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Thoracic cancers pose a significant global health burden. Immune checkpoint blockade
therapies have improved treatment outcomes, but durable responses remain limited.
Understanding how the host immune system interacts with a developing tumor is essential
for the rational development of improved treatments for thoracic malignancies. Recent
technical advances have improved our understanding of the mutational burden of cancer
cells and changes in cancer-specific gene expression, providing a detailed understanding
of the complex biology underpinning tumor-host interactions. While there has been much
focus on the genetic alterations associated with cancer cells and how they may impact
treatment outcomes, how host genetics affects cancer development is also critical and will
greatly determine treatment response. Genome-wide association studies (GWAS) have
identified genetic variants associated with cancer predisposition. This approach has
successfully identified host genetic risk factors associated with common thoracic
cancers like lung cancer, but is less effective for rare cancers like malignant
mesothelioma. To assess how host genetics impacts rare thoracic cancers, we used
the Collaborative Cross (CC); a powerful murine genetic resource designed to maximize
genetic diversity and rapidly identify genes associated with any biological trait. We are
using the CC in conjunction with our asbestos-induced MexTAg mouse model, to identify
host genes associated with mesothelioma development. Once genes that moderate
tumor development and progression are known, human homologues can be identified
and human datasets interrogated to validate their association with disease outcome.
Furthermore, our CC−MexTAg animal model enables in-depth study of the tumor
microenvironment, allowing the correlation of immune cell infiltration and gene
expression signatures with disease development. This strategy provides a detailed
picture of the underlying biological pathways associated with mesothelioma
susceptibility and progression; knowledge that is crucial for the rational development of
new diagnostic and therapeutic strategies. Here we discuss the influence of host genetics
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on developing an effective immune response to thoracic cancers. We highlight current
knowledge gaps, and with a focus on mesothelioma, describe the development and
application of the CC-MexTAg to overcome limitations and illustrate how the knowledge
gained from this unique study will inform the rational design of future treatments
of mesothelioma.
Keywords: thoracic malignancies, tumor immune microenvironment, mesothelioma, Collaborative Cross, MexTAg,
host genetics
INTRODUCTION

Thoracic cancers including lung cancer (LC), malignant
mesothelioma and thymic epithelial tumors (TETs) are among
the most lethal cancers (1). In addition to conventional treatment
options for thoracic cancers such as surgery, chemotherapy and
radiotherapy, immune based treatments including immune
checkpoint therapies, have improved treatment outcome for
some patients (2, 3).

Cancer immunotherapy aims to restore or enhance the host’s
immune system to recognize and eliminate cancer cells (4).
Although immunotherapies have improved treatment
outcomes for some thoracic cancers, success is often limited to
a subset of patients, while prognosis for the majority of patients
remains dismal (5). This dichotomy in response, highlights the
need to better understand interactions between thoracic cancer
cells and the host immune system that underpin an effective
response to cancer immunotherapy.

Advances in high-throughput sequencing technologies and
associated computational analysis pipelines allow us to
investigate the interplay between tumor cells and the
immune microenvironment (6, 7). These technologies
enable us to broaden our knowledge of the immunobiology
of tumor-host interactions by identifying immune-related
genetic alterations associated with cancer development (6,
7). While genetic alterations associated with immune
response in thoracic cancers have been exploited to improve
treatment outcome (8, 9), the development of strong, durable
responses occurs in a limited subset of patients (10); further
highlighting the importance of understanding the role of host
genetics, in addition to tumor genetics, in thoracic cancer
development, for predicting response to immunotherapies (9,
11–13).

In this review, we discuss how host genetics affects the
development of an effective immune response to thoracic
cancers. We highlight knowledge gaps in our current
understanding and acknowledge the limitations related to
identifying host genetic factors associated with thoracic cancer
susceptibility and development of effective anti-tumor immunity.
Finally, we propose our unique murine model; the MexTAg
Collaborative Cross (CC−MexTAg), as a strategy to overcome
current limitations of conventional genetic studies in
mesothelioma, to improve our knowledge about the impact of
host genetics on initiating immune responses and the developing
tumor microenvironment.
2

HOST GENETIC FACTORS AND
THORACIC CANCER SUSCEPTIBILITY

To date, many rare, high penetrance genetic variants such as
BRCA1, BRCA2, TP53, APC, and PTEN have been associated
with a genetic predisposition to cancer (14–16). However, these
genetic alterations only account for a small proportion of heritable
cancer genetic risk variants (14, 15). In fact, the combination of
genetic variation in common low penetrance alleles and rare
moderate-risk alleles has been recognized as the major genetic
contributors to heritable cancer genetic predisposition (17–19).

Common low-penetrance genetic variants, including single-
nucleotide polymorphisms (SNPs), have been identified by
GWAS (20). These genetic studies determine the frequency of
SNPs in patients compared to healthy individuals (20). More
than 450 genetic variants associated with increased cancer risk
for breast, prostate, colorectal and lung cancer have been
identified; supporting the polygenic pattern of susceptibility in
these cancers (18).
Lung Cancer
Lung cancer is the most prevalent thoracic cancer, and
chromosomal positions 15q25, 5p15.33 and 6p21 have been
identified as susceptibility loci (21, 22). However, whether
15q25 is truly an independent susceptibility locus for lung
cancer remains contentious, as genetic variants of nicotinic
acetylcholine receptor (CHRNA) genes, which have been
strongly associated with nicotine dependence and smoking
behavior (23–26), are also present at this loci. Furthermore,
genetic variants in 15q25 are mainly frequent in European
populations and not Asian populations (23). Other
independent susceptibility loci, 6p21 and 5p15, show
significant levels of genetic polymorphisms associated with
lung cancer risk in Asian populations, including Japanese and
Korean. However, there are different risk variants within 6p21
locus observed between Asian and European populations (27).

A large meta-analysis of GWAS on Chinese and European
populations identified 19 susceptibility loci significantly
associated with non-small cell lung cancer (NSCLC) risk (28).
Using identified genetic factors, this study proposed the
polygenic risk score (PRS) strategy as an effective risk indicator
of lung cancer, independent from age and smoking pack-year
(28). However, the utility of the PRS strategy may be limited, as it
was only used to predict lung cancer risk among the Chinese
June 2021 | Volume 11 | Article 679609

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Behrouzfar et al. The MexTAg Collaborative Cross
population, not in other cohorts comprised of different ethnicity
and effect size for genetic variants (28). Furthermore, most
genetic variants were only associated with a small
improvement in the prediction of lung cancer risk, and were
not any greater than major risk factors such as smoking and age
(29–31).

Malignant Mesothelioma
Malignant mesothelioma is a relatively rare thoracic cancer,
inextricably linked to asbestos exposure. The relatively low
number of samples available for study means that conventional
genetic studies are often underpowered (1). Consequently,
despite using separate and well−characterized cohorts of
control and mesothelioma patients, numerous GWAS studies
have failed to identify common genetic risk factors that can be
considered broadly associated with mesothelioma (32–34).

Germline mutations in BAP1 and some DNA repair genes
have been considered as predisposing genetic factors associated
with mesothelioma development (34–36). However, these
genetic risk factors are not specific for mesothelioma alone and
can predispose people to other cancers such as uveal
melanoma (37).

Thymic Epithelial Tumors
Thymic epithelial tumors (TETs) are rare thoracic cancers
arising from epithelial cells of the thymus, and can be
categorized as either thymomas or thymic carcinomas (38).
Our current knowledge of the etiology and genomic alterations
of TETs remains limited, and like mesothelioma, the small
number of patients available for study often restricts the power
of conventional genetic analyses (39, 40). Although we could not
find any published GWAS associated with any form of TETs,
Wang et. al., identified mutated TP53 as the most frequent
genetic alteration in TET patients (40). The authors used
comparative sequence analysis to show a higher mutation
incidence in epigenetic regulatory genes in thymic carcinoma
compared to thymoma patients (40). Additionally, a study
by Cortes–Ledesma et. al., demonstrated a strong causal
relationship between the loss of the highly-specialized DNA
repair enzyme tyrosyl-DNA phosphodiesterase 2 (TDP2) and
increased thymic-derived cancer predisposition in ataxia
telangiectasia affected individuals (41).
THE IMPORTANCE OF HOST GENETICS
IN CANCER SUSCEPTIBILITY:
SHAPING OF THE TUMOR
IMMUNE MICROENVIRONMENT

The tumor microenvironment (TME) consists of a variety of
immune cells, endothelial cells, fibroblasts and associated tissue
cells, and develops in part from the dynamic interactions
between the developing tumor and the surrounding host tissue
(42). One way to describe how host-tumor interactions play a
significant role in shaping the tumor microenvironment, is
through the impact on ‘field effect’ around the tumor (43).
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In the context of cancer development, the term ‘field effect’
refers to pre-neoplastic cellular and molecular changes that arise
as a consequence of long−term exposure to environmental
carcinogens in morphologically healthy tissues, promoting a
‘field of susceptibility’ to neoplasia initiation and progression
(44). For instance, the presence of a high burden and pervasive
positive selection of somatic driver mutations has been identified
in normal human skin (45). In a cohort of patients undergoing
blepharoplasty, positively selected ‘driver’ mutations were found
in 18−32% of normal skin cells taken from 234 biopsies of sun-
exposed eyelid epidermis. These data suggest that the frequency
of driver mutations in physiologically normal skin cells is
surprisingly high, with multiple driver mutations in cancer
associated genes found in many ‘normal’ cells that had not yet
acquired malignant potential. These findings raise the question
as to what combination of intrinsic (additional mutations) or
extrinsic (host genetics/anti−tumor immunity) changes are
required for cellular transformation to proceed?

In addition to driver mutations, epigenetic alterations
including DNA methylation and histone modifications can
play a role in establishing a field effect contributing to cancer
development (46, 47). A number of studies have indicated the
influence of an epigenetic field effect around the tumor by
identifying aberrant DNA methylation profiles in both tumor
and normal adjacent tissues (48–52).
THE EFFECT OF KNOWN HOST
GENETIC FACTORS ON TUMOR
IMMUNE MICROENVIRONMENT
OF THORACIC CANCERS

The influence of host genetics on the development of thoracic
cancers remains poorly understood. Shen et. al., performed
enrichment analysis of GWAS data to identify shared genomic
regions and pathways between host genetic variants and somatic
mutations in lung cancer (53). They identified an association
between the SNP rs36600 at 22q12.2 and somatic mutations
within ARID1A (53), a member of the SWI/SNF chromatin
remodeling complexes associated with many cancers (54).
Mutations in ARID1A and ARID1B are also associated with
improved response to NSCLC patients receiving immune
checkpoint blockade (ICB) therapy (55). Elevation of the
tumor mutational burden, enhanced antigen presentation and
cellular immunity, and increased PD-L1 expression, are all
correlated with the presence of ARID1A and ARID1B
mutations; suggesting that mutated ARID1A and ARID1B
could serve as novel biomarkers to predict sensitivity and
prognosis to ICB in advanced NSCLC patients (55).
Additionally, rare missense variants in genes encoding SWI/
SNF chromatin remodeling components and genes encoding the
histone methyl transferases, SETD2 and SETDB1, were identified
in a cohort of Japanese mesothelioma patients (56).

Furthermore, TRB:rs1964986 and IDO1:rs10108662 have
been identified as the two most significant SNPs associated
with the risk of disease recurrence and death respectively in
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early stage lung cancer (57). When assessing the functionality of
T cells between low and high-risk groups relative to healthy
controls (57), high-risk subjects exhibited lower cytotoxicity and
reduced granulation of T cells, as demonstrated by increased
expression of T cell inhibitory checkpoint gene Indoleamine 2, 3-
dioxygenase (IDO1) and decreased expression of the T cell
cytotoxicity genes IL2, Perforin 1 (PRF) and Granzyme B
(GZMB). These data support the hypothesis that mutations of
host immune genes affect the TME and thus, prognosis of
NSCLC via suppression of T cell antitumor immunity (57).

Additionally, epigenetic alterations of tissues derived from
NSCLC patients revealed the upregulation of CTLA4, PDCD1 via
hypomethylation in tumors versus non-tumor tissues (58).
Effects of epigenetic alterations in shaping immune tumor
microenvironment was also demonstrated by strong
correlation between site-specific DNA methylation of CpG
markers of cancers and transcription of genes associated with
immune infiltration (59).

In contrast to NSCLC, there are limited published studies that
investigate the role of host genetic factors in shaping the tumor
immune microenvironment of mesothelioma and TETs. Costa
et. al., identified lower expression of miR-320 in mesothelioma
tumors compared to normal tissues by performing differential
miRNA expression analysis on 14 formalin-fixed paraffin-
embedded tumors and six normal controls (60). They also
identified an association between p53-induced expression of
miR-320, miR-200a and miR-34a with reduced expression of
PD-L1 in mesothelioma cell lines (60). These data indicate
defective p53-induced miRNA response as a possible
contributor to immune evasion in mesothelioma by increasing
tumor PD-L1 expression (60). Reduced expression of major
histocompatibility complex (MHC) and autoimmune regulator
(AIRE) genes has been associated with defective T cell
maturation in thymoma patients (61, 62) and as such, the
reduced expression of MHC and AIRE were proposed as
genetic alterations explaining the association between
thymomas and autoimmune disorders (61).

More recently, a number of studies have significantly
advanced our understanding of the molecular biology of
mesothelioma (63–67). Through the application of next
generation sequencing technologies and innovative
bioinformatic analyses, these studies have demonstrated the
complex heterogeneity within and between tumors; expanding
the classic epithelioid, biphasic and sarcomatoid paradigm to at
least 4 distinct molecular subtypes, with a molecular gradient
along the epithelial-to mesenchymal transition spectrum
separating the two extreme epithelioid-like and mesenchymal-
like groups (63, 65–67). Additionally, the NSG approach has
further advanced our knowledge of the key mutational events
associated with mesothelioma, linking a number of unique cancer
signaling pathways with mesothelioma (64, 65). However, despite
these advances, our understanding of how host genetics impacts
mesothelioma onset remains underdeveloped.

In summary, studies investigating the role of immune related
genetic factors in NSCLC have identified suggestive genetic variants
capable of shaping the tumor immune microenvironment and
Frontiers in Oncology | www.frontiersin.org 4
affecting cellular immunity. However, there are a limited number of
studies identifying immune related genetic factors in mesothelioma
and TETs, highlighting the dearth in our knowledge of, and ability
to identify how host genetic factors shape the immune tumor
microenvironment of rare thoracic cancers.
OVERCOMING LIMITATIONS FOR
IDENTIFYING HOST GENETIC FACTORS
ASSOCIATED WITH THORACIC CANCERS

GWAS have been used to identify susceptibility loci in common
cancers such as breast, prostate, colorectal and lung cancer (22,
68), but they have been less effective for rare cancers including
mesothelioma (32). In fact, the suitability of GWAS for rare
cancers is often restricted by the relatively small number of
patients available for studies; thus any identified genetic variants
are often limited to the study cohort and not likely to have a
significant influence on disease outcome (32, 34, 68–71).
Furthermore, the absence of standardized protocols for
collecting environmental exposure data in addition to the lack
of accurate, consistent and defined phenotypic data to match
with genomic information, are additional potential limitations
for human genetic studies of thoracic cancers (72–74).

To overcome these limitations, mouse models that can
faithfully mimic human cancer development, in a well-
controlled and modulated environment are needed for
identifying translatable host genetic variants (75). Moreover,
such mouse models need to be sufficiently genetically diverse
to maximize the chance of genetic polymorphisms associated
with cancer development. The ideal mouse model would enable
rapid identification of genes associated with cancer homologous
to human genetic studies (7).
ADVANCEMENTS IN RECOMBINANT
INBRED MOUSE MODELS FOR
HOST GENETIC STUDIES OF
THORACIC CANCERS

Recombinant inbred (RI) mice are generated by breeding two or
more different mouse strains to genetic stability (76).
Historically, RI mice have been used to identify genomic
regions, referred to as quantitative trait loci (QTLs), that are
associated with particular disease phenotypes (77). The main
advantage to using RI mouse strains compared to classical simple
(F2) cross breeding is their improved reproducibility due to the
ability to test a phenotype in any number of individuals with the
same defined genetic constitution (77). The use of RI mice allows
unknown genes to be integrated into the known genetic map by
comparing the inheritance pattern of an unknown gene or trait
in a panel of RI strains with that of known markers. Therefore,
these models have been widely used as a robust and rapid
method of gene mapping of polygenic traits and diseases (77).
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Behrouzfar et al. The MexTAg Collaborative Cross
USE OF CLASSICAL AND TRADITIONAL
RECOMBINANT INBRED MOUSE MODELS

Classical mouse genetic studies identified Kras2 as a major lung
cancer susceptibility locus using the F2 progeny of A/J
(susceptible) and C3H/He (resistant) mouse strains in a
urethane-induced lung cancer model (78). Similarly,
experiments involving the progeny of BALB/c and SWR/J
mouse strains identified Par2 and Par4 as modifier loci that
specifically affected tumor initiation, progression and lung tumor
multiplicity (79). Additional, whole-genome linkage
disequilibrium analysis on 25 inbred mouse strains identified
63 markers including Kras and Pas1 loci, supporting the
association of Kras loci with lung cancer susceptibility (80).
Traditionally, bi-parental RI mouse strains were used for
identifying susceptibility loci of diseases with polygenic pattern
of inheritance (78, 81, 82). However, the usefulness of traditional
bi-parental RI mouse strains in genetic studies is limited by the
inherent low genetic diversity associated with using only two
parental genomes, which have large ‘identical by descent’ (IBD)
regions in which both parental strains have the same alleles (83).
Such IBD regions are ‘blind spots’, having little or no variation,
thus limiting the potential for gene mapping (84).
THE COLLABORATIVE CROSS (CC)

The Collaborative cross (CC) is a powerful mouse genetic
resource, comprising hundreds of independent RI mouse
strains developed from eight founder strains selected to
maximize genetic diversity (84–86). The CC harnesses 90%
of the common allelic diversity of the entire mouse species (84)
and has enhanced mapping ability due to the much greater
degree of polymorphisms derived from the eight diverse
founder strains, rather than the two somewhat similar strains
used in conventional RI mapping, as well as the greater number
of strains available. Conventional mapping of simple
Mendelian traits requires approximately 100 backcrossed
mice to obtain 1 cM (approximately 2 megabase pairs; Mbp)
resolution. The same resolution can be obtained by testing ~26
BXD RI strains. In contrast, with as few as 70 CC strains,
mapping resolution can be less than 40 thousand bp, i.e.
approximately to the single gene level (85) and even achieve
down-to-the-base resolution (87). Thus, the CC allows
mapping of loci with unprecedented accuracy. The CC has
been successfully used to study diseases with polygenic
inheritance such as melanoma, prostate cancer, diabetes and
osteoporosis (86, 88–91). It is also powerful in allowing
development of novel disease models (92).

The application of the CC to understanding cancer has been
best studied for melanoma and skin cancer. A series of
investigations made several important discoveries, such as that
every stage of melanoma progression was subject to control by
genetic variation (88); that UV−induced and spontaneous
cancers were mediated by different genetic mechanisms
Frontiers in Oncology | www.frontiersin.org 5
(93) the specific mutation causing nevus development was
identified (94); and the molecular mechanism for giant
congenital nevi was defined (95).
USING GENETICALLY ENGINEERED
MOUSE MODELS FOR STUDYING THE
IMPACT OF HOST GENETICS ON
THORACIC CANCER DEVELOPMENT

Numerous genetically engineered mice models have been
developed for modelling and studying genetic heterogeneity of
human malignancies (96). Recent technical advances in the
manipulation and sequencing of mouse genomes has promoted
the use of mouse models as an experimentally tractable system
for testing hypotheses generated from human genetic studies
(96). Such engineered models have also allowed the identification
of novel candidate mechanisms linking the impact of host
genetics and cancer development (96, 97). As the development
and use of genetically engineered mouse models is time-
consuming and expensive, the generation of models with high
tumor penetrance and short cancer latency are often favored, as
they are more viable in terms of research time and cost (75, 98).

Kras2LA2 and Trp53LSL-R172H/þ mice are the most common
used models in host genetic studies of lung cancer (96, 99, 100).
However, mice with mutations in Kras2 and Trp53 are highly
predisposed to other cancers (101, 102) and cancer development
can be triggered by spontaneous oncogene recombination events;
thus these models are not necessarily lung cancer specific and
therefore some mechanisms of carcinogenesis may not
accurately recapitulate human disease (99, 100).

There are many excellent mouse models for mesothelioma
research that mimic the genetic defects found in human disease.
Knockout (KO) mouse models with heterozygous mutations in
Bap1, CDKN2A, neurofibromin 2 (Nf2), or p53 have been used to
study the effect of genetic alterations on asbestos-induced
mesothelioma susceptibility (103–112). These studies
demonstrate significantly higher incidence of mesothelioma in
the presence, or absence of asbestos in mice with Bap(+/-) and
Nf2(+/-) mutations compared to wild-type (wt) mice (103–112).
However, all animal models have their limitations. While some
conditional KO models demonstrate increased mesothelioma
incidence, they also have moderate to high levels of unrelated
(non-mesothelioma) cancers; presumable a consequence of off-
target deletion of key tumor suppressor genes (105, 108, 110).
However, recently published CRE-mediated conditional KO
models only develop disease in CRE-expressing tissues (109,
113). Mesothelioma incidence in Bap1(+\-) mice ranged between
36-60% depending on asbestos doses (41, 106). However, while
Bap1(+\-) mice develop mesothelioma, they also develop other
cancers such as uveal and cutaneous melanoma (37).
Furthermore, Bap1(+\-) mice develop mesothelioma after
exposure to doses of asbestos fibers that are unlikely to induce
mesothelioma in wt mice (106).
June 2021 | Volume 11 | Article 679609

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Behrouzfar et al. The MexTAg Collaborative Cross
ASBESTOS INDUCED MESOTHELIOMA
MexTAg MOUSE MODEL

There is no absolute consensus over which is the best model system
for studying mesothelioma; some groups prefer to use conditional
knockout models, as they replicate the genetic deletions observed
in human disease, while others prefer alternative models that
require asbestos induction and have limited unrelated cancer
development. We developed the transgenic C57BL/6 MexTAg
mouse model expressing SV40 large T antigen directed to
mesothelial cells by use of cell-type specific mesothelin promoter
as a tool for the pre-clinical evaluation of asbestos-induced
mesothelioma (114). Importantly, MexTAg mice develop
mesothelioma with similar pathology to humans, but only after
asbestos exposure (115). Furthermore, MexTAg mice have high
disease incidence (> 85%) and are less likely to develop unrelated
tumors compared to wild type mice or some heterozygous or
conditional knockout models (103–112). Comparing gene
expression profiles of MexTAg mice and wt mesothelioma with
their counterpart normal mesothelial cells, exhibits overlapping
gene expression profiles, suggesting a similar overall mechanism of
mesothelioma development in transgenic MexTAg mice (116).
Expression of the TAg transgene does not affect the overall
mechanism of mesothelioma development, but rather
phenocopies p16 loss (117) and as a consequence onset of
disease is more rapid, significantly increasing the incidence and
rate of mesothelioma development compared to wt mice (114).
USING THE CC-MexTAg MOUSE MODEL
TO ASSESS THE IMPACT OF HOST
GENETICS ON THE DEVELOPING ANTI-
TUMOR IMMUNE RESPONSE
TO MESOTHELIOMA

To investigate how host genetics might impact asbestos related
disease development (ARD), it is important to use a model in
which only ARD (and not unrelated tumors) occur and high
incidence. We developed the MexTAg Collaborative Cross to
investigate how a hosts’ genetic background influences the
development of mesothelioma in asbestos-exposed individuals.
Combining the genetic diversity inherent in the CC with the high
incidence of asbestos−induced disease and rare onset of
unrelated spontaneous tumors of MexTAg mice, provides an
ideal model to define with unprecedented accuracy the genes and
associated pathways that affect susceptibility and resistance to
disease. In this model, the F1 progeny of CC x MexTAg mice
(CC−MexTAg mice) are exposed to asbestos and monitored for
up to 18 months, or until asbestos related disease (ARD)
developed and progressed to a clearly defined endpoint. ARD
phenotypic traits such as overall survival, disease latency and
progression for each CC−MexTAg group, can be analyzed using
the GeneMiner™ bioinformatic portal (87), where candidate
modifier genes are mapped with ARD phenotype as a
quantitative trait. Genome wide scans defined chromosomal
Frontiers in Oncology | www.frontiersin.org 6
locations of peak SNPs associated with each of the
characterized ARD phenotypes. To date, we have generated
and asbestos-exposed over 2500 individual CC−MexTAg mice
progeny of 72 unique CC strains. At the time of writing
55 CC−MexTAg groups that have completed the observation
period. These preliminary data indicate greater than 3-fold
variation in median overall survival. This shows the power of
the CC approach, given that the parental MexTAg mice survive
365 days. An additional 20 CC−MexTAg groups remain under
study, and we envisage accrual of complete data by late 2021.

Importantly, the development of the CC−MexTAg model has
not only enabled data collection on numerous ARD phenotypic
traits, but has enabled the generation of a large repository of tumor
samples and tumor-derived cell lines, collected from animals that
are either relatively resistant or highly sensitive to asbestos-induced
cancer. Given recent insights provided by the CheckMate 743 study
demonstrating for the first time first-line immune checkpoint
blockade (nivolumab plus ipilimumab) provided a significant and
clinically meaningful improvement in overall survival versus
platinum plus pemetrexed chemotherapy for mesothelioma (118),
this unique biological resource can be exploited for comprehensive
genetic and immunohistological analysis on tumors collected from
CC-MexTAg mice (Figure 1). The CCMT biobank will
complement many of the recent ‘multi-omic’ informed human
mesothelioma datasets, helping to overcome some of the limitations
associated with conventional genetic studies aimed at identifying the
role of host genetic factors associated with the development and
immunological control of rare thoracic cancers like mesothelioma.

We believe this strategy will not only allow identification of
host modifier genes associated with ARD development, but when
correlated with data on immune microenvironment will help
elucidate what is required to generate an effective immune
response to asbestos induced cancers. In addition, our strategy
provides a rational approach that could be applied to other
thoracic cancers by taking advantage of the power of CC to
define a protective host genetic background.
SUMMARY AND CONCLUDING REMARKS

Thoracic cancers are a leading cause of death worldwide. While
advances have been made in our understanding of how genetic
alternations impact cancer development and treatment outcomes
for common thoracic malignancies like lung cancer, our knowledge
remains limited for less common cancers such as mesothelioma and
TETs. Moreover, there is a paucity in our understanding of the
complex biological interplay between the tumor and the immune
microenvironment. Understanding how the host immune system
interacts with a developing tumor is essential for the rational
development of new or improved treatment regimens for thoracic
malignancies. An often overlooked characteristic of the tumor host
interaction, is the influence a hosts’ background genetics has on
tumor development and how this affects treatment response. While
previous conventional genomic studies are often limited to more
common cancers, recent technical advances in computation biology,
combined with the use of ‘system genetics’ approaches, now provide
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a framework for investigating more rare thoracic malignancies such
as mesothelioma and TETs. To address these issues, we have
developed the MexTAg Collaborative cross to identify host genes
that affect asbestos-related disease. The CC-MexTAg mouse model
embraces a systems genetics approach, linking the power of CC’s
defined host background genetics, with gene expression analysis and
unparalleled detailed spatial assessment of the immunological
milieu of asbestos-induced mesothelioma. This unique model
allows rapid identification of key host modifier genes and a
comprehensive genomic and histopathological analyses of
biological pathways associated with asbestos-induced
mesothelioma development. These data can then be validated by
interrogating the numerous data sets produced from current human
genetic studies.

In conclusion, the CC-MexTAg mouse model, particularly in
combination with contemporaneous tumor expression data, will
provide a detailed picture of the role of modifier genes and their
biological pathways associated with immune response in
mesothelioma. Such data is essential to help identify potential
druggable and translatable targets for the development of better
Frontiers in Oncology | www.frontiersin.org 7
treatment options and developing an effective anti-tumor
immune response in malignant mesothelioma patients.
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FIGURE 1 | A schematic of the CC‐MexTAg experimental design. The generation of CC‐MexTAg mice and their exposure to asbestos (Study 1): Briefly, candidate
modifier genes will be mapped with mesothelioma‐free survival, as a quantitative trait using the GeneMiner Bioinformatics pipeline. Genome wide scans will be used
to define chromosomal locations of peak single nucleotide polymorphism (SNPs) associated with each of the characterized mesothelioma phenotypes, such as
disease progression, latency, overall survival, and mesothelioma incidence. Gene expression analysis and immunofluorescence analysis of tumors collected from
CC‐MexTAg mice exposed to asbestos (Study 2): Comprehensive analyses of gene expression profiles and immune cell infiltrate of the tumor microenvironment will
be performed to identify any differences between distinct CC‐MexTAg groups. These data will be correlated back to phenotypic data from Study 1, to build a
broader understanding of the impact of host genetics on asbestos related disease development.
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Rincón EY, Olivas Calderon EH, Martıńez-Ramıŕez OC, et al. Chrna3
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