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A B S T R A C T

17β-estradiol (E2) levels in women correlate with multiple neuropsychiatric symptoms, including those that are
stress-related. Furthermore, prior work from our group has demonstrated that E2 status influences DNA
methylation (DNAm) across the genome. We developed and validated a DNAm-based predictor of E2 (one of four
naturally occurring estrogens) using a training set of 183 females and a test set of 79 females from the same
traumatized cohort. We showed that predicted E2 levels were highly correlated with measured E2 concentrations
in our testing set (r ¼ 0.75, p ¼ 1.8e-15). We further demonstrated that predicted E2 concentrations, in com-
bination with measured values, negatively correlated with current post-traumatic stress disorder (PTSD) (β ¼
�0.38, p ¼ 0.01) and major depressive disorder (MDD) diagnoses (β ¼ �0.45, p ¼ 0.02), as well as a continuous
measure of PTSD symptom severity (β ¼ �2.3, p ¼ 0.007) in females. Finally, we tested our predictor in an in-
dependent data set (n ¼ 85) also comprised of recently traumatized female subjects to determine if the predictor
would generalize to a different population than the one on which it was developed. We found that the correlation
between predicted and actual E2 concentrations in the external validation data set was also high (r ¼ 0.48, p ¼
3.0e-6). While further validation is warranted, a DNAm predictor of E2 concentrations will advance our under-
standing of hormone-epigenetic interactions. Furthermore, such a DNAm predictor may serve as an epigenetic
proxy for E2 concentrations and thus provide an important biomarker to better evaluate the contribution of E2 to
current and potentially future psychiatric symptoms in samples for which E2 is not measured.
1. Introduction

17β-estradiol (E2) concentrations in women are associated with
greater risk for various neuropsychiatric symptoms, including depression
[1] and changes in memory [2]. Although the mechanisms by which E2
influences vulnerability to psychiatric symptoms are not fully under-
stood, E2 has effects on multiple neurotransmitter systems, and brain
circuits involved in mood and memory regulation are sensitive to vari-
ation in E2 concentrations [1]. Studies generally suggest that lower
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concentrations of E2 contribute to higher symptomatology and vulner-
ability to neuropsychiatric disease, supporting a role for E2 as a neuro-
trophic, neuroprotective, and psychoprotective steroid hormone [3].
Furthermore, administration of synthetic estrogen to women with low
endogenous E2 levels, including those who are in perimenopause,
post-menopause, or postpartum, improves affective and cognitive
symptoms [4].

While E2 is synthesized and secreted by both sexes, peripheral con-
centrations are higher overall and fluctuate to a greater extent over the
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course of the menstrual cycle in reproductively-mature women [5]. This
fluctuation in E2 is implicated in the higher prevalence, severity, and
burden of affective and stressor-related disorders in women as compared
to men [3,6]. The relationship between E2 concentrations and
stress-related sequelae is a well characterized example of the importance
of E2 status on psychiatric symptoms and their underlying neurobio-
logical and molecular substrates. There is evidence that healthy, nor-
mally cycling females exposed to a psychosocial stress paradigm have
higher subjective distress during periods of low E2 as compared to high
E2 [7]. Consistent with this finding, female rats demonstrate higher fear
and anxiety-related behaviors during diestrus or metestrous (low E2
phases of their estrous cycle) [8,9], and chronic replacement of E2 in
aged, ovariectomized female rats improves anxiety- and depression-like
behavior [10]. Similarly, replacement of E2 in ovariectomized female
rhesus macaques also improves anxiety-like behavior [11]. These trans-
lational findings parallel findings in women showing that low E2 con-
centrations associate with deficits in fear extinction [12] and inhibition
of learned fear responses [13] in both healthy women and those with
post-traumatic stress disorder (PTSD). Furthermore, trauma-exposed
women experience greater severity of phobic anxiety during a phase of
their menstrual cycle characterized by lower E2 (early follicular) as
compared to higher E2 (mid luteal) concentrations and this difference is
driven by women with PTSD [14]. On a neurobiological level, stress
response neural circuitry is more active in women during the low E2,
early follicular phase as compared to the high E2, late follicular/midcycle
phase [15]. It is important to also note that change in E2 levels has also
been found to disrupt affect, although the exact mechanism by which this
occurs is unknown [16].

Overall, preclinical and clinical data indicate that E2 status impacts
vulnerability to and presentation of psychiatric symptoms in women and
highlights the importance of assessing E2 status in studies characterizing
female risk for stress- and trauma-related adverse outcomes. However,
most studies assessing psychiatric symptoms do not measure E2 con-
centrations, but an increasing number of studies have genome-wide
methylation data available. Because E2 concentrations correlate with
DNA methylation (DNAm) in women measured within the same men-
strual cycle [17], DNAm signatures may serve as a surrogate of endog-
enous E2 concentrations within a cycle and potentially across cycles. We
note there is conflicting evidence regarding the degree of intra-individual
stability of steroid hormones across menstrual cycles. For example [18],
showed that E2 and progesterone (P4) levels derived from saliva were
stable across two consecutive cycles and [19] demonstrated stability of
urinary metabolites of E2 and P4, while there was less consistency in
these salivary measures in a study by Ref. [20]. While the literature
suggests that there is a relationship between E2 levels and stress- and
trauma-related symptoms within a particular menstrual cycle and further
studies are necessary to assess the degree to which E2 levels from one
cycle can predict symptoms in another cycle, the goals of the present
study were to develop a methylation-based predictor of E2 concentra-
tions using epigenome-wide data and to assess the relationship of pre-
dicted E2 levels with the presence of current PTSD and MDD diagnoses,
and PTSD symptom severity in women. We hypothesized that a
DNAm-based prediction of low E2 status would be associated with
greater risk for current PTSD and MDD diagnosis and greater PTSD
symptom severity in traumatized women.

2. Materials and methods

2.1. DNAm predictor development in women (GTP)

We developed our DNAm-based E2 predictor using data collected as
part of the Grady Trauma Project (GTP), a civilian study of trauma
exposure in a predominately African American population from a large
urban hospital in Atlanta, GA, USA [21]. Briefly, subjects were
approached in the waiting rooms of primary care and OBGYN clinics as
well as at the hospital outpatient pharmacy. Exclusion criteria included
2

being under age 18, actively psychotic, or having intellectual disability.
Participants underwent a screening interview based on screening forms
and scales that were read aloud by a volunteer or project staff member,
due to the varying literacy of the subjects. Randomly selected subjects
were invited to further participate in a clinician-administered structured
interview to assess the presence or absence of psychiatric diagnoses on a
different day [21]. The overall project was approved by the Institutional
Review Board at Emory University and the Grady Health Systems
Research Oversight Committee. All participants signed informed consent
prior to the start of the screening interview.

In the present study, we used a continuous measure of PTSD symptom
severity obtained from the Clinician-Administered PTSD scale (CAPS)
[22] for DSM-IV in a subset of participants during an earlier recruitment
period and DSM-5 in a later recruitment period. The CAPS is a 30-item
self-report scale with good psychometric properties across clinical pop-
ulations and research settings [23]. Current PTSD diagnosis was based on
the CAPS. Presence of each of the 17 DSM-IV or 20 DSM-5 diagnostic
criteria for PTSD was determined using a frequency rating of 1 or higher
paired with an intensity score of 2 or higher. Current MDD diagnosis was
determined using the Structured Clinical Interview for DSM-IV [24].

2.1.1. Blood-based assays in GTP
Study participants provided whole blood in EDTA tubes for biological

assays, and serum collected and frozen at �80 �C until time of hormone
assay. Total E2 concentrations were assayed at Yerkes Biomarkers Core
Laboratory at Emory University using a commercially available radio-
immunoassay kit (KE2D1; Siemens Healthcare Diagnostics) as previously
described [17]. E2 concentrations were natural log transformed due to
non-normal distributions.

DNA methylation was assessed using the HumanMethylation450
BeadChip (Illumina) as described in previous work [25]. Briefly, 1 μg of
DNA underwent bisulfite treatment and the >485,000 probes on the
array were interrogated for methylation status. Beta values were gener-
ated with BeadStudio and set to missing (no call) if detection p-values
exceeded 0.001. CpGassoc [26] was used to exclude samples with probe
detection call rates <95% and those with an average intensity value of
either <50% of the experiment-wide sample mean or <2,000 arbitrary
units. In addition, CpG sites with missing data for >10% of samples and
probes that cross-hybridize between autosomes and sex chromosomes
were removed [27]. Beta Mixture Quantile dilation was utilized to
normalize each dataset [28]. The method described by Houseman and
colleagues was used to estimate the proportion of granulocytes and
lymphocytes in our whole blood DNA samples [29,30].

After quality control steps, we limited probes to transcripts expressed
in the blood to correspond with our previous analysis assessing the
relationship between E2 concentrations and epigenetic data [17], leaving
87,388 probes corresponding to 15,877 transcripts. To maintain our
predictor’s compatibility with the Infinium MethylationEPIC BeadChip
(Illumina), we further limited the number of probes to those that are
overlapping between both arrays (n ¼ 81,637). Additionally, due to
variability of correlation of probes between the two chips, we chose to
restrict the analysis to a subset of CpGs that correlated at r > 0.2 [31] in
order to have a sufficient number of starting probes that were at least
weakly correlated on both chips (n ¼ 27,335). After excluding probes
that had any missingness for 262 female subjects with E2 data, we were
left with 23,209 probes to enter into the analysis. Finally, we randomly
divided the subjects into training (n ¼ 183, 80%) and testing (n ¼ 79,
20%) sets.

2.1.2. Predictor selection and model building
To select a parsimonious set of predictors, we entered age, cellular

proportions (CD4, CD8, CD14, CD19, CD56), and CpGs (n ¼ 23,209)
from female participants in our training set into an elastic net regression
algorithm using log-transformed E2 concentrations as the outcome. We
set the elastic net mixing parameter, alpha, to 0.5 to allow for equal
contribution of the ridge and LASSO methods [32], as this has performed



Table 1
Sociodemographic and hormonal characteristics in the Grady Trauma Project
(GTP).

Total female
GTP sample

Training Testing

Number of subjects 262 183 79
Age (years), mean (SD), range 40.3 (13.3), 18-

77
40.1 (13.4),
18-77

40.7 (13.1),
18-70

Measured E2 (pg/mL),
geometric mean, range

29.6, 2.85–546 31.9,
2.85–546

24.8,
2.85–546

Measured Childbearing E2, n
(%), 30–400 pg/mL

96 (37%) 71 (39%) 25 (32%)

Measured Pregnancy E2, n
(%), >400 pg/mL

26 (10%) 18 (10%) 8 (10%)

Measured Postmenopausal
E2, n (%), <30 pg/mL

140 (53%) 94 (51%) 46 (58%)

Current PTSD, n (%) 47 (21%), total
¼ 215

34 (23%),
total ¼ 150

13 (20%),
total ¼ 65

Current MDD, n (%) 27 (13%), total
¼ 215

17 (11%),
total ¼ 150

10 (15%),
total ¼ 65

CAPS Severity, mean (SD),
range

15.8 (14.7),
0–68.2

14.8 (14.7),
4.1–55.9

18.0 (14.7),
0–68.2
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well previously for developing DNAm-based predictors of age in adults
[33] and gestational age in neonates [34]. We then used the features
identified by the elastic net algorithm to train a random forest (RF)
model, as RFs have demonstrated good performance in high-dimensional
data in which there are manymore predictors than respondents, and they
can model non-linear relationships between variables [35]. RFs are a
recursive partitioning method in which predictors are divided into de-
cision trees through splits from a parent to child nodes using a random
subset of predictors [36]. We used 500 trees and predictors selected at
each split. While RFs can be used for feature selection, we elected to use
elastic net for this task due to the computational intensity of using RFs for
feature selection. The use of a regularized regression method for feature
selection and a tree-based algorithm for predictive model building has
demonstrated good performance in a prior study in a psychiatric sample
[37]. Analyses were performed using R with the packages glmnet and
randomForest.

2.2. External DNAm validation sample

We used data from the prospective Grady Predictive Biomarkers
Emergency Department (ED) study to externally validate our DNAm-
based E2 predictor in women (n ¼ 85). Subjects presenting to the
emergency room at Grady Memorial Hospital were recruited to partici-
pate if they had experienced a trauma within the past 72 hours and met
DSM-IV diagnostic criterion A for PTSD [38]. Exclusion criteria included
being <18, having a current episode or past history of mania, schizo-
phrenia, or other psychoses, endorsing prominent suicidal ideation
within the past month (having frequent and/or intense thoughts about
killing oneself), and experiencing a loss of consciousness for more than
five minutes as a result of the traumatic event. Individuals were also
excluded if they were currently intoxicated, not alert, oriented, or
coherent, or were in active labor, respiratory distress, or hemodynami-
cally compromised. Overall, this ED sample was more ethnically diverse
than the GTP cohort [39]. The overall project was also approved by the
Institutional Review Board at Emory University and the Grady Health
Systems Research Oversight Committee.

2.2.1. Blood-based assays in ED sample
Venous blood samples were collected from participants in the ED

following trauma exposure by medical staff using standard techniques
[40]. Within six hours of collection, EDTA tubes were centrifuged at 4 �C
and plasma was frozen at �80 �C until time of hormone assay. Total E2
concentrations were measured using a commercially available radioim-
munoassay kit (DiaMetra) with an inter-assay coefficient of variance (CV)
of 2.8% and intra-assay CV of <9%. To help determine how specific the
predictor is to E2 concentrations and not other commonly-assessed ste-
roid hormones, we assessed the correlations of the DNAm-based values to
the total measured values of three other steroid hormones, including
progesterone (P4), cortisol, and cortisone. Total progesterone, cortisol,
and cortisone concentrations were assayed using
liquid-chromatography-mass-spectrometry (LC-MS) using previously
validated protocols [41].

DNA methylation data was generated for 48 female subjects with E2
data using the HumanMethylation450 BeadChip (ED 450K), while the
same data was generated for 37 additional subjects with E2 data using
the Infinium MethylationEPIC BeadChip (ED EPIC) with the protocol
described above. Methylation data for these 85 subjects were combined.
Missing CpGs were imputed using k-nearest neighbors in the R package
impute using the average values of CpGs in the GTP training cohort as the
gold standard.

2.3. Correlation of E2 DNAm with stress-related outcomes

We determined whether the DNAm-based E2 concentrations corre-
lated with stress-related phenotypes in the GTP cohort of women using
regression analyses. We assessed the relationship between predicted E2
3

levels and stress-related outcomes, including current PTSD and MDD
diagnoses and PTSD symptom severity, collected on the same day as
blood sample collection for the methylation data. In addition to the 79
subjects from the testing set, we also generated DNAm-based E2 levels for
an additional 40 subjects with DNA methylation data but no measured
estradiol levels (total n ¼ 119). Of all subjects with predicted E2 con-
centrations, 99 had stress-related outcome measures, including current
PTSD and MDD diagnoses and CAPS severity score. We entered age and
whether the subjects had measured or predicted E2 levels as covariates.
Supplementary Figure 1 shows a CONSORT diagram illustrating the
number of GTP subjects in the different analyses.

3. Results

3.1. Predictor development sample (GTP)

3.1.1. Descriptive results for GTP females
Table 1 shows the sociodemographic and hormonal characteristics for

GTP females. Age for the total sample of 262 females ranged from 18 to
77 with a mean of 40.3 years old. The range of E2 concentrations in the
total GTP sample was 2.85–546 pg/mL with a geometric mean of 29.6
pg/mL, representing women during childbearing years, pregnancy, and
menopause. The geometric mean values for measured E2 in the training
and testing sets were 31.9 pg/mL and 24.8 pg/mL, respectively. Sup-
plementary Figure 2 shows the distributions of measured E2 in the
training (A) and testing (B) data sets, which were comparable (p¼ 0.22).
Of the 262 total women in the GTP sample, 215 had data for stress-
related outcomes, including 150 females in the training set and 65 fe-
males in the testing set. 34 (23%) and 17 (11%) subjects in the training
set met criteria for current PTSD andMDD, while 13 (20%) and 10 (15%)
in the testing set met criteria for these diagnoses, respectively (p’s >

0.05).

3.1.2. Model performance in GTP females
Elastic net regression selected 35 CpG sites (Supplementary Table 1)

and age as predictive of E2 concentrations. The sites were distributed
throughout the genome and were located in gene bodies, 50 and 3’ UTRs,
and transcriptional start sites of genes. There was no enrichment of CpGs
in islands, shores, shelves, or enhancers. 86% of the CpG sites selected by
the elastic net algorithm were CpGs associated with E2 concentrations
(FDR< 5%) in our previous epigenome-wide study (p ¼ 1.0e-10) [17].
We entered the 35 CpG sites and age selected by elastic net into a RF
algorithm to generate the predictor. The correlation between the pre-
dicted E2 concentrations generated by the RF model and the measured
concentrations was 0.98 (p < 2.2e-16) in the training data, indicating
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strong model fit (Fig. 1A). In the GTP testing data, the correlation be-
tween the measured and DNAm predicted E2 concentrations was 0.75 (p
¼ 1.8e-15; Fig. 1B), also indicating a strong fit.

3.2. External validation of DNAm E2 predictor in ED study

Table 2 shows the sociodemographic and hormonal characteristics for
the ED data. The range of measured E2 concentrations in the total sample
of 85 females was 13.3–2511.4 pg/mLwith a geometric mean of 54.2 pg/
mL (distribution shown in Supplementary Figure 2C). Age for these
subjects ranged from 18 to 63 years old with a mean of 34.8 years old. We
found a correlation of 0.48 (p ¼ 3.0e-6) between measured E2 concen-
trations and those predicted from the RF model generated from GTP data
(Fig. 3). The correlation may have been lower in this external validation
data set as compared to the GTP testing set due to differences in when the
epigenetic data was obtained and the fact that the subjects in the ED
study had recently experienced a trauma. A sensitivity analysis excluding
the subjects with high E2 and who were likely pregnant (E2 levels > 400
pg/mL) remained significant, although with a lower effect size (r ¼ 0.23,
p ¼ 0.04). We were also able to perform a sensitivity analysis for body
mass index (BMI) in this cohort, and, using a partial Pearson correlation
that corrected for BMI, noted comparable correlation between measured
and predicted E2 (r ¼ 0.49, p ¼ 2.3e-06).

Next, we assessed the correlations between model-generated values
and three other measured hormones, including progesterone, cortisone,
and cortisol to determine the specificity of the predictor. Table 2 shows
ranges and geometric means for measured progesterone, cortisone, and
cortisol in ng/mL. As shown in Table 3, the correlation between
measured E2 and measured progesterone was strong and significant,
whereas the correlations between measured E2 and the other measured
hormones were weaker (cortisone) or non-significant (cortisol). Consis-
tent with these correlations, the predicted E2 concentrations correlated
highly with measured progesterone concentrations (r ¼ 0.52, p ¼ 4.0e-
7), but not with measured cortisone (r ¼ 0.11, p ¼ 0.28) or cortisol (r ¼
�0.03, p ¼ 0.72) concentrations.

3.3. Correlation of DNAm predictions with stress-related phenotypes in
GTP women

When we examined the association between predicted E2 and stress-
related outcomes in 99 GTP females with phenotypic data (24% PTSD)
using age as a covariate, there were negative associations with all three
stress-related outcomes but they were not significant. A power calcula-
tion using a standard power level of 0.8, an alpha of 0.05, and two pre-
dictors (E2 concentration and age) indicated that the sample of subjects
Fig. 1. Correlation between predicted and measured E2 concentrations
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with predicted E2 concentrations (n¼ 99) would be insufficient to detect
effect sizes in the small range (Cohen’s f2 < 0.10) in regression analyses
[42]. Thus, we assessed the combination of both predicted E2 (n ¼ 99)
and measured E2 (n ¼ 150) concentrations in a total of 249 GTP females
with age and type of E2 (predicted or measured) as covariates. These
analyses showed significant, negative relationships between E2 values
and both current PTSD (β ¼ �0.38, p ¼ 0.01) (Fig. 2A), current MDD (β
¼ �0.45, p ¼ 0.02) (2B) and CAPS severity (β ¼ �2.3, p ¼ 0.007) (2C),
showing that the low E2 DNAm levels are associated with greater
stress-related outcomes.

4. Discussion

DNA methylation has been used for prediction of several traits,
including age [33], gestational age [34], cancer diagnosis and prognosis
[43], and smoking status [44]. To our knowledge, the current study is the
first to predict E2 concentrations using epigenome-wide methylation
data and relate these E2 predictions to stress-related phenotypes in
women. Our DNAm-based E2 predictor generated values with strong
correlations between measured E2 concentrations in both a holdout
testing set and an independent validation cohort of traumatized women.
Among the 35 CpGs that can be used to impute E2 concentrations, many
associate independently with E2 concentrations in a previous study [17].
For example, cg02187522 is located within arginine vasopressin, which
encodes a product that is cleaved into arginine vasopressin (AVP). Our
finding that higher E2 was associated with lower DNA methylation
within AVP is consistent with data showing that E2 increases AVP
expression [45]. Consistent with the correlation betweenmeasured levels
of E2 and progesterone, our model’s predicted values were highly
correlated with both E2 and progesterone. As such, our DNAm predictor
may more broadly reflect menstrual phase or more general reproductive
status in women, though this study did not have sufficient information to
evaluate that possibility.

In the current study, we found that predicted E2 levels correlated
negatively with current PTSD diagnosis and PTSD symptom severity in
women. Consistent with the present results, both human and animal
studies have generally found greater severity of psychological symptoms
[14] or fear-related behaviors [8,9,46] during assessment if a female was
in a low E2 phase of her cycle. However, one study has found that women
with PTSD in the high E2 (luteal) phase had higher levels of a particular
PTSD symptom - flashbacks [47]. Furthermore, low E2 concentrations
are associated with deficits in fear extinction [12] and inhibition of
learned fear responses in women [13]. One possible application for this
E2 DNAm predictor is to determine E2 status in publicly available data
sets for which epigenome-wide methylation and psychiatric measures
in (A) GTP training (n ¼ 183) and (B) GTP testing (n ¼ 79) data.



Fig. 2. The combination of predicted (n ¼ 99) and measured (n ¼ 150) E2 concentrations for 249 female GTP subjects were lower in those with (A) current PTSD (p ¼
0.01) and (B) current MDD (p ¼ 0.02) then those without those diagnoses after correction for covariates. There was also a negative relationship between (C) CAPS
severity and the combination of predicted and measured E2 concentrations (p ¼ 0.007) after correction for covariates.

Table 2
Sociodemographic and hormonal characteristics in Grady Predictive Biomarkers
ED Study.

Total female ED
sample

ED 450K ED EPIC

Number of subjects 85 48 37
Age (years), mean (SD),
range

34.8 (13.6), 18-
63

32.6 (14.0),
18-63

37.5 (12.7),
19-60

Measured E2 (pg/mL),
geometric mean, range

54.2,
13.3–2511.4

50.6,
13.3–2511.4

59.2,
21.2–2215.9

Childbearing E2, N (%),
30–400 pg/mL

34 (40%) 22 (46%) 25 (68%)

Pregnancy E2, N (%),
>400 pg/mL

4 (5%) 3 (6%) 1 (2%)

Postmenopausal E2, N (%),
<30 pg/mL

47 (55%) 23 (48%) 11 (30%)

Measured progesterone (ng/
mL), geometric mean,
range

0.7, 0.029–163 0.7,
0.029–163

1.2, 0.7–88.8

Measured cortisone (ng/
mL), geometric mean,
range

26.3, 3.5–56.0 28.9, 3.5–56.0 23.2, 8.5–44.4

Measured cortisol (ng/mL),
geometric mean, range

220.8,
35.4–832.0

280.3,
35.4–832.0

159.2,
36.4–630.5

Fig. 3. Correlation between predicted and measured E2 concentrations in the
ED Study. Circles show subjects (ED 450K, n ¼ 48) whose methylation data was
generated using the HumanMethylation450 BeadChip and squares represent
subjects (ED EPIC, n ¼ 37) that were run on the MethylationEPIC BeadChip.

Table 3
Correlations between measured hormone levels in the ED Study. Correlation
coefficients (r) are provided for all pairwise comparisons. Significant correlations
(<2.2e-16 < p < 9.8e-3) are indicated by bold text.

E2 Cortisol Cortisone Progesterone

E2 (pg/mL) – 0.15 0.29 0.93
Cortisol 0.15 – 0.39 0.15
Cortisone 0.29 0.39 – 0.28
Progesterone 0.93 0.15 0.28 –

Number of subjects with data for each hormone level: E2 (n ¼ 85), cortisol (n ¼
83), cortisone (n ¼ 83), progesterone (n ¼ 84).
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but no E2 assay data exist. DNAm-based predictions of E2 may serve as a
biomarker to further assess the relationship between hormone status and
psychiatric symptoms. Future studies will be necessary to characterize
the degree to which this E2 DNAm predictor changes longitudinally
through different menstrual and reproductive phases.

One limitation of the current work is that we used blood-based DNAm
data to develop our predictor, and wemay have obtained different results
if we had used methylation data from other human tissues or cell types.
Thus, our predictor will need to be evaluated in different tissues and
compartments to assess specificity. Future studies will need to determine
whether the model accurately predicts E2 concentrations in urine and
saliva, as some research groups have epigenetic data from these sources.
Furthermore, our DNAm predictor was modeled on total E2 concentra-
tions, and not free levels of E2. A further limitation is that the predicted
range of E2 concentrations in both the holdout testing set and indepen-
dent validation sets was narrower than the measured values. The limited
range of the predicted values restricts the ability of our model to precisely
characterize women according to clinical classifications such as child-
bearing, pregnant, or postmenopausal [40,48]. Similarly, because many
of these steroid hormones are correlated, this method does not specif-
ically discriminate between them. As additional samples and data
become available, we hope that it can be further refined. An additional
limitation is that the ED validation cohort used plasma samples for ste-
roid hormone testing while GTP measures were assayed from serum.
5

While this difference in biological compartment could introduce vari-
ability in our predictor, recent data indicates that serum and plasma
concentrations of E2 in women are comparable [48]. Additionally,
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different radioimmunoassays (KE2D1; Siemens Healthcare Diagnostics vs
DiaMetra) were used for the ED and GTP cohorts with the potential for
systematic differences in the E2 measurements between the two samples.
Future incorporation of additional clinical variables may help to better
align the predicted values with measured E2 concentrations. However,
we chose to optimize the model for use with minimal demographic data
to maximize its potential for use in research studies. Furthermore, the
elastic net method we employed chooses a parsimonious subset of fea-
tures (i.e., CpG sites), selecting only one among highly correlated sites,
which introduces an element of chance into CpG selection. Finally, our
DNAm predictor will need to be validated in different ethnicities, as
methylation of CpG sites can differ by race or ethnicity [49], as well as
tested in subjects less than 18 years old. Despite these limitations, this
methylation risk score offers the opportunity for researchers to leverage
epigenetic data as a surrogate marker of E2 concentrations to evaluate
the influence of E2 status on risk and symptom severity of neuropsy-
chiatric conditions and beyond.
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