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ABSTRACT: Poly(lactic acid) production has received increasing
attention, mainly due to its inherent biodegradable thermoplastic
properties and to its renewable-resource-based composition. This
process is affected by changes in the operating conditions and by
raw material impurities which influence the reaction rate and
degrade the polymer properties. As the system model is
multivariable with coupled dynamics and constraints, linear
model predictive control (LMPC) is employed here. A model
reduction technique is proposed to obtain an approximate linear
representation of the nonlinear system around the operating point
to minimize the calculation cost of the controller. The proposed
LMPC approach is validated by simulation and is compared to a
proportional-integral controller and a nonlinear model predictive control. It is found that LMPC has a superior performance in terms
of off-spec time when a disturbance occurs in the feed, and it can restore the target conditions better and faster.

■ INTRODUCTION

Whereas the vast majority of polymers are derived from either oil
or natural gas, there is a growing trend toward producing them
from renewable resources. In addition, many applications call for
biodegradable and environmentally friendly polymers to
minimize plastic waste, hence the importance of biodegradable
polymers in the production of plastics.1 Poly(lactic acid) (PLA)
is a renewable thermoplastic made from renewable resources
(sugar cane, corn starch, cassava roots, etc.). PLA is now a green
alternative to nonbiodegradable polymers in a wide range of
applications such as medical implants,2 fibers,3 and biomedical
applications.4 According to a recent review article,5 PLA has
multiple attractive properties such as very low cost, renewable
character, high biocompatibility, excellent material properties,
high transparency, and thermoplasticity, which open up a wide
range of application fields. The two chemical methods used to
produce PLA, melt polycondensation and ring-opening
polymerization procedures, are discussed in this Article, along
with the effect of several catalysts and the different polymer-
ization conditions.
In the industry, the ring-opening polymerization (ROP) of

the lactide monomer produces a high average molecular weight
of the polymer, which is required in most applications.6

However, this reaction is highly sensitive to impurities and
variations in operating conditions. In particular, any impurities
present will influence the final conversion and the average
molecular weight of the polymer. Moreover, it is possible that
the polylactide monomer itself contains unknown quantities of
impurities.7 Thus, it is crucial to use a control strategy for

rejecting perturbations and ensuring the required quality and
productivity of PLA production.
The classical PI controller was first used in 20168 to control a

PLA process formed by two continuous reactors and a loop
reactor. They considered the catalyst and cocatalyst flow rates at
the inlet of the first reactor as control inputs, and they
considered both monomer conversion as well as the pressure at
the end of the single-loop reactor as outputs. In fact, the pressure
has a direct correlation with the viscosity and thereby with the
average molecular weight of the polymer. To deal with the high
coupling between the inputs, the authors proposed an
interesting way to modify the PI error (i.e., the difference exists
between required and real outputs). A comparison of this
strategy with the classical PI was performed and showed that the
newly proposed strategy weakened the coupling and was able to
overcome the in-feed disturbances.
However, It is important to note that the process is highly

nonlinear and multivariable, with constraints on the inputs and
outputs, and also, the control is only realized on the boundaries.
A PI controller cannot handle all of these constraints, and
therefore, a more sophisticated controller, such as a model
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predictive control (MPC), would be more appropriate and will
thus be employed in this work to control the PLA process.
TheMPC has been successfully operated in various fields.9−11

It has proven its ability to cope with multi-input/multioutput
(MIMO) processes and consider explicitly any possible
constraints imposed on manipulated and/or tracked variables.
Also, it is highly appreciated for time-delayed system control
because of its predictive ability.
The MPC requires a reliable mathematical model that should

be easy to manipulate and able to accurately predict the behavior
of the plant. One of the most challenging issues of MPC is the
resolution of the constrained optimization problem. For large
dimensional nonlinear processes, the optimization problem, to
be solved at every sampling time, may demand a very large
computation time, without a guarantee to reach the optimum.
Therefore, different linear approximations of the nonlinear
model are often considered in order to formulate the overall task
as a linear and convex problem. Thus, we speak about a linear
model predictive control (LMPC) instead of a nonlinear model
predictive control (NLMPC) for the case where a nonlinear
process is used. For instance, linearized models were used within
an MPC strategy to control a dentrification reactor,12 building
climate,13 and a counter-current heat exchanger.14 Laguerre
functions can also be used to parametrize NLMPC, to reduce the
simulation time and improve the optimization conditions.15,16

In this work, the multivariable control of a ring-opening
continuous polymerization process of lactide is envisaged. This
system is made up of three reactors (Figure 1): two tubular ones
on each side of a second loop reactor in the middle. The process
model is constituted of sets of nonlinear partial differential
equations (PDEs). The discretization in space of the PDEs
representing the system results in a large number of nonlinear
algebraic differential equations that increase the computational
burden. Despite the good performance of the NLMPC that we
used in our previous work,17 it was much longer to run than the
PI controller (depending on the disturbance level, the
simulation time was between 760 and 2730 s in the NLMPC
and about 138 s in the PI controller). Therefore, a reduced linear
model is considered here and incorporated into the MPC
strategy to minimize the calculation cost. The controller
objectives are to maintain the product quality and the process
productivity at the desired values, mainly in the presence of
disturbances. The most important product property considered
here is the average molecular weight of the polymer. That weight
correlates with the medium loop’s viscosity and thus with the
pressure drop. As control inputs, catalyst and cocatalyst flow
rates are considered. Note that the control acts directly only at
the entrance of the first reactor, while the outputs are measured
just at the exit of the loop reactor (as all of the ingredients,
including the control variables, are fed at the inlet of the first
reactor). In fact, the most important conversion takes place in
the loop reactor (70%), while the conversion in the last tubular

reactor reaches 95%, which only slightly affects the polymer
quality.
The structure of this paper is as follows: In the Mathematical

PLA Model section, we provide the nonlinear mathematical
model of the PLA process. In the Controller Design section, we
present a summary of the control objectives, along with a
presentation of the principles of the three control strategies
employed: (i) the novel LMPC strategy based on a discrete-time
linear reduced state-space model, (ii) the NLMPC proposed in
our previous work,17 and (iii) the PI controller-based method
proposed in ref 8. A comparison of the simulation results of the
three used strategies is presented in the Results and Discussion
section. The last section of the paper presents conclusions and
perspectives.

■ MATHEMATICAL PLA MODEL
There are several sections and reactor types in the PLA process
design (Figure 1): a first prepolymerization tubular reactor
(R1), a loop reactor (R2), and a tubular reactor (R3). By using
the loop reactor (with a recirculation rate of r = 10, i.e., ratio
between the recycled stream and the feed stream), the yield and
the average molecular weight of the polymer can be increased.
Both the mixing quality and the residence time in this reactor
(“loop”) are similar to those of a continuous stirred tank reactor
(CSTR), but with enhanced heat exchange.18 Therefore, it will
be modeled as a CSTR.

Material Balances and Average Molecular Weight of
the Polymer. A model of an isothermal unit with flat radial
concentration profiles is used to describe each tubular reactor,
whereas the loop reactor is modeled as an isothermal CSTR (i.e.,
a single section). The reaction is performed in bulk (i.e., a
homogeneous liquid phase composed of melted polymer mixed
with liquid monomer). Based on the lactide ROP kinetic
scheme,8,19−21 the corresponding differential equations of
material balances may be written as functions of the first four
moments of the dormant (μi) and active (λi) chains as shown in
Table 1 (eqs 1−11). The reaction scheme and the development
of the moments22 are given in the Supporting Information in
Tables S1 and S2, respectively.
From the moments of the active and dormant chain

distributions, eq 12 is used to calculate the average molecular
weight of the polymer, Mw (“dead chains” have a negligible
effect):

λ μ
λ μ

=
+
+

M
M

2w
M 2 2

1 1 (12)

MM represents the molecular weight of the monomer lactic
molecule (half of the lactic molecule constitutes a monomer
repeating unit).
Equation 13 provides the adimensional pressure expression of

the reactor, Φ:23

Figure 1. PLA process formed of two tubular reactors and a loop reactor.
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Table 1. Corresponding Differential Equations of Material Balances of the PLA Process
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L and X are the length of the loop reactor and the monomer
conversion, respectively. η and ηref are the viscosity and the
reference viscosity, respectively. p1 and p2 are parameters.Mw,ref,
R, T, and Tref are the reference average molecular weight of the
polymer, the universal gas constant, the temperature, and the
reference temperature, respectively.
Initial and Boundary Conditions. Table 2 summarizes the

initial and the boundary conditions. Initially, the reactors are
assumed to be full of monomer only. The boundary conditions
include the inlet flow rates of monomer, catalyst, cocatalyst, and,
as contaminants, acid and hydroxyl functionalities, introduced
into the first reactor. We assume that both hydroxyl and acidic
impurities can be present in the monomer, where the fraction of
hydroxyl impurities to acidic impurities is equal to α (α = 0.5).
Such impurities lead to the production of dormant species (eq
17).
Discretization of the Partial Different Equations. The

discretization of the PDEs is done using the finite difference
method. This method is widely used for the simulation of
chemical processes due to its practical implementation.24,25 The
system of eqs 1−11 is implemented in Matlab that solves a finite
difference scheme withNg = 30 axial grid points for each tubular
reactor.8

■ CONTROLLER DESIGN

Control Objectives.The most important industrial require-
ments for PLA processes are predefined monomer conversion
and average molecular weight of the polymer. Since the main
production takes place in the loop reactor, both of these
variables have to be regulated at the outlet of the loop reactor.

The choice to use the outlet of the second loop reactor as
controlled variables is due to the fact that the conversion is very
low in the first reactor with low accuracy, while the outlet of the
third reactor is far from the controller, with a very slow
response.8 As previously mentioned, these variables are strongly
coupled since the increase in conversion correlates with an
increase in the average molecular weight of the polymer (eq 13).
It is therefore important to consider this coupling in the
controller design. Based on the kinetic scheme, such outputs can
be effectively regulated through the use of both the catalyst
(ppmcat) and the cocatalyst (meqROH) as manipulated variables
(i.e., the inputs are U = [ppmcatmeqROH]

T).8

Regarding sensors, the on-line measurement of monomer
conversion can be determined by near-infrared, Raman, or
Fourier transform infrared spectroscopy, while the average
molecular weight of the polymer is measured indirectly using the
viscosity correlation (eq 13). It is possible to determine the
viscosity locally either via a viscometer26 or by correlation with
the pressure drop (eq 13). As a result, the considered outputs of
the PLA process are the conversion at the loop reactor outlet (y1
= X2) and the difference in pressure between the loop reactor
inlet and outlet (y2 = ΔΦ2) (i.e., yM = [X2ΔΦ2]

T).
Model Predictive Control Structures: NLMPC and

LMPC. Model predictive control (MPC) is an optimal control
strategy that can be applied to both linear and nonlinear
processes. This control approach requires a process model to
predict variable evolution over a defined finite prediction
horizon (NP). Thus, an optimal control policy involves a
minimization of an objective function that includes generally
one term related to the error between desired and real outputs
and another term to penalize the effort of the applied control, all
over a finite prediction horizon. The control action is optimized
along a control horizon (Nc), which is shorter than or at most
equal to the prediction horizon. Only the first determined

Table 2. Initial and Boundary Conditions
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control action is then applied to the system, and the
optimization is carried out again at the next sampling time NS.
The MPC structure is shown in Figure 2,12 with the following

components:

• the nonlinear process model given by eqs 1−13, including
disturbances.

• the prediction model (that can be a nonlinear model or a
linearized process model, but without disturbances).

• The MPC algorithm.
• A, the reference model related to the two set-point signals

Yset(k) = [X2set(k) Φ2set(k)]
T:

l
m
ooo
n
ooo

+ = +

+ = +

x k A x k B u k

y k C x k
A:

( 1) ( ) ( )

( 1) ( 1)

A ref A ref ref

A ref A (18)

• R, the reference model related to regulation:

l
m
ooo
n
ooo

+ = +

+ = +

x k A x k B u k

y k C x k
R:

( 1) ( ) ( )

( 1) ( 1)

R rg R rg rg

R rg R (19)

Using the control structure shown in Figure 2, we can write
= −y y yR P M (20)

The MPC controller’s objective is to keep the nonlinear process
output yP at the set-point yA, and this allows us to bring the
predictive model output yM to its set-point yd:

= −y y yd A R (21)

Thus, the cost function, J(k), can be formulated as
follows:12,15,27

∑

∑

= [ − − ]

+ [ − − − − − − ]

= +

+

=

+

J k y y Q y y

U i U i R U i U i

( ) ( ) (

( ( 1) ( 2)) ( ( 1) ( 2))

k N
T

k N
T

i k 1
d(i) m(i) d(i) m(i))

i k

P

c

(22)

where Q is a positive definite matrix, and R is a positive
semidefinite matrix. The second term of this cost function aims
to limit excessive control actions.
A nonlinear prediction model of the process was employed in

our work previously,17 which leads to nonlinear MPC
(NLMPC). At each sample time NS, the future sequence of
manipulated variables was determined through solving the
optimization eq (eq 22). The main disadvantage of NLMPC is
the complexity related with the resulting nonlinear optimization
problem, which must be solved at every sampling time. Thus, it
demands a very large computation time, and the convergence is
not ensured for some model structures. Therefore, a reduced
linear model is considered in this work and incorporated into the

MPC strategy (LMPC case) in order to reduce the computa-
tional cost. In this case, an explicit solution of the problem can be
found which reduces the calculation time.

Linear Model Predictive Control (LMPC). Linear Model
Reduction. A linear prediction model M is considered in this
paper to describe the evolution of the nonlinear discrete-time
state space model and thus to describe the influence of the two
inputs variation (U = [Δu1Δu2]T = [ΔppmcatΔmeqROH]

T) and
the main disturbances (which are due to ΔmeqCOOH), on the
t w o o u t p u t s v a r i a t i o n (

= [Δ Δ ] = [ − ΔΦ − ΔΦ ]y y y X XT T
M 1 2 2 2 setset

):

l
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ooo
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=
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x A x B U k

y C x
M:

( )m(k 1) M m(k) m

m(k 1) M m(k 1) (23)

where xm = [Δy1Δy2ΔmeqCOOH]
T∈ Rn,U∈ Rr, and yM∈ Rm are

the state variables, the inputs, and the outputs, respectively. AM,
BM, and CM are state matrices with dimensions Rn×n, Rn×r, and
Rm×n, respectively.
The nonlinear model of the process presented by eqs 1−11 is

used to generate input−output data to allow an estimate of the
model parameters of the two matrices AM and BM. This is done
by varying the values of the inputs u1 and u2 and the main
disturbances d around their nominal values.

LMPC Formulation. For the control strategy, the following
notations are used (assuming Nc = NP = N):

• y̆A(k) = [yA(k+1), ..., yA(k+N)]
T, the outputs of themodel A (eq

18) along the horizon N
• y̆R(k) = [yR(k+1), ..., yR(k+N)]

T, the outputs of themodel R (eq
19) along the horizon N

• y̆(k) = [ym(k+1), ..., ym(k+N)]
T, the outputs of the reduced

model M (eq 23) along the horizon N
• ŭ(k) = [U(k), ...,U(k +N− 1)]T, the control signals along

the horizon N
• y̆d(k) = y̆A(k) − y̆R(k), the desired outputs along the horizon

N

The criterion in eq 22 then becomes
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Thus

Figure 2. MPC structure.
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By replacing y̆(k) with its value in eq 24, the following criterion
can be obtained:12

= ̆ ̆ + ̆J k u k FUu k u k FO( ) ( ) ( ) 2 ( )T T
k (28)

where
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φ φ
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FU Q R

FO Q Tx k y k Ru k( ( ) ( )) ( 1)

T

T
k d (29)

Q ≥ 0 and R > 0 imply φTQ̆φ > 0 and ̆ >R 0. Thus, FU > 0,
which guarantees the existence and uniqueness of the minimum
of J(k). The solution of the problem that minimizes J(k) in the
absence of constraintss on the input is given by

̆ * = − −u k FU FO k( ) ( ) ( )1 (30)

At each sampling timeNS, the optimal inputs are calculated on
the whole horizon, ŭ(k)*, but only the first element of this vector
is applied to the process. Note that this calculation relies on

Table 3. Difference between the LMPC and the NLMPC

Figure 3. Modified PI version used in the work of Costa and Trommsdorff.8
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constant matrices that only depend on the linear prediction
model M. It is worth noting that we need a longer prediction
horizon than the residence time of the PLA process (in the first
tubular and loop reactor), i.e.,NP > (tR2 + tR1). This is due to the
distributed nature of the process, which means that this process
responds with a delay to any input change. Thus, both LMPC
and NLMPC will be inefficient if we vary the inputs without
simulating the process for a significant time period, because the
input variations will not have a relevant impact on the outputs.
Therefore, for both LMPC and NLMPC, the prediction horizon
NP is fixed at 40min. Table 3 summarizes the difference between
the two strategies. The MATLAB optimization function
“lsqnonlin” was employed in the NLMPC case to solve eq 31.
Control Strategy Based on aModified PI. In this section,

the strategy developed by Costa and Trommsdorff8 is recalled to
underline the shortcomings of its use and therefore to emphasize
the necessity of the LMPC approach. The principle is to use the
classical PI controller with a modified formulation of the error to
account for inputs−outputs coupling (Figure 3).
The following equations show the differences that were

employed in the modified PI version:

ϵ = −X XX 2set 2 (32)

i
k
jjjjj

y
{
zzzzzϵ = ΔΦ − ΔΦΦ

+
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X

p p

2 set
2

2set

( )1 2

(33)

By looking at eq 33, ΔΦset is the desired set-point only if X2
equals X2set; otherwise, the current set-point is dynamically
adjusted whenever X2 is different from X2set. This section
presented the principles of the three control strategies employed
to control the PLA process. The PI strategy is easy to develop
and fast to compute, and an interesting modification was
suggested to weaken the coupling between the inputs and
outputs;8 however, it cannot handle all of the process
nonlinearity and constraints. Model predictive control can
handle coupling between the inputs and outputs, process
nonlinearity, and constraints, but it requires a precise process
model. First, we proposed to employ NLMPC, where the
criterion is straightforward to develop and can be computed
using available optimization routines. We expect the computa-
tion time to be longer than the PI controller, so care should be
taken to ensure that it is possible to realize on-line. Indeed, the
nonlinear optimization task is usually nonconvex, for which the
optimal solution is not guaranteed, and it may cause a high
computational cost. To cope with this disadvantage of NLMPC
and improve the optimization performance, LMPC was
proposed. The LMPC formulates the overall optimization task
as a linear and convex problem. However, this requires a further
calculation to linearize the model around the interesting
operating points. Also, note that it is inappropriate to use linear
models to represent a very highly nonlinear model.

■ RESULTS AND DISCUSSION
Simulation Conditions.The parameter values of the model

are given in Table 4.8,17,18,21 The set-points are set as the desired
monomer conversion, X2set, at the loop reactor outlet equal to
0.6887 and the final desired average molecular weight of the
polymer,Mw3,out, at the third continuous reactor outlet equal to 2
× 105 g mol−1. These two conditions result in a pressure drop,
ΔΦset, in the loop reactor equal to 0.1419.
In the following section, we will plot the figures as a function

of τ, which is the adimensional ratio between the actual time t

and the residence time in the loop reactor, i.e., τ = t/tR2. For all of
the scenarios, at first, we simulate the PLA model over 20τ until
the nominal steady state is reached, and then, a step-change in
the acidic impurity level ΔmeqCOOH is made in the feed, which
mimics a sudden impurity perturbation in the monomer
concentration (positive or negative).
The LMPC controller is compared to the modified PI

controller (eqs 32 and 33)8 and to the NLMPC (eq 31).17 In the
case of the modified PI controller, we assume a perfectly
measured disturbance and that the computed inputs are
implemented each minute (Ns = 1 min). However, for the
cases of the LMPC and the NLMPC, both of these methods are
not based on any measured disturbance. Thus, first, a method is
developed in order to estimate the disturbances which can be
then implemented for improving the LMPC and the NLMPC
performances. Both the LMPC and the NLMPC suppose that
the outputs are measured on-line and apply a new control value
each 5 min (Ns = 5 min), which is more realistic.

Estimation of the Disturbance. For both LMPC and
NLMPC cases, the level of the disturbance is first estimated and
implemented in each strategy. Therefore, the nonlinear process
model is employed to generate input−output data while
changing the disturbance values ΔmeqCOOH as input in positive
and negative directions and by recording the outputs variation of
X2 andΔΦ2. TheΔΦ2 variation was found to bemore significant
than the X2 variation when ΔmeqCOOH was varied and was
therefore adopted for the estimation of the perturbation. The
MATLAB routine “cftool”was used to identify the two following
equations which give the relation betweenΔmeqCOOH andΔΦ2
in both positive (eq 34) and negative (eq 35) cases:

Δ = − ΔΦ + ΔΦ + ΔΦ

− ΔΦ −

e e e

e

meq 6.39 3.38 1.29

1.49 0.02
COOH

20
2
4 14

2
3 11

2
2

6
2 (34)

Table 4. Parameters Values of the ROP Process
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Δ = ΔΦ + ΔΦ

+ ΔΦ + ΔΦ − ΔΦ

+

e e

e e e

meq 1.427 1.514

5.59 1.04 1.01

0.021

COOH
28

2
5 23

2
4

17
2
3 12

2
2 6

2

(35)

These two estimated equations were then used for estimating
the disturbance once a change in the outputs occurs, which then
was implemented in the LMPC and the NLMPC strategies. It is
assumed that, only after 15 min of its appearance, the
disturbance can be estimated for both LMPC and NLMPC
strategies. This is because, before 15 min, no impact on the
output slopes could be seen. Thus, during the first 15min, u1 and
u2 were fixed at their nominal values. Then, from t = 15 min, the
NLMPC optimization (eq 31) and the LMPC based on the
identified linear model are performed using the estimated
perturbations.
Identification of the Reduced Model Parameters. In

order to identify the parameters of the linear model (eq 23), the
nonlinear process model represented by (eqs 1−11) was
simulated using the nominal feed values over 20τ. Then,
multiple stepwise changes were realized in the two manipulated
variables and the acidic impurity level, around the nominal
values to better capture the behavior of the two outputs.
The generated input−output data were used to estimate the

two state matrices AM and BM of the linear model. This was done
by optimizing the error between the outputs obtained from the

nonlinear and linear models, using the routine “fminunc” of
MATLAB. The obtained AM and BM are as follows:
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Ç
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ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

=
−
−

= −

A

B

0.9556 0 0.0012
0 0.9640 0.0139
0 0 1

0.0004 0.0012
0.0032 0.0035

0 0

M

M

(36)

Comparison between the PI, the LMPC, and the
NLMPC. Various levels of positive and negative perturbations
were supposed to occur in the inlet flows.17 We added positive
perturbations in the range 1−10 mmol kg−1 together with
different negative perturbation levels (−1 to −5 mmol kg−1) to
the nominal value which is equal to 5 mmol kg−1. The responses
of the PI controller, the NLMPC, and the LMPC strategy to
these perturbations were studied.
The PI tuning parameters were determined following the

Cohen−Coon tuning method that was found to give a better
performance compared to other methods, like Tyreus−Luyben
and Ziegler−Nichols.8

Response to Positive Disturbances.Various levels of positive
perturbations are supposed to take place in the input flows.
Figure 4 shows a comparison of the monomer conversion

Figure 4. Time evolution of the X2 for different levels of positive disturbances.

Figure 5. Time evolution of the pressure drops ΔΦ2 for different levels of positive disturbances.
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results, X2, provided by the modified PI, the LMPC, and the
NLMPC. From these simulations, both the LMPC andNLMPC
strategies appear to perform better than the PI controller. They
are able to reject disturbances better and reach the nominal state
faster, even without a direct measurement of the disturbances.
Both strategies LMPC and NLMPC manage to reach the set-
point X2set at the same time. The output X2LMPC

obtained by the
LMPC strategy has a slightly lower peak than the one produced
by the NLMPC strategy X2NLMPC

.
Regarding the results of ΔΦ2 obtained by the PI controller,

the NLMPC and the LMPC are compared in Figure 5 for the
same positive impurity levels. This figure demonstrates that the
higher the disturbance, the bigger the pressure drop impact,
ΔΦ2, as well as the more time it takes to reach the nominal state.
The LMPC strategy performsmuch better than the PI controller
and the NLMPC strategy in this case, as it converges faster than
they do with a lower deviation.
Response to Negative Disturbances. The response of the PI

controller, the NLMPC, and the LMPC to a variety of negative
perturbation levels was also considered. In this case, Figure 6
shows that the three proposed strategies have an almost similar
behavior in terms of X2 monomer conversion. All strategies can
reject the perturbation within a reasonably short time.

The results of ΔΦ2 obtained by the three strategies for the
same negative impurity levels are compared in Figure 7. The
drift of the modified PI controller is clearly larger than that of the
NLMPC and LMPC strategies. The LMPC strategy again gives
better behavior than the PI controller and the NLMPC, with a
lower peak than the other two strategies.
Another advantage of using the LMPC is that the time to

execute is low compared to the NLMPC strategy [LMPC
(between 27 and 32 s), NLMPC (between 760 and 2730 s)]. It
appears that the NLMPC takes more time to execute than the
LMPC and the PI controller (between 138 and 140 s); this is
due to the optimization routine which is carried out at each
sampling time. Thus, there is the need to apply the LMPC to
reduce the simulation time, and it is therefore possible to
perform it online.

■ CONCLUSIONS
In this work, three control strategies were employed to control a
highly nonlinear PLA process. This reaction is sensitive to
impurities (mostly present in the monomer feed), so it is
necessary to develop a control strategy for recovering the
nominal operating conditions when any disturbances occur. The
objectives of the control are linked to the productivity of the
process (monomer conversion) and to the quality of the product

Figure 6. Time evolution of X2 for different levels of negative disturbances.

Figure 7. Time evolution of ΔΦ2 for different levels of negative disturbances.
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(average molecular weight of the polymer). These outputs may
be controlled through the manipulation of both catalyst and
cocatalyst feed rates. Since the inputs/outputs are highly
coupled, and the system is subjected to different constraints, a
more advanced controller like NLMPC and LMPC is required.
These two strategies were compared to a PI controller which was
modified to deal with the coupling.8 The LMPC was found to
recover nominal steady states earlier than both the PI controller
and the NLMPC. The use of a reduced model instead of the
complex model, which is the case for the NLMPC, allows a
reduction in the simulation time and thus the possibility of the
implementation of the LMPC on-line. In this process, a
disturbance estimate is needed to improve the LMPC behavior.
Since many types of disturbances can occur, it is difficult to
measure them. Thus, a simple estimated equation was used to
approximate these disturbances. Even if this estimated
disturbance is not exactly the same as the real one, the LMPC
manages to restore the nominal conditions.
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