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Abstract: Bacterial S1 protein is a functionally important ribosomal protein. It is a part of the 30S
ribosomal subunit and is also able to interact with mRNA and tmRNA. An important feature of the
S1 protein family is a strong tendency towards aggregation. To study the amyloidogenic properties
of S1, we isolated and purified the recombinant ribosomal S1 protein of Pseudomonas aeruginosa.
Using the FoldAmyloid, Waltz, Pasta 2.0, and AGGRESCAN programs, amyloidogenic regions of the
protein were predicted, which play a key role in its aggregation. The method of limited proteolysis in
combination with high performance liquid chromatography and mass spectrometric analysis of the
products, made it possible to identify regions of the S1 protein from P. aeruginosa that are protected
from the action of proteinase K, trypsin, and chymotrypsin. Sequences of theoretically predicted
and experimentally identified amyloidogenic regions were used to synthesize four peptides, three of
which demonstrated the ability to form amyloid-like fibrils, as shown by electron microscopy and
fluorescence spectroscopy. The identified amyloidogenic sites can further serve as a basis for the
development of new antibacterial peptides against the pathogenic microorganism P. aeruginosa.

Keywords: ribosomal S1 proteins; amyloidogenic regions; toxicity; antibacterial peptides; amyloid;
mass spectrometry

1. Introduction

The study of amyloids as ordered fibrillar protein aggregates is of great importance for
elucidating their role in human pathologies, especially in neurodegenerative diseases [1–3].
It is known that, under certain conditions, most proteins and peptides tend not only to
aggregation, but also to form amyloid-like fibrils [4–6]; in a particular case, the formation
of amyloids of some proteins can be induced by other amyloidogenic proteins and pep-
tides [7,8]. Currently, interest in the study of amyloids is also associated with the fact that
they can be used in various nano- and bio-technological developments, including as an-
timicrobial agents against pathogenic microorganisms [9–11]. In recent reviews of scientific
articles, the prospects of using antimicrobial peptides in medicine are discussed [12,13],
including those acting by the mechanism of directed coaggregation with the target protein
due to the interaction of amyloidogenic sites that constitute the spine of amyloid fibrils [14].
Disruption of the native structure of the most important bacterial proteins, in particular
ribosomal ones, caused by directed aggregation, can be accompanied by a loss of the
functional activity of the protein, which, in turn, can lead to a change in normal cellular
metabolism and the death of bacteria.

The ribosomal S1 protein is the largest bacterial protein of the 30S ribosomal subunit
and can perform, in addition to structural, many other functions, interacting with both
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RNA and other proteins [15–18]. It was shown that amber mutation and knockout of
the gene encoding the bS1 protein lead to the death of bacterial cells [19,20]. The bS1
protein, which is present only in bacterial cells, contains, depending on the taxonomic
affiliation of the microorganism, from one to six domains of the S1 protein (D1–D6),
separated by flexible regions [21,22]. It is important that the S1 domain is a structural
variant of the oligosaccharide/oligonucleotide-binding fold (OB-fold) [23,24] and can
exhibit amyloidogenic properties, like another analog of the OB-fold, the cold shock
domain [25]. Previously, peptides with amyloidogenic properties and antimicrobial activity
against Thermus thermophilus were synthesized and studied based on the sequences of the
S1 domains of the ribosomal S1 protein of the model organism T. thermophilus [26].

P. aeruginosa is a pathogenic bacterium that can cause nosocomial infections [27,28],
and for which cases of multiple antibiotic resistance are increasingly being reported [29,30].
Recently, antimicrobial peptides have been considered as an alternative to classical antibiotics
for the treatment of diseases caused by multidrug-resistant strains of P. aeruginosa [31–33].
Information about the amyloidogenic regions in the structure of the ribosomal S1 protein
from P. aeruginosa (bPaS1) will allow the development of new antimicrobial peptides that
specifically interact with this target protein and cause its aggregation, which will ultimately
lead to disruption of the functioning of the ribosomal S1 protein and suppress the vital
activity of this pathogenic bacteria.

The main contribution to the formation of amyloids is made by amino acid residues,
which contribute to a denser packing of the protein structure [34,35]. Consequently, protein
regions included in the spine of amyloid fibrils are characterized by high resistance to
protease treatment, which is used to determine amyloidogenic regions in products of
limited proteolysis of aggregates [36,37].

In the present work, amyloidogenic fragments were identified in the amino acid se-
quence of bPaS1, using the programs for searching and predicting amyloidogenic regions
FoldAmyloid [38], Waltz [39], Pasta 2.0 [40] and AGGRESCAN [41], and experimentally by
analyzing the products of limited proteolysis of bPaS1 aggregates using high performance
liquid chromatography and mass spectrometry (LC-MS). The tendency to amyloid forma-
tion of peptides synthesized on the basis of amyloidogenic regions of bPaS1 was studied by
electron microscopy (EM) and fluorescence spectroscopy (using thioflavin T (ThT)), which
are widely used to detect amyloids [42–44].

2. Results

2.1. Isolation and Purification of bPaS1

The E. coli strain was obtained, the genetic construct allows us to obtain the recom-
binant bPaS1 with additional inserts: an N-terminal sequence with 6 His, which allows
the use of affinity chromatography purification; a specific TEV protease recognition site
for cleaving intact bPaS1. Nucleic acids were precipitated with streptomycin sulfate and
the precipitates were removed from protein samples. The degree of purification of bPaS1
preparations was assessed by electrophoresis of samples under denaturing conditions. The
resulting final preparation had a purity of at least 90%.

2.2. Prediction and Experimental Determination of bPaS1 Regions Prone to Aggregation

The ability of a protein to aggregate and form amyloid-like fibrils is primarily deter-
mined by the presence of amyloidogenic regions in its structure, which can be predicted
using special programs developed for this purpose. Prediction of amyloidogenic sites for
bPaS1 was performed using four programs: FoldAmyloid, Waltz, AGGRESCAN, and Pasta
2.0 (Figure 1B).
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tively, are underlined in gray and black. The bPaS1 sequence is taken from the UniProt database (UniProt. Available 
online: https://www.uniprot.org/uniprot/Q9HZ71 (accessed on 20 January 2021)). The regions of bPaS1, prototype pep-
tide synthesis, are shown black–green color. 

As shown in Figure 1B, the overall peptide coverage for protein aggregate hydrol-
ysates and controls is similar. At the same time, additional amino acid sequences for ag-
gregates have been identified that may play a role in the formation of associates. LC-MS 

Figure 1. Schematic representation of the domain organization of bPaS1 (A) and comparison of predicting amyloidogenic
regions using programs with the results of peptide coverage after LC-MS analysis of hydrolysates of control and experimental
(aggregate) protein preparations (B). The peptides identified in the control and experimental samples, respectively, are
underlined in gray and black. The bPaS1 sequence is taken from the UniProt database (UniProt. Available online:
https://www.uniprot.org/uniprot/Q9HZ71 (accessed on 20 January 2021)). The regions of bPaS1, prototype peptide
synthesis, are shown black–green color.

Each program predicts at least one region prone to amyloid formation in the bPaS1
sequence. However, the prediction results differ between different programs as they use
different algorithms to find amyloidogenic regions. Subsequently, an experimental search
for protein regions resistant to the action of proteases was carried out in the course of
limited proteolysis and analysis of hydrolysates by LC-MS. In total, 146 significant peptides
were found in the products of limited proteolysis of bPaS1 aggregates. At the same time,
only 96 significant peptides were detected in the control sample without incubation for
aggregation. Subsequently, significant peptides identified in the hydrolysates of control
and experimental bPaS1 samples were ranked by length, the longest of them was compared
with the bPaS1 sequence in order to determine the regions most protected from the action
of proteases in aggregates and control preparations (Figure 1).

As shown in Figure 1B, the overall peptide coverage for protein aggregate hydrolysates
and controls is similar. At the same time, additional amino acid sequences for aggregates
have been identified that may play a role in the formation of associates. LC-MS data were

https://www.uniprot.org/uniprot/Q9HZ71
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analyzed, and peptides with a length of at least five amino acid residues were selected
(similar to the selection criterion in programs predicting amyloidogenic sequences of at
least five amino acid residues), which are present only in hydrolysates of aggregates and
are not observed in control samples (Table 1).

Table 1. Unique peptides identified as a result of comparing data from LC-MS analysis of hydrolysates of bPaS1 aggregates.

Peptide
Prediction of

Amyloido-
genicity

Percentage of
Most Non-Polar

a.a. [45]
(V,I,F,C,L,A,M), %

Observed
Mass, Da

Theoretical
Mass, Da

Measurement
Error, ppm *

Molecular
Ion, m/z Charge (z) Value of the

Function T **

FEESLK
(9–14 a.a.) No 0 751.376 751.3752 0.5 376.6951 +2 35.71

AIITGIVVDI
(22–31 a.a.)

AGGRESCAN,
Pasta 2.0, partially
FoldAmyloid

(23–30 a.a.)

70 1012.618 1012.6168 0.9 507.3162 +2 41.51

VHAGLK
(38–43 a.a.) Pasta 2.0 50 623.374 623.3755 –1.8 312.6945 +2 17.19

DVNGIR
(123–128 a.a.) AGGRESCAN 33 672.356 672.3555 0.7 337.1852 +2 32

E (+27.99)
GQQVK ***

(191–196 a.a.)
No 17 715.35 715.35 –0.3 358.6822 +2 16.8

LHITDMAWKR
(218–227 a.a.)

FoldAmyloid,
partially

AGGRESCAN
(218–223 a.a.)

40 1269.666 1269.6652 0.4 635.8401 +2 114.36

ISGTIK
(367–372 a.a.)

partially
AGGRESCAN
(370–372 a.a.)

33 617.375 617.3748 0.7 309.6949 +2 27.5

ITDFGIFIGL
(374–383 a.a.)

AGGRESCAN,
partially

FoldAmyloid
(375–382 a.a.)

60 1094.601 1094.6012 –0.1 548.3078 +2 76.43

ASLHEK
(445–450 a.a.) No 33 683.361 683.3602 1 342.6877 +2 30.93

KQEVESA
(536–542 a.a.) No 29 789.388 789.3868 1.1 395.7011 +2 41.89

*—The accuracy of molecular weight measurement of 1 ppm (parts per million) corresponds to 0.001 Da for an ion with a molecular weight
of 1000 Da. **—For the PEAKS Studio 7.5 software we used (Bioinformatics Solution Inc., Waterloo, ON N2L 6J2, Canada) the value of the
function T = –10 lgP, where P is the probability that a false identification of a peptide in the current search will achieve the same or better
conformity score. For peptide mapping, only peptides for which a T value > 15 were used, which corresponds to the p-criterion < 0.03 [46].
***—Mass shift (+27.99) means amino acid post-isolation modification (formylation) at the N-termini for peptide EGQQVK.

As follows from Table 1, the results of bioinformatic analysis and experimental deter-
mination of amyloidogenic regions in the bPaS1 sequence do not coincide for all protease-
resistant peptides found in protein aggregates. At the same time, for the identified peptides
FEESLK, AIITGIVVDI, DVNGIR, LHITDMAWKR, ITDFGIFIGL, ASLHEK, KQEVESA,
the accuracy of molecular weight measurement was no worse than 1.8 ppm, and the T
function value was at least two times higher than the threshold value, which on the whole
indicates a high reliability of the experimental determination. Thus, the bPaS1 regions that
overlap with the results of predicting amyloidogenicity by at least two programs, or are
identified only in the products of limited proteolysis of bPaS1 aggregates, were used as
prototypes for the synthesis of peptides: AIITGIVVDI, SWIVLEAAFA, ITDFGIFIGL and
LHITDMAWKR (Figure 1B). Interestingly, the local distribution of non-polar amino acid
residues, especially V, I, F, C, can be used to assess the propensity of a peptide to form
amyloid structures [45]. The AIITGIVVDI, SWIVLEAAFA, ITDFGIFIGL fragments are
characterized by a high percentage of nonpolar amino acid residues (70%, 70%, and 60%,
respectively), in contrast to the LHITDMAWKR peptide (40%).
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The bPaS1 regions, which are theoretically predicted to be amyloidogenic and ex-
perimentally resistant to the action of proteases, are of interest for further study and
discussion of the prospects for using antimicrobial peptides acting on the basis of directed
coaggregation in the development of antimicrobial peptides.

2.3. Electron Microscopic Images of Aggregates

Recombinant bPaS1 was isolated, purified and analyzed using the EM method. Ac-
cording to EM data (Figure 2), bPaS1 under conditions of 50 mM TrisHCl, pH 8.0; 100 mM
NaCl; 10 mM MgCl2; 5 mM β-mercaptoethanol forms disordered aggregates. That is, as
in the case of the recombinant protein bS1 from T. thermophilus [47], bPaS1 does not form
fibrils. However, it should be noted that bPaS1, in contrast to the previously studied bS1
from T. thermophilus, is less prone to aggregation and forms small and less dense aggregates
of various sizes [47]. The images of amyloids/aggregates of peptide synthesized based
on the predicted amyloidogenic regions in the bPaS1 amino acid sequence are shown in
Figure 3.
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Figure 2. Electron microscopic image of the bPaS1 protein under conditions of 50 mM TrisHCl, pH 8.0; 100 mM NaCl;
10 mM MgCl2; 5 mM β-mercaptoethanol.

According to EM data, it was shown that the AIITGIVVDI, SWIVLEAAFA, and
ITDFGIFIGL peptides under conditions of 50 mM TrisHCl, pH 7.5; 150 mM NaCl, in-
cubation for 5 h at 37 ◦C are able to form amyloid-like fibrils of various morphologies.
Under the same conditions, the LHITDMAWKR peptide did not form fibrils, but only
disordered aggregates.

2.4. Thioflavin T Fluorescence Assay for Aggregation of bPaS1 and Peptides

The property of thioflavin T to bind to amyloid fibrils with a simultaneous multiple
increase in fluorescence at a wavelength of ~485 nm [48] was used by us to analyze the
tendency towards the formation of amyloids in bPaS1 preparations and AIITGIVVDI,
SWIVLEAAFA, ITDFGIFIGL, LHITDMAWKR peptides (Figure 4). In Figure 4 (Part 1),
the ThT fluorescence intensity at a wavelength of ~485 nm, exceeding the control values
for free ThT by a factor of ten or more, was obtained for preparations of the AIITGIVVDI,
SWIVLEAAFA, ITDFGIFIGL peptides (Figure 4C–E,K, Part 1), as well as in a mixture of
these peptides with bPaS1 (Figure 4G–I,L, Part 1). At the same time, for bPaS1 preparations
and the LHITDMAWKR peptide (Figure 4B,F, Part 1), as well as for their mixture in solution
(Figure 4J, Part 1), a multiple increase in the ThT fluorescence intensity was not observed.
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Figure 3. Electron microscopic images of aggregates formed from peptide preparations synthesized based on the bPaS1 sequence:
AIITGIVVDI (A), SWIVLEAAFA (B), ITDFGIFIGL (C), and disordered aggregates of the LHITDMAWKR peptide (D).

Thus, the presence of the effect of a multiple increase in the ThT fluorescence intensity
upon incubation with preparations of the AIITGIVVDI, SWIVLEAAFA, ITDFGIFIGL pep-
tides and the absence of such an effect for preparations with the LHITDMAWKR peptide
is consistent with the data of electron microscopy that the AIITGIVVDI, SWIVLEAAFA,
ITDFGIFIGL peptides form amyloid fibrils, while only disordered aggregates of the peptide
are found in the LHITDMAWKR preparations.

It should be noted that when testing the propensity for coaggregation of individual
peptides with bPaS1, the greatest increase in the ThT fluorescence intensity was observed
in a mixture of the ITDFGIFIGL peptide with bPaS1 after 24 h of incubation (Figure 4i,
Part 2).

Thus, although bPaS1 preparations do not form amyloid-like fibrils, they affect the
change in the relative intensity and wavelength of the maximum intensity of ThT fluores-
cence in mixtures with amyloidogenic peptides. No such effects were observed in mixtures
of bPaS1 with the non-amyloidogenic LHITDMAWKR peptide.
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Figure 4. Histograms (1) and spectra (2) of fluorescence intensity of free thioflavin T (A,a) and in solution with bPaS1 (B,b),
individual peptides AIITGIVVDI (C,c), SWIVLEAAFA (D,d), ITDFGIFIGL (E,e), LHITDMAWKR (F,f), a mixture of peptides
(K,k), as well as in mixtures of bPaS1 with peptides (G,g), (H,h), (I,i), (J,j), (L,l). Error bars with standard deviations for the
mean values of the measured fluorescence intensity after 1, 3, 5, 8, and 24 h of incubation are shown.
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3. Discussion

The tendency of bS1 proteins to form associates is determined by the structural fea-
tures of the protein, as well as by the functions it performs [49–51]. High amyloidogenicity
and, first of all, the mobility of S1 domains relative to each other creates problems in crys-
tallization of ribosomal protein bS1 and determination of its tertiary structure [47,52]. At
the moment, there is no data on the complete spatial structure of any ribosomal S1 protein.
In the present work, for the isolated recombinant S1 protein from the pathogenic organism
P. aeruginosa, regions of the amino acid sequence prone to aggregation and formation of
amyloid were determined. The results obtained will be important in crystallization of
bPaS1, and can also be used in the development of antimicrobial peptides acting on the
basis of the mechanism of directed coaggregation with the whole protein [26].

The results of a theoretical search for amyloidogenic regions in the bPaS1 sequence
using the algorithms of the FoldAmyloid, Waltz, Pasta 2.0, and AGGRESCAN programs
showed that all six protein domains contain sequences prone to aggregation. Several
programs predicted the same amyloidogenic regions: AIITGIVVDIDG (21–35 a.a., D1),
RAESWIVLEAAFA (92–103 a.a., between D1 and D2), LHITDM (218–223 a.a., D3), ITD-
FGIFI (374–381 a.a., D5). At the same time, no amyloidogenic regions were identified
in amino acid sequences at the N- and C-terminal fragments of the protein outside the
domains. Earlier, other researchers noted that not for all proteins the prediction results of
the FoldAmyloid, Waltz, Pasta 2.0, and AGGRESCAN programs coincide with the experi-
mental data [53]. In this regard, it is of interest to discuss the data of bioinformatic analysis
of amyloidogenicity in the context of the experimental determination of areas inaccessible
for the action of a mixture of proteases.

The bPaS1 regions corresponding to significant unique peptides identified by lim-
ited proteolysis and LC-MS for protein aggregates only appear to be responsible for the
propensity of bPaS1 to aggregate at 37 ◦C. Thus, the following peptides from Table 1 are
common between the predicted presumably amyloidogenic and experimentally identified
as resistant to proteases: AIITGIVVDI, VHAGLK, DVNGIR, LHITDMAWKR, ITDFGIFIGL.
From our point of view, the AIITGIVVDI, SWIVLEAAFA, ITDFGIFIGL, LHITDMAWKR
peptides were of interest for the synthesis and experimental verification of amyloidogenic
properties. One should take into account both the differences in the algorithms for pre-
dicting amyloidogenic regions by the FoldAmyloid [38], Waltz [39], Pasta 2.0 [40], and
AGGRESCAN [41] programs, and the possible effects of nonspecific hydrolysis of protein
sequence regions by proteases, in particular, Proteinase K [54,55]. In this regard, the syn-
thesized peptides AIITGIVVDI, SWIVLEAAFA, ITDFGIFIGL, LHITDMAWKR were also
tested by other methods for detecting amyloids, namely EM and fluorescence spectroscopy
with ThT.

EM studies have shown that the morphological features of the bPaS1 protein aggre-
gates (six domains) are similar to those obtained for the T. thermophilus S1 protein (five
domains) [47]. Despite the fact that the buffer conditions for aggregation experiments in
these studies were somewhat different, it can be concluded that in both cases proteins did
not form fibrils similar to amyloidogenic proteins and peptides [56–58], but only disordered
aggregates with a tendency to form larger associates. Possibly, this morphology can be
associated with the presence of several mobile domains containing amyloidogenic regions,
which, when domains move relative to each other, prevents the formation of ordered
fibrils [59]. In addition, as shown by us and other authors, individual protein domains
exhibit different amyloidogenicity in proteins that are able to functionally interact with
both nucleic acids and other proteins and peptides [52,60]. In particular, it was found that
the amyloidogenicity of S1 proteins decreases with increasing protein size, while short
amyloidogenic peptides synthesized based on the sequence of S1 proteins from E. coli
and T. thermophilus are able to form amyloid-like fibrils [52]. In this work, using EM, it
was demonstrated that three of the four selected and synthesized peptides (AIITGIVVDI,
SWIVLEAAFA, and ITDFGIFIGL) were able to form amyloid-like fibrils at a temperature
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37 ◦C and pH value 7.5, similar to the conditions for the development of the pathogenic
bacteria P. aeruginosa.

In accordance with EM data, the amyloid-like properties of the AIITGIVVDI, SWIVLEAAFA,
and ITDFGIFIGL peptides, associated with a multiple increase in the ThT fluorescence intensity,
were also demonstrated using fluorescence spectroscopy. In the future, it is planned to conduct
additional studies to identify the morphology of aggregates and the mechanism of formation of
amyloid-like fibrils in mixtures of amyloidogenic peptides with bPaS1.

4. Materials and Methods

4.1. Isolation and Purification of bPaS1

The DNA fragment encoding bPaS1 was amplified using KOD Hot Start DNA Poly-
merase (Novagen, Darmstadt, Germany), two S1P_Nde oligonucleotides (5′-CACCATAT-
GAGCGAAAGCTTCGCAGAAC-3′) and S1P_Bam (5′-CATAGGATCCTTAGCCCTGATT-
CTCCATCTG-3′) and genomic DNA from P. aeruginosa as a DNA template. DNA fragments
were digested with restriction endonucleases NdeI and BamHI (Thermo Scientific, Dreieich,
Germany) and ligated with DNA of the pET19mod vector (Novagen, Madison, WI, USA),
which had been previously digested with the corresponding enzymes. DNA sequencing
of the pET19mod-bS1 vector was performed at ZAO Evrogen (Evrogen, Moscow, Rus-
sia). E. coli BL21 (DE3) cells were transformed with the pET19mod-bS1 plasmid. The cell
culture was grown in LB medium in the presence of ampicillin (100 µg/mL) at 37 ◦C to
an optical density of A590 = 0.6. Expression was induced by the addition of isopropyl-β-
D-1-thiogalactopyranoside at a concentration of 0.3 mM. After induction, the cells were
grown under the same conditions for 3 h. To purify the protein, the biomass of E. coli
was suspended in 50 mM Tris-HCl buffer, pH 7.5; 10 mM MgCl2, 200 mM NaCl (Buffer
A) containing 0.3 mM PMSF. The cells were disrupted using an ultrasonic disintegrator
(Qsonica, Newtown, CT, USA). Debris was sedimented by centrifugation at 10,000× g for
30 min. The supernatant was loaded onto a Ni-Sepharose column (GE Healthcare, Dan-
deryd, Sweden) equilibrated with starting buffer A. The protein was eluted with 250 mM
imidazole in starting Buffer A.

LiCl and streptomycin sulfate were added to the preparation to final concentrations of
3 M and 3% (weight/weight), respectively. The mixture was incubated at +4 ◦C overnight.
The precipitate was removed by centrifugation at 10,000× g for 30 min. Then the drug was
transferred by dialysis into a buffer solution of 50 mM Tris-HCl, pH 7.5; 10 mM MgCl2,
50 mM NaCl and clarified by centrifugation. Then the preparation was purified by gel
filtration on Superdex 75 in Buffer A. The protein preparation was stored at−20 ◦C. Protein
concentration was determined by the Bradford method [61], as well as spectrophotometri-
cally taking into account the extinction coefficient at 278 nm, ε278 = 0.75 (mL mg−1 cm−1)
(determined by the method [62]). Before the experiments, aliquots of the drug (1 mg of
protein) were transferred by dialysis into a buffer solution of 50 mM TrisHCl, pH 7.5;
150 mM NaCl. Protein preparations were centrifuged for 30 min (+4 ◦C) at 65,000× g in a
Z 36 HK centrifuge (HERMLE Labortechnik GmbH, Wehingen, Germany). The obtained
samples at a concentration of 13–16 µM (0.8–1 mg/mL) were used for experiments on
electron microscopy and limited proteolysis.

4.2. Prediction of bPaS1 Amyloidogenic Sites

To search for amyloidogenic sites in bPaS1, we analyzed the amino acid sequence
available in the open UniProt database in FASTA format under the number Q9HZ71
(RS1_PSEAE) (UniProt. Available online: https://www.uniprot.org/uniprot/Q9HZ7
1 (accessed on 20 January 2021)). To predict amyloidogenic sequences, we used four
programs—FoldAmyloid [38], Waltz [39], Pasta 2.0 [40], and AGGRESCAN [41], designed
to search for amyloidogenic regions in the protein chain.

https://www.uniprot.org/uniprot/Q9HZ71
https://www.uniprot.org/uniprot/Q9HZ71
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4.3. Limited Proteolysis and Analysis of Hydrolysates of bPaS1 Aggregates

For experiments on the proteolysis of bPaS1 aggregates, protein preparations in a
buffer solution (50 mM TrisHCl, pH 7.5; 150 mM NaCl) were divided into control and
experimental samples. The former was stored at –20 ◦C, and the latter were incubated
to obtain aggregates at 37 ◦C with shaking for a day at 450 rpm in a thermostatically
controlled Thermomixer comfort mixer (Eppendorf, Hamburg, Germany). After that, the
control and experimental samples were separately incubated with an equimolar mixture
of three proteases—Proteinase K (AppliChem, Darmstadt, Germany), trypsin and chy-
motrypsin (Sigma-Aldrich, St. Louis, MO, USA) for 8 h at 37 ◦C with a shaking speed
of 450 vol./min in a thermostatic mixer Thermomixer comfort (Eppendorf, Hamburg,
Germany). The final concentration of bPaS1 in the preparations was 16 µM (1 mg/mL), the
concentration of each protease was 0.2 µM (0.0058 mg/mL for proteinase K, 0.0048 mg/mL
for trypsin; 0.005 mg/mL for chymotrypsin). After incubation, the proteolysis reaction was
stopped by adding concentrated trifluoroacetic acid (1% (volume/volume)). Control and
experimental samples were centrifuged for 20 min at 12,000× g in an Eppendorf 5418R
centrifuge (Eppendorf, Hamburg, Germany). The precipitate was washed with 100 mM
NH4HCO3 (pH 7.5), then all preparations were dried and dissolved in 20 µL of a solution
of 0.5% (volume/volume) trifluoroacetic acid and 3% (volume/volume) acetonitrile for
subsequent LC-MS analysis. To purify the samples treated with proteases, filtration was
performed through ZipTips (MilliporeSigma, Burlington, MA, USA). Protein hydrolysates
were concentrated on an Acclaim PepMap 100 guard column (C18, particle size 3 µm,
pore size 100 Å, inner diameter 300 µm × length 5 mm) and separated on an Acclaim
PepMap RSLC analytical column (particle size 2 µm, pore size 100 Å, internal diameter
75 µm × length 150 mm) (Thermo Scientific, Waltham, MA, USA) using a nano-flow liquid
chromatograph EASY nLC 1000 (Thermo Scientific, Waltham, MA, USA). An Orbitrap
Elite high-resolution mass spectrometer (Thermo Fisher Scientific, Dreieich, Germany)
was used as a detector. Mass-to-charge (m/z) ratio ions was determined in the course of
mass spectrometric analysis. The obtained m/z values, in turn, were analyzed with the
PEAKS Studio 7.5 software (Bioinformatics Solution Inc., Waterloo, ON N2L 6J2, Canada)
to identify peptides. A preliminary selection of identified peptides with a molecular weight
> 600 Da was carried out.

4.4. Synthesis and Peptide Preparations for Aggregation Experiments

The sequences of the amyloidogenic regions of bPaS1, which coincide according to the
predictions of at least two of the four algorithms (FoldAmyloid, Waltz, AGGRESCAN, and
Pasta 2.0), were used to select four peptides (10 amino acid residues) for synthesis. Solid
phase synthesis was carried out according to the Fmoc method [63]. Peptides AIITGIVVDI
(1013 Da), SWIVLEAAFA (1106 Da), LHITDMAWKR (1271 Da), and ITDFGIFIGL (1095 Da)
were synthesized at IQ Chemical LLC (S. Petersburg, Russia). The purified peptide was
tested using an Orbitrap Elite mass spectrometer (Thermo Fisher Scientific, Dreieich,
Germany). The estimated peptide molecular weight coincided with the calculated one,
the purity of peptides was >95%. Immediately before the study of peptide aggregation, a
stock solution was prepared with a peptide concentration of 50 mg/mL in 100% dimethyl
sulfoxide (Sigma-Aldrich, St. Louis, MO, USA). To the resulting stock, solution was added
a buffer solution of 50 mM Tris-HCl, pH 7.5; 150 mM NaCl to a final peptide concentration
of 0.5 mg/mL. Each thus prepared peptide preparation was incubated for 5 h at 37 ◦C
with shaking at 450 rpm in a thermostatically controlled Thermomixer comfort mixer
(Eppendorf, Hamburg, Germany) and then used for electron microscopic analysis. Thus,
the incubation time (5 h) and buffer solutions (with pH 7.5) for the peptides were chosen
similarly to those used in [52].

4.5. Transmission Electron Microscopy

BPaS1 preparations (0.8 mg/mL) in buffered conditions with 50 mM TrisHCl, pH 8.0;
100 mM NaCl; 10 mM MgCl2; 5 mM β-mercaptoethanol, as well as peptides (0.5 mg/mL) in
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buffer conditions, 50 mM TrisHCl, pH 7.5; 150 mM NaCl was analyzed using a JEM-1200EX
electron microscope (JEOL, Tokyo, Japan) according to the method used previously [46].
Before analysis, the concentration of drugs was adjusted with the appropriate buffer
to 0.2 mg/mL. Samples were prepared for negative contrast analysis. A copper mesh
(400 Mesh, Electron Microscopy Sciences, Hatfield, PA, USA) coated with a formvar film
(0.2% (weight/volume) formvar solution in chloroform) was placed on a drop of the
preparation (~10 µL). After adsorption (5 min), the meshes with the preparation were
transferred to a 1% (weight/volume) aqueous solution of uranyl acetate (1 min). The
analysis of the preparations was carried out at an accelerating voltage of 80 kV. The
shooting was carried out on Kodak film (SO-163) for EM at a magnification of 40,000.

4.6. Study of bPaS1 Aggregates and Peptides Using the Fluorescent Dye Thioflavin T

Preparations of bPaS1 (1 mg/mL) and peptides (0.5 mg/mL) in buffer conditions
50 mM TrisHCl, pH 7.5; 150 mM NaCl was incubated with thioflavin T (ThT) (0.06 mg/mL)
for 24 h at 37 ◦C with shaking for 24 h at 450 rpm in a thermostatic mixer Thermomixer
comfort (Eppendorf, Hamburg, Germany). Fluorescence spectra were measured at 37 ◦C
using an RF-6000 spectrofluorometer (Shimadzu Corporation, Kyoto, Japan) in quartz
cuvettes with an optical path length of 0.3 × 0.3 cm and a volume of 100 µL of a protein
and/or peptide preparation. The excitation wavelength of ThT was 450 nm, the emission
spectra were recorded in the range 455–600 nm. Measurements for the same preparation
were performed three times. Standard deviations were calculated for the average (based on
the results of three measurements) relative fluorescence intensity of ThT at a wavelength of
485 nm, close to the maximum fluorescence intensity of amyloid-bound ThT [48,64].

5. Conclusions

It is known that the ribosomal S1 protein can be used as a target for the development
of antibiotics against the bacterium Mycobacterium tuberculosis, the causative agent of tu-
berculosis [65,66]. In turn, the present study identified amyloidogenic sequences of the
S1 protein from P. aeruginosa that can be used to create antimicrobial peptides capable of
targeting antibiotic-resistant strains of this pathogen. Such antimicrobial peptides contain-
ing amyloidogenic regions and acting by the mechanism of directed coaggregation with
the ribosomal S1 protein may be a promising variant of a new type of antibiotics directed
against microorganisms that cause nosocomial and other types of infections [67–69].
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