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Abstract

Learning is widely modeled in psychology, neuroscience, and computer science by predic-

tion error-guided reinforcement learning (RL) algorithms. While standard RL assumes linear

reward functions, reward-related neural activity is a saturating, nonlinear function of reward;

however, the computational and behavioral implications of nonlinear RL are unknown. Here,

we show that nonlinear RL incorporating the canonical divisive normalization computation

introduces an intrinsic and tunable asymmetry in prediction error coding. At the behavioral

level, this asymmetry explains empirical variability in risk preferences typically attributed to

asymmetric learning rates. At the neural level, diversity in asymmetries provides a computa-

tional mechanism for recently proposed theories of distributional RL, allowing the brain to

learn the full probability distribution of future rewards. This behavioral and computational

flexibility argues for an incorporation of biologically valid value functions in computational

models of learning and decision-making.

Author summary

Reinforcement learning models are widely used to characterize reward-driven learning in bio-

logical and computational agents. Standard reinforcement learning models use linear value

functions, despite strong empirical evidence that biological value representations are nonlinear

functions of external rewards. Here, we examine the properties of a biologically-based nonlin-

ear reinforcement learning algorithm employing the canonical divisive normalization function,

a neural computation commonly found in sensory, cognitive, and reward coding. We show

that this normalized reinforcement learning algorithm implements a simple but powerful con-

trol of how reward learning reflects relative gains and losses. This property explains diverse

behavioral and neural phenomena, and suggests the importance of using biologically valid

value functions in computational models of learning and decision-making.

Introduction

Reinforcement learning (RL) provides a theoretical framework for how an agent learns about

its environment and adopts actions to maximize its cumulative long-term reward [1]. In
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standard RL models, the values of stimuli or actions are learned via a reward prediction error

(RPE), defined as the difference between actual and expected outcomes. Using RPE signals

over repeated samples from the environment, learners progressively update their estimates to

obtain a measure of the average value (e.g. of an action, a state, or a state-action pair). For

example, in its simplest form an RL model updates its value estimate Vt+1 as:

Vtþ1 ¼ Vt þ ZðRt � VtÞ ð1Þ

where the incremental update signal comprises a learning rate η and an RPE term. The canoni-

cal RPE term is the difference between actual reward Rt and expected reward Vt, which pro-

duces value signals that are a linear function of reward. RL algorithms accurately capture

various types of learning in animal and human subjects [2,3], and have been employed in

increasingly complex ways to produce powerful artificial intelligence agents [4–6]. Further-

more, the activity of midbrain dopamine neurons closely matches theoretical RPE signals [7–

9], suggesting that RL serves as a computational model of neurobiological learning.

Despite their diversity and ubiquity, almost all RL approaches utilize a linear reward func-

tion at odds with evidence for nonlinear reward coding in the brain. A nonlinear relationship

between internal subjective value and external objective reward is a longstanding assumption

in psychology and economics. For example, risk preferences in choice under uncertainty are

consistent with choosers employing a utility function that is a nonlinear function of reward

[10,11]. This behavioral nonlinearity is reflected in underlying neural responses, with activity

in reward-related brain areas correlating with subjective values rather than objective reward

amounts [12–14]. Notably, in contrast to standard RL assumptions, the activity of dopamine

neurons also exhibits a nonlinear response consistent with a subtraction between actual and

expected reward terms, both of which are sublinear functions of reward amount [15,16].

Together, these results suggest that neurobiological RL mechanisms operate on nonlinear

reward representations, but the behavioral and computational implications of nonlinear RL

are not well understood.

Here, we develop and characterize an RL algorithm that learns a nonlinear reward function

implemented via the divisive normalization computation [17]. Originally proposed to describe

nonlinear responses in early visual cortex, normalization has been observed in multiple brain

regions, sensory modalities, and species, suggesting that normalization is a canonical neural

computation [18]. In addition to sensory processing, normalization explains neural responses

in higher-order cognitive processes including attention, multisensory integration, and deci-

sion-making [19–22]. In particular, its role in reward coding makes it an attractive candidate

mechanism for nonlinear reward representations in reinforcement learning.

Results

Normalized reinforcement learning model

In contrast to standard RL, we propose a normalized RL algorithm (NRL) that learns a value

function nonlinearly related to objective reward. Specifically, NRL (Fig 1A) assumes that

objective rewards R are represented by a normalized subjective value function U:

U Rð Þ ¼
Rn

sn þ Rn
ð2Þ

and that learning employs the corresponding normalized prediction error term:

Vtþ1 ¼ Vt þ Z UðRtÞ � Vtð Þ ¼ Vt þ Zð
Rn

t

sn þ Rn
t

� VtÞ ð3Þ
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where the exponent and semisaturation parameters n and σ govern the precise form of the

nonlinear transformation (see below). Normalization produces a value function that is a satu-

rating function of reward: at small reward magnitudes (R<< σ) value grows with reward,

while at large reward magnitudes (R>> σ) value approaches an asymptote. Consistent with

this intuition, in simulation NRL algorithms learn values that are a saturating nonlinear func-

tion of reward (Fig 1B).

Unlike standard nonlinear utility functions, normalized value functions can exhibit an

inflection point in reward responses that introduces an intrinsic, magnitude-dependent asym-

metry in RPEs. The direction and extent of this asymmetry depends on the specific parameter-

ization of the normalized value function. The exponent n in normalization models governs

amplification of inputs, and is generally considered a fixed property of the model [17,18]. For

Fig 1. Normalized reinforcement learning model. (a) Comparison of standard reinforcement learning (RL) and normalized reinforcement learning (NRL)

models. RL and NRL differ in how external rewards are transformed by the reward coding function f(Rt) prior to learning internal value estimates. Standard RL

uses a linear reward function, while NRL uses a divisively normalized representation. (b) Learned value functions under RL and NRL. Left, dynamic value

estimates during learning. Right, steady state value estimates. Simulations were performed for each of seven rewards, with additive zero-mean Gaussian noise

(learning rate η = 0.1). In contrast to RL, NRL algorithms learn values that are a nonlinear function of external rewards (example NRL simulation parameters: σ
= 50, n = 2). (c) Convexity and concavity in NRL value functions. Top, NRL value functions with different exponents (fixed σ = 50 A.U.). Bottom, second

derivative of value functions. Dots show inflection points between convex and concave value regimes. (d) Parametric control of NRL value curvature. NRL

value function (top) and second derivative (bottom) for different σ values (fixed n = 2).

https://doi.org/10.1371/journal.pcbi.1010350.g001
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n�1, normalized value functions are always concave; however, for n>1, normalized value

functions are convex at lower rewards and concave at higher rewards (Fig 1C); convex (con-

cave) regimes are evident as positive (negative) regions of the normalized value second deriva-

tive. In the convex regime, increases in R generate larger changes in U(R) than equivalent

decreases in R; this predicts asymmetric RPE responses biased towards outcomes better than

expected. In contrast, in the concave regime, decreases in R generate larger U(R) changes and

RPEs are biased towards outcomes worse than expected. Notably, both theoretical and empiri-

cal considerations support normalization exponents consistent with inflection points: input

squaring (n = 2) was used to model threshold linear responses in spiking activity in the original

normalization equation [17], and fits of n to neural data typically yield values between 1.0 and

3.5 (average value of 2) [18,23]. Thus, asymmetric RPE responses are likely to arise if reward

learning relies on normalized value coding.

Critically, the type of NRL RPE asymmetry is parametrically tunable and depends on the

relationship between rewards and the semisaturation term σ. Value function convexity and

resulting positive-biased RPE asymmetry arise for rewards less than σ, while value concavity

and negative-biased RPE asymmetry arise for rewards greater than σ. When σ is varied, the

reward amounts generating value concavity and convexity shift accordingly (Fig 1D; see S1

Appendix). As a result, asymmetric prediction errors around a given reward magnitude can be

either negatively or positively biased, depending on the magnitude of the semisaturation term

(Fig 2). Thus, the degree and direction of RPE asymmetry is parametrically controlled in the

NRL algorithm; we next examine how variability in this asymmetry can generate variability in

risk preferences (across individuals) and in reward learning (across information processing

channels).

Variability in risk preference

RPE asymmetry predicts that reinforcement learners will differentially weight outcomes that

are better or worse than expected, consistent with behavior in multiple empirical studies [24–

27]. However, previous studies–assuming linear reward coding—attributed this asymmetry to

different learning rates for positive versus negative RPEs. For example, variable risk prefer-

ences in choice under uncertainty can be captured by standard RL models with valence-depen-

dent learning rates [28]:

Vtþ1 ¼
Vt þ Z

þðRt � VtÞ if ðRt � VtÞ > 0

Vt þ Z
� ðRt � VtÞ if ðRt � VtÞ < 0

ð4Þ

(

For choices between a certain option and an uncertain option with the same mean out-

come, these different learning rates implement a risk-sensitive RL process. If η−>η+, the

model will learn an uncertain option value lower than its mean nominal outcome and exhibit

risk-aversion; in contrast, if η−<η+, the model will overestimate uncertain options and exhibit

risk-seeking behavior. RL models with differential learning rates have been increasingly influ-

ential and examined in the context of their adaptive properties [29,30], role in cognitive biases

[27,31], and potential neurobiological substrates [24,25,32].

Here, we show that the NRL model can generate variable risk preferences without requiring

different learning rates. We simulated NRL behavior in a dynamic learning and choice task, in

which the value of certain and risky options had to be learned via outcomes [26]. Given the

relationship between σ and RPE asymmetry, the NRL model can generate either risk averse or

risk seeking behavior (Fig 3A, blue lines; example risk averse σ = 20, example risk seeking σ =

60). Across a population of simulated subjects (N = 50), NRL agents generated a range of

behavioral risk aversion levels that are strongly correlated with σ (r = -0.889; p = 7.08x10-18).
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However, if a linear reward function is wrongly assumed, RL models with differential learning

rates (Eq 4) can accurately fit NRL-generated behavior (Fig 3A, black lines); furthermore,

these data will appear to support differential learning rates linked to risk preference (Fig 3A,

right). Intuitively, these apparent learning rates arise because fitting with the standard RL

model (Eq 4) and two valence-dependent learning rates approximates bipartite linear regres-

sion on the nonlinear value function. In other words, the different curvature of the NRL value

function for negative and positive RPEs (as seen in examples in Fig 2A) will be captured

(incorrectly) as differential linear modulation by negative and positive learning rates. As a

result, NRL-generated data will demonstrate a consistent relationship between apparent learn-

ing rate asymmetry and behavioral risk aversion (Fig 3B). However, this relationship is driven

by the strong relationship between risk preference and the generating NRL model σ (Fig 3C).

Fig 2. Parametric control of prediction error asymmetry. (a) Examples of variable reward prediction error (RPE) asymmetry. Each panel shows

NRL responses for reward inputs (R = 50 A.U.) with uniformly distributed noise. Lines show piecewise linear regression fits for negative (red) and

positive (green) reward errors. (b) The NRL semisaturation term governs the degree and direction of RPE asymmetry. NRL RPE asymmetry is biased

towards negative RPEs at low σ and postive RPEs at high σ.

https://doi.org/10.1371/journal.pcbi.1010350.g002
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Fig 3. NRL RPE asymmetry governs the degree of risk preference in reward learning. (a) Examples of risk averse and risk seeking

NRL agent behavior. Left, behavior in a task involving choices between a certain (100% chance of 20 A.U.) and a risky (50% chance

of 0 or 40 A.U.) option. Blue lines, behavior of the generative NRL agent. Black lines, behavior of best fitting linear RL model with

asymmetric learning rates. Right, apparent learning rates for negative and positive RPEs in linear RL model. Example risk averse σ =

20 (top); example risk seeking σ = 60 (bottom). (b) Apparent relationship between risk preference and asymmetric learning rates
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Rather than the specific relationship between NRL parameterization and risk behavior, we

emphasize that these results highlight the general finding that variability in risk aversion and

implied learning rates can be generated by changes in the nonlinear NRL value function.

A computational mechanism for distributional RL

Asymmetric NRL prediction errors also provide a computational mechanism for recent theo-

ries of distributional reinforcement learning. In contrast to standard RL approaches, where

models learn a single scalar quantity representing the mean reward, distributional RL models

learn about the full distribution of possible rewards [33,34]. The critical difference in distribu-

tional approaches is a diversity of RPE channels, with differing degrees of optimism about out-

comes, which learn varying predictions about future reward. While most theoretical work

relies on learning rate differences to produce RPE asymmetries, a recent report shows that

dopamine neurons themselves exhibit sufficient characteristics to support distributional RL

[35]: (1) dopamine neurons show a diversity of reversal points (reward magnitude where pre-

diction errors switch from negative to positive), (2) dopamine neurons differ in their relative

weighting of positive and negative RPEs, (3) this asymmetry in RPE weighting correlates with

reversal point across neurons, and (4) the diversity in reversal points and asymmetries support

a decoding of reward distributions. Notably, these findings show that distributional learning

arises from asymmetries in RPE coding rather than in downstream learning rates, but do not

address how such asymmetry might arise.

Here, we show that—given parametric diversity in individual dopamine neurons—NRL pro-

vides a computational mechanism for the neurophysiological characteristics supporting distribu-

tional RL. In contrast to standard RL, distributional RL posits that different RPE channels learn

different value predictions in the identical reward environment. In a variable outcome environ-

ment [15,16], this predicts that individual dopamine neurons will exhibit different reversal points.

Recent work shows that empirical dopamine responses exhibit this hypothesized variability in

reversal points, driven by asymmetric scaling of negative and positive RPE responses [35]. Given

that such asymmetric RPE responses are intrinsic to NRL, we examined the relationship between

different NRL agents with varying σ parameters and their reversal points in a stochastic outcome

environment replicating the previously reported experiment [15,16]. Specifically, we simulated

NRL responses to single rewards drawn from a distribution of seven different reward magnitudes

(0.1, 0.3, 1.2, 2.5, 5, 10, or 20 A.U.); each possible reward outcome was drawn with an equal proba-

bility, and we examined steady state NRL RPE responses across outcomes. We find that NRL

agents simulated in such a stochastic reward environment exhibit a diversity of reversal points

(examples, Fig 4A) directly related to the individual NRL channel σ parameter (Fig 4B).

Moreover, the intrinsic RPE asymmetry of NRL model units replicates key aspects of

recorded dopamine neuron activity. First, NRL model units display a diversity of RPE biases,

ranging from pessimistic (stronger negative RPE responses) to optimistic (stronger positive

RPE responses) (Fig 4C). Second, the degree of RPE asymmetry is directly related to average

expected value learned in the simulated environment (as quantified by reversal points; Fig

4D); this relationship mirrors that reported for recorded dopamine neurons. Finally, as a test

of the ability of NRL to support distributional decoding, we examined whether a population of

diverse NRL agents carries the necessary information to decode the distribution of previously

experienced rewards (Fig 4E). Specifically, as done in recent work on empirical dopaminergic

under assumption of linear reward coding. Behavioral risk aversion (percent choice of certain option) and learning rate asymmetry

(η— η +)/ (η -+ η +) defined as in previous work [26]. (c) Risk preference depends on RPE asymmetry in generative NRL model.

Degree of behavioral risk aversion controlled by NRL semisaturation parameter.

https://doi.org/10.1371/journal.pcbi.1010350.g003
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responses, we assumed that NRL reversal points and response asymmetries—learned in response

to different reward environments—define a set of expectiles, and we transformed these expectiles

into a probability density [35]. Following reward learning in a small population of NRL agents

(n = 40, matched to empirical data), the probabilistic density of experienced rewards in different

environments—including symmetric, asymmetric, or multimodal reward distributions–can be

decoded from NRL responses (see Materials and Methods and S1 Appendix). Thus, NRL agents

replicate the key empirical features seen in dopamine neurons: a diversity of reversal points, vari-

able RPE asymmetries, a strong reversal point-asymmetry relationship, and an encoding of the

statistical distribution of experienced rewards. Together, these findings suggest that the NRL algo-

rithm provides a robust computational mechanism for distributional RL.

Alternative parameterizations and biological plausibility

While for simplicity we parameterize NRL heterogeneity above via the semisaturation term σ,

equivalent variability in RPE asymmetry can be generated by differential weighting of reward

inputs:

Vtþ1 ¼ Vt þ Zð
ðwRtÞ

n

sn þ ðwRtÞ
n � VtÞ ð5Þ

Fig 4. NRL RPE asymmetry provides a computational basis for distributional reinforcement learning. (a) Variable NRL RPE response asymmetries in a

probabilistic reward environment. Examples show NRL agents with stronger negative (blue) and positive (red) RPE asymmetry. Note that these two agents

exhibit different reversal points in the same reward environment (rewards = {0.1, 0.3, 1.2, 2.5, 5, 10, 20 μl}, as in previous work [35]). Triangles denote the true

average reward (black) and estimated average reward learned by pessimistic (blue) and optimistic (red) NRL agents. (b) Learned reversal points vary

systematically with NRL parameterization. RPE responses and reversal points quantified for varying σ parameters. (c) Reversal points depend on NRL RPE

asymmetry. Plots show NRL responses normalized by negative RPE slope and aligned to individual reversal points. As in empirical dopamine data, low (high)

reversal points arise from stronger negative (positive) RPE asymmetry. (d) NRL asymmetry and learning match empirical dopamine data. Blue, dopamine

neurons recorded in stochastic reward environment [35]; black, heterogeneous NRL agents in identical reward environment. Asymmetry is defined as in

previous work as a function of positive (α+) and negative (α-) RPE coding slopes. (e) A population of NRL agents learns the distribution of experienced

rewards. 40 NRL agents were simulated in four different reward environments: symmetric, right-skewed, left-skewed, and multimodal. Each panel plots the

ground truth (gray) and decoded (blue) probability densities, with samples smoothed by kernel density estimation. Distribution decoding was performed via an

imputation strategy, treating the NRL reversal points and response asymmetries as expectiles.

https://doi.org/10.1371/journal.pcbi.1010350.g004
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Because an increase in input weighting is equivalent to a decrease in effective σ (S1 Appen-

dix), the w term also controls RPE asymmetry: positive (negative) RPE biases occur for the

same reward R given sufficiently small (large) w weights. In this alternative formulation, neural

population diversity in RPE asymmetry arises simply from a variable weighting of reward

inputs. Such variable input weighting is consistent with evidence for heterogeneity in both syn-

aptic physiology and inputs to dopaminergic neurons [36]. Furthermore, differences in input

weighting offers a more biologically plausible source of heterogeneity than the semisaturation

term, which is typically considered a shared network property (i.e. baseline activity in a nor-

malization pool) in circuit models of normalization [17,18]. For example, diversity in RPE

asymmetry can be simply implemented by heterogeneity in the strength or number of reward-

coding inputs to midbrain dopaminergic neurons.

Importantly, this alternative formulation also preserves the ability of the NRL model to cap-

ture adaptation, analogous to a reference point in history-dependent models of context-depen-

dent decision-making. In sensory neuroscience, adaptation in neural responses is typically

implemented in normalization approaches via a history-dependent σ term that accounts for

recent past stimuli. For example, normalization models with a dynamic σ term that averages

past contrast levels explains adapting responses in visual cortical neurons [17] and has been

shown to improve efficient coding via redundancy reduction [37]. Furthermore, the adapta-

tion of human valuation behavior is captured by a normalization mechanism with an equiva-

lent σ averaging past rewards [38]. Thus, by separating how the NRL algorithm models RPE

asymmetry and reward history, this alternative parameterization can be used to examine neu-

ral and behavioral adaptation effects during reward learning.

Discussion

Standard RL algorithms assume linear reward representations, but the brain represents

objective rewards in a subjectively nonlinear manner; here we show that a nonlinear RL

algorithm—employing the canonical divisive normalization computation—captures

diverse neural and behavioral features of reward learning and decision-making. While the

use of nonlinear reward transformations in RL is not novel, normalization generates both

convex and concave regimes and, as a result, asymmetries in RPE responses for negative

and positive prediction errors. In addition to matching empirical observations of saturat-

ing, nonlinear reward representations, the NRL model explain aspects of observed behav-

ioral and neural data including variable risk preferences and asymmetric RPE responses

thought to support distributional RL.

In its fullest form (Eq 5), the NRL algorithm is governed by three parameters with specific

neurobiological interpretations and different functional implications. The exponent n governs

input amplification, and is generally viewed as a fixed property of normalization computa-

tions. The input weighting term w implements parametric diversity in RPE asymmetries,

which underlies the behavioral and neural diversity generated by the NRL model. Though a

novel feature of the model, input weighting diversity may be simply realized as heterogeneity

in synaptic strength or number of afferents. Finally, as in standard models of divisive normali-

zation, a dynamic semisaturation term σ can implement reference-dependent valuation by

adjusting the normalized value response to recent rewards. The precise mechanism by which σ
adapts is not known, but possibilities include changes in pooled inputs contributing to nor-

malization [17], long timescale nonlinear dynamics in divisive gain control [39, 40], and RL-

like computations learning average reward. Regardless of mechanism, an adaptive σ allows the

NRL model to flexibly encode value in changing reward environments, adjusting reward cod-

ing relative to a reference point implemented as the σ parameter.
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Our results show that intrinsic asymmetries in reward learning can arise from subtleties in

RPE coding rather than in downstream learning rates. However, these results do not preclude

coexisting asymmetries in both systems. Both variability in dopaminergic genes and pharma-

cologic dopamine modulation affect reward learning in a valence-dependent manner, consis-

tent with differential responses in striatal D1 and D2 receptors to positive versus negative

RPEs [24,25]. Such downstream differences would drive differential weighting of prediction

errors carried by dopaminergic inputs. On the other hand, increasing evidence shows valence-

dependent differences in dopamine neuron responses [35,41], arguing for asymmetries in RPE

coding itself. We suggest that NRL provides a computational mechanism to explain such

asymmetries at the level of dopamine RPE representation, but valence-dependent biases in

both prediction error coding and downstream processing likely play a role in biological

learning.

While distributional RL has been proposed and implemented in computational algorithms,

only recently has evidence arisen that dopamine neurons exhibit the necessary reward asym-

metries [35]. Specifically, individual dopamine neurons differentially weight positive versus

negative RPEs, and this relative valence-dependent weighting varies across neurons. However,

how valence-dependent RPE coding arises is unknown. We show here that an RL system with

a biologically-inspired normalized value function reproduces heterogeneous RPE asymme-

tries. In the NRL algorithm, asymmetry arises from the intrinsic curvature changes in the nor-

malized reward function, and structured diversity in this asymmetry arises from parametric

differences in normalized reward coding. Importantly, both asymmetry and structured diver-

sity have plausible biological sources: normalization is produced by a number of mechanisms

including feedforward inhibition, feedback inhibition, and synaptic depression [18], and

asymmetry diversity requires only heterogeneity in input weighting (e.g. synaptic strength).

Thus, RPE asymmetry in NRL arises solely from the reward processing circuit, and does not

require differential weighting of separate sources of negative and positive RPE information.

Variability in RPE asymmetries is crucial to theories of distributional learning based on

expectile regression, and empirical dopamine RPE asymmetries carry sufficient information to

decode distributional information about experienced rewards via expectile-based decoding

methods. Our results show that a population of NRL agents can learn and encode sufficient

information to allow decoding of experienced reward distributions, at a level comparable to

decoding from empirical responses [35]. However, while this shows that distributional infor-

mation exists in both empirical and NRL responses, it is unclear whether expectile-based

decoding is biologically plausible or employed by the brain. Alternative distributional codes

have been suggested to be more computationally straightforward [42]; interestingly, these

codes rely on variable nonlinear reward functions closely related to NRL responses, suggesting

that NRL function in distributional learning may extend beyond expectile-based approaches.

Further work is needed to verify distributional reward coding in downstream brain areas,

identify the biological decoding algorithm, and test the contribution of NRL asymmetries to

distributional learning.

Beyond capturing variability in risk preference and RPE asymmetry, the NRL model makes

a number of further predictions about reward-guided behavior and neural activity. At the

behavioral level, in addition to the across-subject variability shown here, the sigmoidal shape

of the NRL value function predicts within-subject changes in risk preference. Under normal-

ized value coding, the local curvature of the reward function depends on the relationship

between rewards and the semisaturation term σ. Specifically, NRL predicts that individual risk

preference should be magnitude dependent, with increasing risk aversion at larger outcomes;

such outcome-dependent changes are consistent with some behavioral evidence [43,44], but

remains to be tested in strict reinforcement learning scenarios. At the neural level, NRL

PLOS COMPUTATIONAL BIOLOGY Normalized reinforcement learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010350 July 21, 2022 10 / 15

https://doi.org/10.1371/journal.pcbi.1010350


predicts an adaptive flexibility in individual (and population) dopamine neuron asymmetries.

Unlike in other theories [35], RPE bias in a given NRL agent depends on the reward magni-

tude (relative to σ). Thus, while a population of NRL agents should retain their relative ranking

of asymmetries in different environments, absolute asymmetries will change depending on the

experienced rewards–an effect that may confer an advantageous adaptability. More broadly,

when RPE asymmetry diversity is parameterized by input weights (Eq 4), the NRL algorithm

can incorporate past reward information via a history-dependent σ term. This suggests that

NRL responses should capture contextual phenomena such as adaptive coding of reward val-

ues [45] and adaptation in risk preferences [46].

Finally, context-dependent valuation has been a recent area of interest in psychology, eco-

nomics, and neuroscience, and it is important to consider how the NRL model relates to exist-

ing models of context-dependent valuation and choice. In its most detailed implementation

(Eq 5), NRL provides a parametric control over both contextual adaptation (via σ) and RPE

asymmetry (via w), implementing a reference-dependent S-shaped value function similar to

several previously proposed models. Most broadly, prospect theory and related models pro-

pose an asymmetric value function convex in the region of losses and concave in the region of

gains, with gains and losses determined relative to a reference point [47,48]. More recently,

similar value functions arise in models derived from efficient coding principles in response to

processing constraints [49] or designed to capture adaptation effects in choice behavior [50].

While the NRL value function also exhibits an S-shaped reference-dependence, it extends pre-

vious work in a number of ways. First, it applies nonlinear valuation to reinforcement learning,

where linear reward functions are widely and conventionally employed; in contrast to prior

behavioral theories, the NRL framework makes direct and testable predictions about both

behavior and dopaminergic neural activity. Second, the normalized value function has a clear

biological grounding: it defined from neurophysiological reward responses [15, 16, 21, 51],

based on a canonical neural computation [18], and implementable in simple neural circuits

[39, 40, 52]. Third, the NRL algorithm incorporates a novel parametric control of the degree

and direction of asymmetric responding to negative and positive RPEs; diversity in NRL RPE

asymmetry provides a unitary explanation for diversity in both behavior and neural responses.

Finally, the combination of adaptation and distributional coding suggests the possibility of

rich contextual reward learning, offering a single biological mechanism for diverse phenomena

currently explained by different reference point centering [53], range adaptation [54], and

range frequency based [55] models.

In summary, we present a model of reinforcement learning that incorporates a biologically-

relevant nonlinear reward function implemented by divisive normalization. Normalized value

coding introduces a parametrically tunable valence-based bias in prediction errors, and struc-

tured diversity in this bias captures both variable risk preferences across individuals and vari-

able prediction error weighting across neurons. Together, these findings reconcile empirical

and theoretical aspects of reinforcement learning, support the robustness of normalization-

based value coding, and argue for the incorporation of biologically valid value representations

into computational models of reward learning and choice behavior.

Materials and methods

NRL model

The NRL model applies a divisive normalization transform to experienced rewards (Eq 2),

parameterized by an exponent n and semisaturation term σ. Analytic analysis of NRL curva-

ture is provided in the Supplementary Information. For all simulations (other than Fig 1c), we

fixed n = 2. For simplicity, we implemented single state RL models that update value estimates
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with the product of the RPE and learning rate η (Eq 3); however, the NRL framework can be

applied in more complicated models that incorporate features like action policy updating and

temporal difference learning [1]. To examine RPE asymmetry, we quantified the response of

different NRL agents (parameterized by varying σ; η = 0.1) to a fixed reward signal (R = 50 A.

U.) corrupted with uniform noise (-40 to 40 A.U.). The degree of RPE asymmetry was quanti-

fied by piecewise linear regression analyses of negative and positive reward errors. Changing

the parameters of the reward noise did not affect the qualitative finding of variable RPE asym-

metries (S1 Appendix). All simulations and analyses were performed in MATLAB (R2015b).

Risk-dependent decision-making

To examine risk preferences in the NRL model, we simulated agent behavior in a learning and

choice task previously used to examine human subject behavior [26]. NRL agents were gener-

ated with random σ parameters in the range [10,80]. In this task, each NRL agent chose

between a certain option (100% chance of 20 A.U. reward) and a risky option (50% chance of

0 or 40 A.U. reward); initial values for both options were set to 0. In a given trial, choice was

determined via a softmax function of estimated option values; to achieve a comparable level of

choice stochasticity across different agents, the softmax temperature was inversely scaled with

the σ parameter. When chosen, the value of an option was updated based on received outcome

according to Eq 3 (η = 0.1). For each NRL agent, we simulated behavior for 1000 trials. To

examine how NRL agent behavior appears if linear reward functions are assumed, we fit NRL-

generated behavior with an RL model with valence-dependent learning rates (η + and η -; Eq 4)

and quantified the apparent learning rate asymmetry (η — η +)/ (η -+ η +).

Distributional RL

To examine whether information about experienced reward distributions were encoded in

learned NRL responses, we quantified NRL agent behavior in different reward environments.

Rewards were drawn from symmetric, left-skewed, and right-skewed distributions; in addi-

tion, we examined an environment with seven equiprobable rewards (0.1, 0.3, 1.2, 2.5, 5, 10, or

20 A.U.), replicating the conditions under which empirical dopamine neurons exhibit RPE

asymmetries [15,16,35]. To facilitate comparison to empirical decoding performance, we

examined 40 NRL agents with a diversity of semisaturation parameters (0.5 to 48 A.U.). For

each environment, analytical steady state NRL functions and reversal points were calculated

for each NRL agent (S1 Appendix), but similar results were obtained when NRL agents learned

via sampling. Following identification of the reversal point, we estimated the RPE response

asymmetry of each agent via separate linear regressions for negative and positive RPE

responses around the reversal point.

Given a reversal point R�n and RPE asymmetry τn for each NRL agent denoted by index n
(see S1 Appendix), distribution decoding was performed as previously described for empirical

dopamine data [35]. Briefly, these data were interpreted as expectiles, where the τn-th expectile

had the value R�n. Decoding consisted of an imputation method to find a probability density

that best matched the set of expectiles. As previously described, the density was parametrized

as a set of 100 reward samples and optimization was performed to minimize a loss function

between reversal points, asymmetries, and reward sample locations; see S1 Appendix for

details.

Code availability

MATLAB code used for simulation and analysis of the NRL model are available at https://osf.

io/e6t5z/.
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