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ABSTRACT The influenza virus (IAV) is a major cause of respiratory disease, with
significant infection increases in pandemic years. Vaccines are a mainstay of IAV pre-
vention but are complicated by IAV’s vast strain diversity and manufacturing and
vaccine uptake limitations. While antivirals may be used for treatment of IAV, they
are most effective in early stages of the infection, and several virus strains have
become drug resistant. Therefore, there is a need for advances in IAV treatment,
especially host-directed therapeutics. Given the spatial dynamics of IAV infection and
the relationship between viral spatial distribution and disease severity, a spatial
approach is necessary to expand our understanding of IAV pathogenesis. We used
spatial metabolomics to address this issue. Spatial metabolomics combines liquid
chromatography-tandem mass spectrometry of metabolites extracted from system-
atic organ sections, 3D models, and computational techniques to develop spatial
models of metabolite location and their role in organ function and disease pathoge-
nesis. In this project, we analyzed serum and systematically sectioned lung tissue
samples from uninfected or infected mice. Spatial mapping of sites of metabolic per-
turbations revealed significantly lower metabolic perturbation in the trachea com-
pared to other lung tissue sites. Using random forest machine learning, we identified
metabolites that responded differently in each lung position based on infection,
including specific amino acids, lipids and lipid-like molecules, and nucleosides. These
results support the implementation of spatial metabolomics to understand metabolic
changes upon respiratory virus infection.

IMPORTANCE The influenza virus is a major health concern. Over 1 billion people
become infected annually despite the wide distribution of vaccines, and antiviral
agents are insufficient to address current clinical needs. In this study, we used spatial
metabolomics to understand changes in the lung and serum metabolome of mice
infected with influenza A virus compared to uninfected controls. We determined
metabolites altered by infection in specific lung tissue sites and distinguished metab-
olites perturbed by infection between lung tissue and serum samples. Our findings
highlight the utility of a spatial approach to understanding the intersection between
the lung metabolome, viral infection, and disease severity. Ultimately, this approach
will expand our understanding of respiratory disease pathogenesis.

KEYWORDS IAV, chemical cartography, influenza virus, lung tissue, metabolomics,
mouse, spatial metabolomics

Influenza virus outbreaks are a continuous public health issue. Seasonal global epi-
demics caused by both influenza A viruses (IAV) and influenza B viruses cause

300,000 to 500,000 deaths each year (1). Vaccinations are the current method of
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prevention, but they fail to account for every possible viral strain. Antiviral drugs are
used for treatment of IAV but are most effective within a short window during early
infection. Additionally, some strains may have developed resistance to these drugs (2).
While influenza A(H1N1)pdm09-infected intensive care unit patients treated with neur-
aminidase inhibitors have greater survival rates than untreated patients, one in four
treated patients still die (3). These findings indicate a strong need for new treatments
for IAV infection and the potential for host-targeted therapeutics to supplement antivi-
ral agents. Their development, however, necessitates an understanding of disease
pathogenesis, which remains incompletely elucidated for IAV.

We used metabolomics to identify and analyze metabolites affected by IAV infection.
Metabolomics is a method of analysis that focuses on small molecules involved in
biological processes. This technique allows us to gain insight into the host chemical
response to viral infection. A comprehensive understanding of the relationship between
host and virus could aid in the development of more effective prevention and treatment
options. Previous studies applied metabolomic methods to lung tissue and serum during
IAV infection. These studies found that nucleosides such as uridine, lipids such as sphin-
gosine and sphinganine, and amino acid metabolites such as kynurenine are increased
during infection in lung tissue (4). Additionally, carbohydrates such as mannitol,myo-ino-
sitol, and glyceric acid are decreased during active infection. However, the location of
IAV within the respiratory tract is dynamic. Viral localization and location of tissue dam-
age within the respiratory tract also influences disease symptoms, disease severity, and
transmissibility of the infection (5–8). Thus, a spatial perspective is necessary with regard
to IAV and tissue metabolism. Chemical cartography is an approach that combines liquid
chromatography-mass spectrometry (LC-MS) with 3D visualizations, leading to detailed
spatial maps of metabolite distribution compared to pathogen load, tissue damage, or
immune responses (9–11). This approach, when applied to other infectious diseases,
enabled the discovery of new treatments for these conditions (10). This method has
been used to study the impact of cystic fibrosis on the local lung metabolome (12, 13)
but had not previously been applied to IAV infection.

Using this method, we analyzed the distribution of small (m/z 100 to 1,500) metabolites
within the infected trachea and lung in comparison to serum samples and to uninfected ani-
mals. We identified changes in the lung metabolome and determined limited overlap in
metabolites perturbed by IAV infection between lung tissue and serum. Additionally, we
identified several metabolites altered by infection, such as amino acids, lipids and lipid-like
molecules, and nucleosides. Interestingly, some of these metabolites were differentially
affected between lung positions, especially when comparing lung lobes to trachea.

RESULTS

Viral distribution influences IAV transmissibility, viral reassortment, and disease se-
verity (5, 14, 15). While a few studies have investigated the changes in the metabolome
during IAV infection, a spatial perspective of the metabolic disturbances is lacking (4,
16–18). We therefore used spatial metabolomics to identify candidate pathways and
metabolites altered by infection in specific lung locations. Serum, trachea, and lungs
were collected from IAV-infected mice at 3 days postinfection (n = 16 infected mice
and n = 10 uninfected mice). Lungs were systematically sectioned into 11 segments
based on lung physiology (Fig. 1A, Materials and Methods), and all samples were ana-
lyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), followed by
3D reconstruction of metabolomics data. In addition, tissue homogenate biolumines-
cence was measured as an indicator of local viral burden in each tissue segment.

Using principal coordinate analysis (PCoA), we first compared lung and serum
metabolomes and found that the local lung tissue metabolome does not reflect the cir-
culating metabolome (permutational multivariate analysis of variance [PERMANOVA]
P , 0.001, Fig. 1D). Furthermore, lung tissue overall was found to be greatly impacted
by infection (PERMANOVA P , 0.001, R2 = 0.093931) (Fig. 1E). A similar but nonsignifi-
cant trend was seen between infected and uninfected serum samples (Fig. 1F).
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Spatial analyses of lung tissue showed that viral load was largely localized to the
lung tissue (positions 1 to 11) with minimal viral load in the trachea (position 12)
(Dunn’s test P , 0.05, false-discovery rate [FDR]-corrected for comparisons between
trachea and all positions except left lung middle [position 3, Fig. 1B]). The local mag-
nitude of metabolic perturbation induced in response to infection was quantified
using PERMANOVA R2 at each sampling site. PERMANOVA R2 indicates the percent-
age of the variance in the data can be explained by a specific metadata category
(infection status here). The magnitude of metabolic perturbation was variable
between tissue segments, with the highest R2 values in two segments of the left lung
(position 1 and position 4) and the right lung middle lobe (position 8), whereas the
trachea metabolome was least affected (R2 range from 0.05 in trachea to 0.18 at posi-
tion 4; Fig. 1C; see Table S2 in the supplemental material). Thus, the site of lowest vi-
ral load matched with the site of lowest R2, i.e., the trachea. No significant differences
were observed in viral load between the remaining tissue segments (Dunn’s test
P . 0.05, FDR-corrected).

FIG 1 Localized impact of IAV infection in lung tissue and serum. n = 16 infected mice and n = 10 uninfected mice. (A) 3D model of lung tissue showing
sampling positions. (B) Median viral burden distribution of IAV (expressed as relative luminescence units, RLU). Lower infection levels were observed in the
trachea (Dunn’s test, FDR-corrected, P , 0.05 for comparisons between trachea and all positions except left lung middle [position 3]). (C) Magnitude of
metabolic perturbation compared to uninfected (PERMANOVA R2). (D) Principal coordinate analysis (PCoA) plot showing differences in overall metabolome
by sample type (PERMANOVA P value, ,0.001). Green enlarged circles represent trachea samples. Faded circles represent uninfected samples. (E) Impact of
infection on overall lung tissue metabolome (PERMANOVA P value, ,0.001). (F) No significant impact of infection on the overall serum metabolome by
PCoA. (G to I) Unique and common metabolites perturbed by infection. (G) Most metabolites perturbed by infection in serum samples are found in both
infected and uninfected samples, albeit at different levels. Four of eight metabolites were increased by infection and four of eight were decreased by
infection, while only one of the statistically significant metabolites was uniquely observed only in uninfected serum samples. (H) Overlap of metabolites
perturbed by infection in serum (orange) or lung tissue all positions combined (green). (I) Most metabolites perturbed by infection in lung samples are
found in both infected and uninfected samples, albeit at different levels (181/382 metabolites increased by infection and 181/362 decreased by infection,
with 11 of the statistically significant metabolites uniquely detected in uninfected lung tissue). Panels C to I were generated from the full-feature table,
generated, filtered, and processed as described in Materials and Methods, including both annotated and unannotated metabolite features.
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We next sought to determine whether the specific metabolites perturbed by infec-
tion differed between lung and serum (Fig. 1G to I). We used a random forest classifier,
applied to serum on the one hand, and to lung tissue on the other hand (all positions
combined). After applying significance cutoffs (see Materials and Methods), this
approach yielded a total list of 9 serum metabolites and 374 lung tissue metabolites
significantly perturbed by infection. There was strikingly limited overlap of infection-
perturbed metabolites between lung tissue samples and serum samples, indicating
that both sites respond differentially to infection (Fig. 1H) and concurring with overall
PCoA analysis findings (Fig. 1D). We then sought to assess whether the metabolites
perturbed by infection were uniquely elicited by infection or found under both condi-
tions but at differential levels. The majority of infection-perturbed metabolites were
common to infected and uninfected samples but found at different levels, with a mi-
nority uniquely detected in uninfected samples only (Fig. 1I). A similar trend was seen
in infected and uninfected serum samples, where most infection-perturbed metabo-
lites were present in both infected and uninfected samples, albeit at different levels
(Fig. 1G). This signifies that the effect of IAV infection on the metabolome is primarily
on metabolite levels rather than induction of novel metabolites.

Random forest classifier was also used to analyze the common and unique responses
of each lung and tracheal tissue site to infection. A random forest model was built for
each lung position and for serum, classifying infected versus uninfected samples.
Strikingly, most infection-impacted metabolites were only affected at one or a few tissue
sites rather than commonly across all or multiple lung lobe segments (Fig. 2A). This is not
due to divergence in overall metabolome between sites, as analysis of all metabolites,
irrespective of abundance, revealed large commonality across lung tissue sites and serum
(Fig. 2B). This observation also indicates that the segregation between lung and serum in
Fig. 1D is largely driven by differential metabolite abundance, rather than metabolite ab-
sence/presence. Likewise, infection-perturbed metabolites do not overlap appreciably
with metabolites differing in abundance between lung and serum (Fig. S3). Very few per-
turbed metabolites were identified for position 12 (trachea), perhaps as a consequence of
the low viral load at that site (Fig. 1B).

Metabolites perturbed by infection were annotated using molecular networking
(19). Among these, carnitine, glutamine, kynurenine, and cytosine were found to be
significantly and markedly perturbed by IAV infection and in a spatial manner (Fig. 3,
Fig. S1). Glutamine, cytosine, and kynurenine were all significantly increased by IAV
infection at all tissue sites except the trachea (Wilcoxon FDR-corrected P value, ,0.05
at all sites except trachea) (Fig. 3, Fig. S1). The opposite trend was seen for carnitine,
which was decreased by infection at all tissue sites except the trachea (Wilcoxon FDR-
corrected P value, ,0.05 at all sites except trachea) (Fig. 3, Fig. S1). In contrast, these
metabolites were not significantly affected by infection in the serum. We further
explored molecular networks for additional annotations. Specifically, the kynurenine
(m/z 209.0921) neighbor m/z 251.1022 had no direct annotations but had a mass differ-
ence of 42.0101 to kynurenine, indicating acetylation (Fig. 3, bottom left panel). Thus,
it was annotated as acetylkynurenine, though its differential abundance between
infected and uninfected serum samples did not reach statistical significance (Fig. 3,
bottom left). Acetylkynurenine could be a biological product of acetyltryptophan (20,
21), though we cannot exclude the possibility of it resulting from nonenzymatic break-
down of acetyltryptophan or from metabolite interconversion during extraction or LC-
MS/MS data acquisition. In addition, the glutamine network neighbor glutamic acid
(m/z 148.0605, retention time [RT] 0.32 min) was found significantly increased by infec-
tion (Wilcoxon FDR-corrected P value, ,0.05 at all sites except position 10 and trachea)
(Fig. 3, top right panel).

Additional metabolites perturbed by infection in serum and lung tissue include
amino acids, acylcarnitines, and nucleobases (Fig. 4, Table S1A and B), with contrasting
effects between lung tissue positions and sample types. For example, amino acids had
dissimilar effects following IAV infection in serum and lung tissue samples (Fig. 4):
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FIG 2 Location-specific impact of IAV infection on metabolism. n = 16 infected mice and n = 10 uninfected mice. Blue
bars, number of metabolites present in each set; red bars, number of metabolites specific to each set or overlapping
between sets; black circles, position at which metabolites are present; black circles connected via black line,
overlapping metabolites or positions where metabolites intersect. (A) UpSet plot (number of intersections to show: 60)
showing uniqueness of statistically significant infection-impacted metabolites in lung tissue and serum based on 13
random forest models analyzing each lung segment and serum separately. Order of sets (sampling sites) is based on
set size, with no implications of similarity from set order. (B) UpSet plot (number of intersections to show: 50) of total
metabolites found in lung tissue and serum showing large commonality across tissue sites and serum. Position
numbers are as in Fig. 1A. The order of sets (sampling sites) is based on set size, with no implications of similarity
from set order. Panels include both annotated and unannotated metabolite features.
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methionine was decreased in infected serum samples (Wilcoxon FDR-corrected P value,
,0.001) while citrulline was increased in infected lung tissue samples (Wilcoxon
FDR-corrected P value,,0.05) (Fig. 4A and E). Acylcarnitines (oleoylcarnitine and palmi-
toylcarnitine) were significantly increased in infected serum samples (Wilcoxon
FDR-corrected P value, ,0.001) compared to uninfected samples (Fig. 4B and C).
Spermidine and 4-hydroxynonenal were significantly increased upon infection
(Wilcoxon FDR-corrected P value, ,0.05) at select lung tissue sites (Fig. 4F and G).
Infection had the opposite effect on hemin, which was significantly decreased at posi-
tions 3, 4, 9, and 10 (Fig. 4D, Wilcoxon FDR-corrected P value, ,0.05). In contrast, none
of these metabolites were significantly affected by infection in the trachea.

Given the differential viral load between the trachea and the remaining tissue sites,
these metabolites may represent metabolic changes that require local viral load for
induction. In contrast, several metabolites with no direct library matches (ClassyFire
superclass-level annotation [22]: organic acids or derivatives, m/z 144.102, RT 0.311 min;
m/z 247.202, RT 0.268 min; m/z 193.155, RT 0.314 min; m/z 261.217, RT 0.273 min; and
m/z 158.118, RT 0.319 min (Table S1N) were similarly perturbed by infection in both the
trachea and the lung lobes (Fig. 2A, Fig. S4E to I, Table S1N). This observation suggests a
possible induction of these metabolic changes by infection status independent of local
viral load. In contrast, four metabolites were uniquely perturbed by infection in the tra-
chea (m/z 138.053, RT 0.299 min; m/z 166.084, RT 0.281 min; m/z 283.163, RT 0.275 min;
and m/z 180.1, RT 0.278 min; Fig. 2A, Fig. S4A to D, Table S1N), which could indicate
infection-adjacent metabolic changes that only occur at sites of low viral load (Fig. S4B)
or that can only occur in the trachea and not in the lung lobes, likely representing tra-
chea-specific or trachea-elevated metabolites (Fig. S4A, C, and D).

FIG 3 Representative metabolites perturbed by IAV infection. n = 16 infected mice and n = 10 uninfected
mice. Molecular networks display the mean peak area of metabolites in infected (red) and uninfected (blue)
samples. Each connected node represents structurally related metabolites, as determined by molecular
networking. 3D lung ’ili plots show the log median of the TIC-normalized peak area of each displayed
metabolite across tissue sites. Median values of zero remain uncolored (gray model background). Wilcoxon
FDR-corrected P values comparing matched infected and uninfected lung tissue sites; *, P , 0.05; **, P , 0.01;
***, P , 0.001.
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DISCUSSION

Here, we generated spatial maps of the metabolic impact of IAV infection on the
mouse lung and trachea. We focused on female mice because female C57BL/6 mice
have a more severe response to influenza infection than males (23) and due to the
greater ease of cohousing female mice compared to males, which often have to be sin-
gly housed. Single housing increases stress on the animals, potentially confounding
the results (24). Our approach revealed differential effects of infection across tissue
sites and between lung and serum, as well as differential viral burden between trachea
and lung tissue. Based on random forest analysis and molecular networking, infection-

FIG 4 Representative metabolites perturbed by IAV infection in serum and lung tissue. n = 16 infected mice and n = 10 uninfected
mice. (A to C) Statistically significant metabolites altered by infection in serum (Wilcoxon FDR-corrected P value, ,0.001). (A) Methionine
(m/z 150.058, RT 0.323 min). (B) Oleoylcarnitine (m/z 426.357, RT 2.982 min). (C) Palmitoylcarnitine (m/z 400.341, RT 2.952 min). (D to G)
Statistically significant metabolites altered by infection in lung tissue. (D) Hemin cation (m/z 616.175 RT 2.776 min) statistically significant
at positions 3, 4, 9, and 10 (Wilcoxon FDR-corrected P value, ,0.05). (E) Citrulline (m/z 198.085, RT 0.309 min) statistically significant at all
positions (Wilcoxon FDR-corrected P value, ,0.05) except position 12. (F) 4-Hydroxynonenal (m/z 139.112, RT 2.644 min) statistically
significant at all positions (Wilcoxon FDR-corrected P value, ,0.05) except positions 2, 5, and 12. (G) Spermidine (m/z 146.165, RT
0.287 min) statistically significant at all positions (Wilcoxon FDR-corrected P value, ,0.05) except positions 10 and 12.
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impacted metabolites of biological significance were annotated as acylcarnitines,
amino acids, phospholipids, and nucleobases, among others.

Carnitine was significantly decreased by IAV infection at all lung positions except the
trachea (Fig. 3, top left). Likewise, short-chain acylcarnitines such as CAR 2:0 and CAR 6:0
were also decreased in lung tissue (Table S1C to N). In contrast, in both serum and lung
tissue, different long-chain acylcarnitines were increased by infection, including oleoyl-
carnitine (CAR 18:1) and palmitoylcarnitine (CAR 16:0) in serum and CAR 14:1 and CAR
20:1 in lung tissue (Fig. 4B and C, Table S1A to N). Carnitine and acylcarnitines are key
intermediates in energy production via fatty acid beta oxidation (25). Influenza virus rep-
lication is sensitive to lipid metabolism inhibitors, supporting a causal role of these alter-
ations in disease pathogenesis (26, 27). Likewise, these metabolic alterations may also be
contributing to the differential responses to vaccination in obese versus lean animals
(28). Oleoylcarnitine was also consistently elevated in serum from human H3N2 IAV
infection compared to controls, from enrollment to 3 to 4 weeks postinfection (29).

Our study indicated that glutamine is increased upon IAV infection (Fig. 3, top
right). These findings are consistent with studies in human nasal epithelial cells, which
likewise observed strongly increased glutamine levels at 24 and 48 h postinfection
(30). T cell proliferation and cytokine secretion rely heavily on the presence of gluta-
mine (31). IAV-infected cells are also more dependent on glutamine availability than
uninfected cells for survival (27), while glutamine treatment in the presence of bicar-
bonate inhibited IAV proliferation (32). The latter effect was observed only when treat-
ment preceded viral addition, indicating an effect at early stages of the viral life cycle
(32). In contrast, Thai et al. showed that inhibiting glutaminase inhibited IAV replication
(33). The role of glutamine in IAV infection is thus complex and may differ depending
on infection time point and cellular environment.

Citrulline was increased in infected lung tissue, in contrast with methionine, which
was decreased in serum (Fig. 4A and D). Citrulline has downstream effects on T cell
growth and response (34–36). Upregulation of citrulline suggests a role in overall
immune response to IAV. Analyses of plasma from H1N1 pneumonia patients found an
association with elevated methionine and mortality (37).

The nucleobase cytosine was elevated by infection in all lung sites except the tra-
chea (Fig. 3, bottom right). Pyrimidine nucleotide biosynthesis is elevated upon IAV
infection, and indeed, IAV replication was dependent on pyrimidine biosynthesis, with
effects observed at early to intermediate stages of viral replication (38, 39). Inhibiting
pyrimidine biosynthesis also overturned some of the effects of IAV on host mRNA
export and inhibition of host antiviral gene expression (40). These findings indicate a
proviral role of the observed cytosine elevation. Likewise, purine biosynthesis is also
induced by IAV in vitro in human cells (41). Interestingly, cytosine was found to be dis-
criminatory in the plasma between reverse transcriptase PCR (RT-PCR) COVID-positive
patients and RT-PCR COVID-negative patients (42).

Several of the metabolites annotated and identified as infection-impacted in the
lung tissue and serum in this study are congruent with prior studies of lung tissue dur-
ing respiratory infection (4). Upregulation of cytosine in the lung tissue, oleoylcarnitine
in serum, and several phospholipids in the lung tissue are consistent with current liter-
ature (Fig. 3, bottom right, Fig. 4B, Table S1A) (4, 17, 43). Amino acids and nucleosides,
nucleotides, and analogs, in particular, were upregulated in lung tissue in other IAV
studies as well as in Mycobacterium tuberculosis infection (TB) and respiratory syncytial
virus (RSV) studies (4, 43–45). Citrulline is elevated in mouse lung tissue infected with
RSV and in mice infected with TB (4, 17, 44–46). This coincides with our findings show-
ing elevations of this amino acid in IAV-infected lung tissue (Fig. 4E). Glutamine was
elevated in mouse lung tissue infected with TB, corresponding with our study (Fig. 3,
top right) (45, 46).

Kynurenine, an infection-induced anti-inflammatory molecule, is consistently upreg-
ulated in mouse lung tissue of several respiratory infection studies, including TB, RSV,
and our IAV study (Fig. 3, bottom left) (4, 43, 44, 46), as well as at 24 and 48 h
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postinfection in human nasal epithelial cells (30). Using different anti-IAV compounds
that target different stages of the viral life cycle demonstrated that viral entry is the
key stage responsible for induction of kynurenine in human macrophages (47). This
may account for the fact that we did not observe elevated kynurenine in the trachea,
where viral load was low. However, a disconnect in the lung between viral load and
the activity of host indoleamine 2,3-dioxygenase (IDO), the enzyme responsible for
kynurenine biosynthesis, indicates that elevation of kynurenine reflects host-mediated
mechanisms, rather than direct induction by the virus (48). Indeed, IDO is induced in
response to interferon signaling (49). A causal role for kynurenine in disease progres-
sion is further supported by findings of a higher kynurenine to tryptophan ratio in
influenza patients with longer symptom duration or in patients who died of influenza
infection compared to those who recovered (50). However, kynurenine lacks direct
anti- or proviral effects, since inhibition of kynurenine production did not affect lung
viral load in mouse models. Instead, inhibition of kynurenine production expedited tis-
sue repair (51).

Analysis of circulating metabolites has been performed in multiple studies on IAV
vaccinology (52, 53). Our findings of differential impacts of infection on lung and se-
rum metabolites (Fig. 1H, Table S1A and B) indicate that the metabolic changes
observed in those studies may not be directly linked to lung metabolic patterns, and
this discrepancy was not due purely to differences between serum and lung overall
(Fig. 2B). Likewise, the majority of COVID-19 metabolomic studies have relied on serum
or plasma samples (54). By extension, based on this study’s results, they may not be rel-
evant to the metabolic changes occurring in the lung, hampering translatability for
drug development purposes.

We also observed differential impacts of infection across lung sections (Fig. 2A). The
trachea, in particular, was especially divergent from the lung lobes in terms of viral bur-
den (Fig. 1B), overall magnitude of infection-induced metabolic perturbations (Fig. 1C),
and specific metabolic changes (Fig. 3 and 4, Fig. S4). Several factors likely contribute
to this differential response to infection. Physiological differences in baseline tissue
physiology are likely involved, given the fact that the trachea is divergent from the
lung lobes in uninfected samples (Fig. 1D). Metabolic alterations in response to infec-
tion in the trachea only may either be reflective of this differential physiology or reflect
changes in response to signals produced by infected cells, but that are dampened
when the virus is present (perhaps as a means to dampen antiviral responses).
Strikingly, some metabolites were commonly perturbed across the lung lobes and tra-
chea, indicating that they are likely induced by host processes, rather than directly by
local viral infection (Fig. S4). In contrast, metabolites perturbed by infection only in the
lung lobes and not the trachea may reflect a need for local viral replication for induc-
tion of these metabolic changes. Further work will be necessary to confirm experimen-
tally whether these locally modulated metabolites causally contribute to IAV infection
progression and/or disease severity.

As with any untargeted metabolomics studies, a significant fraction of infection-
impacted metabolites could not be annotated (;65%). The most commonly observed
metabolite subclasses in our data set overall were amino acids, peptides and ana-
logues, glycerophosphocholines, amines, and fatty amides. Although this represents a
broad diversity of metabolite classes, nevertheless, complementary metabolite extrac-
tion or data acquisition methods could further expand this list.

We further acknowledge that the mouse model of influenza virus infection and
mouse-adapted influenza viral strain may not be the most representative of the func-
tional lung alterations that would occur during human infection (55). Indeed, the pre-
dominance of lower respiratory tract metabolic alterations over changes in the trachea
observed in this study may be a consequence of this model. While accessing human
lung samples for metabolomics is challenging, several metabolic alterations observed
in human serum or during in vitro infection of human cells concur with our findings, as
described above (29, 30, 50), thus supporting our results.
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A further limitation is that we focused on a single time point. However, recent time
course analysis data by van Liempd et al. demonstrated that many metabolic pathways
altered in the serum at 3 days postinfection remain perturbed at 30 days postinfection,
after the virus has been cleared and animal weight has recovered. Of relevance for this
study, van Liempd et al. reported comparable acylcarnitine and carnitine metabolic
alterations at both time points. In contrast, both our analyses and van Liempd et al.
observed depletion of serum indolepropionic acid at the 3 days postinfection time
point, which was followed in their analyses by restoration of indolepropionic acid lev-
els back to baseline at 30 days postinfection (dpi) (56). These findings concur with
observations of persistently perturbed metabolism in humans even up to 4 weeks after
infection (29). Jointly, these reports indicate that these metabolic perturbations mainly
result from host mechanisms rather than direct induction by the virus.

We anticipate our findings to serve as a resource upon which the research commu-
nity can build to study the impact of different disease modifiers on the relationship
between spatial changes in the lung metabolome and disease severity, for example,
the impact of age, comorbidities, or treatment. Our findings and our approach also
serve as a framework to study how the metabolome is restored in a spatially depend-
ent fashion during recovery from respiratory infection, or fails to recover during
chronic disease in additional disease models, and to identify markers of treatment
response and infection outcome. Overall, we anticipate our approach to be broadly ap-
plicable to many other respiratory infections, helping expand our understanding of re-
spiratory disease pathogenesis.

MATERIALS ANDMETHODS
In vivo infection. All vertebrate animal studies were performed under a protocol approved by the

Oklahoma State University Institutional Animal Care and Use Committee (protocol number VM20-36), in
accordance with the USDA Animal Welfare Act and the Guide for the Care and Use of Laboratory
Animals of the National Institutes of Health. Mice were housed throughout the experiment in an
AAALAC-accredited vivarium (Association for Assessment and Accreditation of Laboratory Animal Care
accreditation) under specific-pathogen-free conditions with ad libitum access to water and normal
mouse chow. Caging was HEPA-filter ventilated.

Female C57BL/6J mice (Jackson Laboratories) were anesthetized with ketamine and xylazine intra-
peritoneally and then intranasally inoculated at 12 weeks of age with PR8-Glu (57) (a generous gift from
Peter Palese, Icahn School of Medicine at Mount Sinai, Department of Microbiology, New York, NY, USA)
at 2 � 103 PFU/mouse in 25 to 50 mL phosphate-buffered saline (PBS). Controls were inoculated with
PBS alone. Body weights were monitored daily (Fig. S5). Then, 3 days later, mice were anesthetized with
ketamine and xylazine and injected intravenously (i.v.) with a working solution of coelenterazine
(GoldBio, St. Louis, MO) made according to a standard protocol (58). Briefly, using a stock solution of
7.5 mg/mL in acidified alcohol, each mouse was administered 98 mg substrate in PBS (13 mL stock in
137 mL PBS) into the retroorbital sinus. After substrate administration, the thoracic cavity was opened
followed by exsanguination by cardiac blood collection for serum and by lung tissue harvesting. Section
sizes were determined based on mouse anatomy and to generate consistent tissue segments 10 to
50 mg in weight (Fig. 1A). We therefore sectioned the right lung by lobes (superior lobe, middle lobe, in-
ferior lobe, postcaval lobe). The two larger right lung lobes (superior and inferior) were subsequently di-
vided into upper and lower segments. The left lung was sectioned into five segments from the upper
region to the lower region, with the central segment corresponding to the connection with the left
bronchus. The upper trachea, cranial to tracheal bifurcation, was also collected. Subsequently, samples
were submerged in coelenterazine (0.3 mg/mL) in a 96-well plate. Once collected, the tissue pieces were
blotted and flash-frozen in liquid nitrogen for later analyses.

Samples represent 6 independent cohorts of mouse infection. Each cohort included 2 to 3 infected
mice and 1 to 3 uninfected mice, except for cohort 3, which only included two infected mice, for a total
of n = 16 infected mice and n = 10 uninfected mice across all cohorts. The breakdown into multiple
cohorts was necessary due to the detailed tissue sectioning, to ensure that endpoints were at compara-
ble time points postinfection between mice.

Metabolite extraction and UHPLC-MS/MS. Metabolite extraction was performed jointly for all tis-
sue samples, once samples across all cohorts had been collected. A two-step metabolite extraction pro-
cedure was performed according to Want et al. (59) for both tissue and serum samples. Samples were
homogenized in LC-MS-grade water with steel beads utilizing a Qiagen TissueLyser at 25 Hz for 3 min,
and 1 mL was removed for luminescence analysis, with the water volume normalized based on tissue
weight at a constant ratio of 500mL water/50 mg sample. Methanol spiked with 4 mM sulfachloropyrida-
zine internal standard was added for a final concentration of 50%, and samples were homogenized
again for 3 min and centrifuged at 16,000 � g for 10 min at 4°C. The supernatant (aqueous extract) was
collected, dried overnight in a SpeedVac device, and frozen at 280°C until LC-MS analysis. The pellet
produced from centrifugation was collected for organic extraction via addition of 3:1 dichloromethane:
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methanol spiked with 2 mM sulfachloropyridazine internal standard, at a standard ratio of 1,000 mL volume of
solvent per 50 mg tissue weight, homogenized for 5 min, and centrifuged for 10 min at 4°C. The organic
extract was air-dried overnight and then frozen at 280°C until LC-MS analysis. Dried aqueous and organic
extracts were resuspended in 1:1 methanol:water spiked with the internal standard sulfadimethoxine and com-
bined. Samples were then sonicated and centrifuged, and the supernatant was collected for analysis. A
Thermo Scientific Vanquish ultra-high-performance liquid chromatography (UHPLC) system was used for tissue
and serum analysis using a Kinetex 1.7-mm C8 100-Å LC column (50 � 2.1 mm). Chromatography was done
with water plus 0.1% formic acid (mobile phase A) and acetonitrile plus 0.1% formic acid (mobile phase B), at a
0.5 mL/min flow rate (7.5 min) with a 40°C column temperature. The LC gradient can be found in Table 1. Data
acquisition was performed in random sample order, with a blank and pooled quality control every 12 samples.
To monitor instrumental drift, a 6-mix solution with 6 known molecules was run at the beginning and end of
the LC/MS/MS analysis. Calibration of the instrument was also done immediately prior to instrument analysis

TABLE 1 LC gradient

Time (min) Flow (mL/min) % mobile phase B Curve
0.000 Run
0.000 0.500 2.0 5
1.000 0.500 2.0 5
2.500 0.500 98.0 5
4.500 0.500 98.0 5
5.500 0.500 2.0 5
7.500 0.500 2.0 5
7.500 Stop run

TABLE 2 Q Exactive Plus (Thermo Scientific) instrument parameters

Parameter Value
Runtime 0 to 7.5 min
Polarity Positive
Default charge state 1

Full MS
Resolution 70,000
AGC targeta 3e6
Maximum IT 246 ms
Scan range 100 to 1500m/z

dd-MS2/dd-SIM
Resolution 17,500
AGC target 1e5
Maximum IT 54 ms
Loop count 5
TopN 5
Isolation window 1.0m/z
(N)CE/stepped (N)CE NCE: 20, 40, 60

dd Settings
Minimum AGC target 8.00e3
Intensity threshold 1.5e5
Peptide match Preferred
Exclude isotopes On
Dynamic exclusion 10.0s

Tune data
Spray voltage (1) 3800.00
Capillary temp (1 or1–) 320.00
Sheath gas (1 or1–) 35.00
Aux gas (1 or1–) 10.00
Spare gas (1 or1–) 0.00
Max spray current (1) 100.00
Probe heater temp (1 or1–) 0.00
S-lens RF level 50.00
Ion source HESI

aAGC, Automatic Gain Control; IT, injection time; dd-MS2/dd-SIM, data-dependent MS2/data-dependent
selected ion monitoring; NCE, normalized collision energy; RF, radiofrequency.
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using Pierce LTQ Velos ESI positive ion calibration solution. MS/MS detection was conducted on a Q Exactive
Plus (Thermo Scientific) high-resolution mass spectrometer (Table 2). Ions were generated for MS/MS analysis
in positive mode.

Luminescence analysis. Coelenterazine was prepared according to GoldBio standard protocols.
Briefly, 1 mg coelenterazine was added to 1 mL of acidified methanol to make a stock solution. The stock
solution was made to a final concentration of 1.5 mM. A 1:10 solution of sample homogenate to colen-
trazine was analyzed on a GloMax Explorer (Promega).

LC-MS data analysis. Data analysis was performed using MZmine version 2.53 (60), according to
the parameters in Table 3, to develop the feature table for analysis. Blank removal with a 3-fold
threshold was performed, and Jupyter Notebook was used to perform total ion current (TIC) nor-
malization. Principal coordinate analysis (PCoA) was performed on the TIC-normalized MS1 feature
table (Table S3) using the Bray-Curtis dissimilarity metric in QIIME version 2 (61). 3D PCoA plots
were visualized using EMPeror (62). The lung 3D model was developed using Sketchup and
MeshLab, and visualization was completed using ’ili (http://ili.embl.de/) (63).

Random forest analysis was conducted using R in Jupyter Notebook. The number of trees was re-
stricted to 500, and the random forest classifier cutoff was based on a variable importance score of
mean decrease accuracy of .1. Lists were further restricted to an FDR-corrected Mann-Whitney P value
less than 0.05 and fold change of ,0.05 or .2.0. Venn diagrams and UpSet plots were developed to
quantify metabolite overlap within lung tissue positions and between lung tissue and serum using
Intervene Shiny App (64).

Global Natural Products Social Molecular Networking (GNPS) (19) was used to perform feature-
based molecular networking (19, 65), and MolNetEnhancer (66) was used according to the parameters
in Table 4. MolNetEnhancer assigns a consensus ClassyFire (22) ontology to each molecular network-
ing subnetwork based on annotated nodes, thus enabling the extension of ClassyFire ontology to

TABLE 3MZmine 2.53 parameters

Parameter Value
MS1

Retention time (min) 0–7.5
Noise level 5E5

MS2

Retention time (min) 0–7.5
Noise level 1E3

Chromatogram builder
Mass list Masses
Minimum time span (min) 0.01
Minimum height 1.5E6
m/z Tolerance (ppm) 10.0

Chromatogram deconvolution
Algorithm Baseline cutoff
m/z Range for MS2 scan pairing (Da) 0.001
RT range for MS2 Scan pairing (min) 0.2
Minimum peak height 1.5E6
Peak duration range (min) 0–3.5
Baseline level 5E5

Deisotoping
m/z tolerance (ppm) 10.0
Retention time tolerance (min) 0.5
Monotonic shape Yes
Maximum charge 3
Representative isotope Most intense

Alignment
m/z Tolerance (ppm) 10.0
Weight form/z 1
Weight for retention time 1
Retention time tolerance (min) 0.5

Row filtering
Minimum peaks in a row 3
Retention time (min) 0.2–6.5
Keep only peaks with MS2 scans Yes
Reset peak no. ID Yes
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nodes without direct annotations (66). Cytoscape 3.8.2. was used to visualize all molecular networks
(67). All reported annotations are at Metabolomics Standards Initiative confidence level 2 (specific
metabolite name provided) or level 3 (metabolite family name provided only) (68). Lipids were
annotated based on the GNPS library or analog matches and using standard LIPID MAPS nomencla-
ture (69).

Data availability. All metabolomics data are publicly available in MassIVE under accession number
MSV000085389 (ftp://massive.ucsd.edu/MSV000085389). The MolNet Enhancer link is https://gnps.ucsd
.edu/ProteoSAFe/status.jsp?task=f9f194c9b723409f8927c84470f9a0c5, and the original GNPS link is
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=bb7a5f7fb32045208b6040908a1453f7.
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TABLE 4 GNPS parameters

Feature-based molecular network parameter Value
Precursor ion mass tolerance 0.02 Da
Fragment ion mass tolerance 0.02 Da
Minimummatched fragment ions 4
Maximum connected component size (beta) 100
Maximum shift between precursors 500 Da
Library search min matched peaks 4
Search analogs Do search
Top results to report per query 1
Score threshold 0.7
Maximum analog difference 100.0 Da
Minimum peak intensity 0.0
Filter precursor window Filter
Filter peaks in 50 Da window Filter
Filter library Filter
Normalization per file Row sum normalization (per

file sum to 1,000,000)
Aggregation method for peak
abundances per group

Mean

PCoA Bray-Curtis
Run dereplicator Run
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