved in the

hypotensive response to compound 48/80 in a paracrinemanner. It is

noteworthy that the agents currently used for clinical treatment of

anaphylaxis, adrenaline and noradrenaline, efficiently inhibited the

nuclear translocation of HMGB1 induced by histamine in the present

study (Figures 5A, B). Consequently, it is likely that the clinical

therapeutic effects of these catecholamines may be ascribed at least in

part to the inhibition of HMGB1 release from VECs and the

subsequent protection of endothelial cells from the effects of HMGB1.

Zhang et al. (25) observed a direct action of recombinant

HMGB1 on a reconstituted blood-brain barrier composed of

brain VECs, pericytes and astrocytes. In this system, HMGB1

induced a contractile response in both endothelial cells and

pericytes, leading to an increase in BBB permeability. The

HMGB1 release from neurons was evident after the brain

ischemia/reperfusion or brain trauma in rats (24, 25),

indicating that HMGB1 was increased in both plasma and the

CNS. The released HMGB1 probably reached the BBB and

impaired its structure and function, leading to the brain

edema formation and associated brain injury. The treatment

with anti-HMGB1 neutralizing antibody used in the present

study efficiently inhibited the BBB disruption and the
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accompanying inflammatory responses that were mediated by

cytokine and inflammation-related molecules in the brain (24,

25). Accordingly, anti-HMGB1 mAb therapy may be very useful

to prevent the actions of HMGB1 on VECs. In the case of

impairment of BBB integrity in the brain, it has been suggested

that both RAGE and TLR4 are involved in the direct effects of

HMGB1 on endothelial cells and pericytes (25, 26). Therefore, it

might be possible that the HMGB1 released by histamine in turn

stimulates endothelial cells in an autocrine and a paracrine

fashion. There are several kinds of important factors that

induce the contraction of endothelial cells and increase

capillary permeability, such as bradykinin, leukotriene C4 and

PAF (45–47). However, it remains to be determined whether all

of these factors can induce translocation and release of HMGB1

from endothelial cells.

The effects of histamine were thought to be mediated by a

rapid and transient increase in cytosolic calcium levels via the

production of IP3 by activation of phospholipase-Cb. We also

observed that the HMGB1 translocation induced by histamine

was Ca2+ dependent (Figures 4A–C). The initial intracellular

signaling triggered by H1-receptor stimulation may induce the

rapid production of NO, leading to a quick vasodilatory response

through diffusion into the smooth muscle cells. However, the

mobilization and release of HMGB1 was time-dependent over

hours as in the case of eNOS induction, the secretion of IL-8 and

von Willebrand factor, and the surface expression of E-selectin.

Thus, H1-receptor stimulation appears to induce rather long-

lasting cellular effects by the downstream signaling events,

leading to the individual cellular responses. The H1-receptor

upregulation observed in the present study may be one such

long-lasting response, which would be consistent with the results

reported previously (48).

The intracellular signals triggered by H1 receptor stimulation

include Gq/G12 activation, phospholipase C activation and IP3-

induced calcium mobilization (49–51). Therefore, it is quite

probable that the HMGB1 mobilization occurs downstream of

these events. Previously, we observed that an HMGB1

translocation induced by TNF-a or LPS was similar to that

induced by histamine in present study. Since the intracellular

signalings induced by TNFR1/2 and TLR4/MD2/CD14 are quite

different from that induced by histamine H1 receptor, a G protein-

coupled receptor. At present, little is known about the mechanism

of HMGB1 mobilization, except for the possible chemical

modification of HMGB1 (52). Therefore, the pathway leading to

the HMGB1 translocation and release in VECs by histamine

stimulation need to be studied in the future.
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