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INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent for the
coronavirus disease 2019 (COVID-19), has imposed unprecedented morbidity and mortality
worldwide. As of June 2021, globally over 163 million individuals are infected and nearly 3.4
million individuals have died. Emerging concerns include complaints of persistent symptoms for
extended periods in recovered individuals. Cellular damage due to disease and/or treatment,
prolonged viral shedding, chronic immune inflammatory response, and pro-coagulant state induced
by SARS-CoV-2 infection are suggested mechanisms contributing to the symptom sequelae (Estiri
et al., 2021; Tran et al., 2021).
SMELL AND TASTE DISORDERS IN COVID-19

Chemosensory dysfunctions including anosmia, hyposmia, ageusia, and hypogeusia constitute one
of the chief symptoms of SARS-CoV2 infection. Meta-analyses suggest that the prevalence of
olfactory dysfunction ranged between 41.0–61.0% and that of gustatory dysfunction between 38.2-
49.0% in COVID-19. Indeed, self-reported loss of smell and taste has been observed to be more
prognostic than other symptoms including fatigue, fever, or cough in predicting symptomatic
infection (Agyeman et al., 2020; Mastrangelo et al., 2021). Significantly, loss of taste is consistently
reported as a common symptom of long COVID-19, defined as persistence of symptoms four weeks
after infection (Biadsee et al., 2021). Following over four-hundred SARS-CoV-2 infected individuals
for severity, improvement, and recovery of subjective chemosensory dysfunction for four months,
Schwab et al. have reported that the recovery from loss of taste became stagnant after about two
months with little improvement subsequently (Schwab et al., 2021). An overview of emerging
research on the pathogenesis of long COVID-19 and an opinion about potential mechanisms for
gustatory dysfunction is included below.
GUSTATION- THE PROCESS OF TASTE PERCEPTION

Gustation is an integrated event of multiple physiological processes occurring concurrently through
activation of specialized taste, orosensory, and gastrointestinal fibers (Simon et al., 2006). The taste
buds, that constitute the peripheral chemosensory units, are distributed in the papillae of the tongue,
palate, larynx, and esophagus. Each taste bud consists of 50–100 tightly packed specialized epithelial
cells called taste receptor cells that are of three types. Type-I are glial-like cells, type-II cells express
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G-protein coupled receptors (GPCR) for sweet, bitter, or umami
tastes and type-III are presynaptic cells. Clusters of taste receptor
cells are chemically and electrically coupled by gap junctions
allowing transfer of information intercellularly. The taste buds
open on their apical end through a pore filled with microvilli
(Simon et al., 2006; Roper, 2013).

The taste buds are innervated by the cranial nerves V, VII, IX
and X that transmit information about the chemical nature and
quantity of the tastants. Furthermore, these cells are intercalated
and surrounded by general sensory thermoreceptors and
mechanoreceptors that transduce information about the thermal
and physical properties of foods. Collectively, the peripheral
gustatory system combines and conveys the multisensory
information from foods through multiple neural pathways to the
brainstem structures culminating in specific taste perception
(Simon et al., 2006; Roper, 2013).
THE “TONGUE FILM” AND
TASTE PERCEPTION

The tastants perfuse through a mucosal film covering the dorsum
of the tongue to the apical opening of the taste buds to stimulate
the taste receptor cells (Neyraud and Morzel, 2019). This ‘tongue
film’ provides unique ecological niche and large surface area for
microbial colonization, the metabolization products of which
modulate the threshold for specific taste sensitivity (Neyraud and
Morzel, 2019; Mantelet et al., 2020). Although widely evaluated
in conditions of excess coating, few studies have reported on the
composition of microbes in healthy tongue film. Next generation
DNA sequencing showed that the tongue film in healthy
individuals is rich in bacterial species of the Fermicutes phylum
that metabolize lactate producing acetate and proprionate (Feng
et al., 2018). A high proportion of acetate in the tongue film
could increase threshold for sweet perception. Similarly, high
concentration of organic acids in the vicinity of the taste receptor
cells reduce the sensitivity for fat perception (Neyraud and
Morzel, 2019; Gardner et al., 2020).

The taste bud cells undergo continuous renewal with an
average turnover rate of 8-12 days and homeostasis is
dependent upon a regular supply of properly differentiated
taste receptor cells (Roper, 2013). The rapid turnover results in
crowding which in turn increases the rate of cell extrusion and
apoptosis to achieve epithelial homeostasis (Eisenhoffer et al.,
2012). Thus, the epithelial cells in healthy ‘tongue film’ are in
different stages of differentiation and include parabasal,
intermediate and superficial keratinized cells (Liang et al.,
2013). Ultrastructure observations showed that the formation
of tongue film is closely related to the rate of multiplication of
epithelial cells, quantity of desmosomes and membrane-coating
granules (Mantelet et al., 2020).

Interestingly, microbial composition of the dorsum of the
tongue and saliva have been observed to be similar, attributed to
the presence of exfoliated epithelial cells including the taste bud
cells in saliva (Feng et al., 2018). The microbes adhere to the
epithelial cells either directly via filaments/fimbriae or indirectly
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through the mucosal film (Kullaa et al., 2014; Neyraud and
Morzel, 2019). Further, the saliva in tongue film could also affect
taste perception by solubilizing, diluting or otherwise chemically
modifying the tastants (Feng et al., 2018).
TASTE DYSFUNCTION-HYPOGEUSIA
AND DYSGEUSIA

Taste dysfunction could be a result of local epithelial disorders
including damage to the gustatory papillae and taste buds or a
result of neuronal disorders such as damage to the peripheral
chemosensory units or central lesions (Ambaldhage et al., 2014).

Role of Tongue Film Microbiota
Considerable evidence suggests that bidirectional mechanisms
between the commensal microbiota and the invading virus
influence viral infectivity. For example, dysbiosis secondary to
the invading virus could increase the prevalence of pathogenic or
opportunistic microbes which in turn modulate the innate host
responses and induce mediators with either permissive or
suppressive effects on viral infection (Dominguez-Diaz et al.,
2019; Li et al., 2019). In human immunodeficiency virus (HIV)
infection, the commensal (Veillonella and Streptococci) microbiota
was significantly reduced in saliva with concurrent increase in
pathogenic bacteria including Megasphaera, Campylobacter,
Veillonella and Prevotella species. In addition, the fungal
communities changed significantly with relative abundance of
Epicoccum, Candida and Alternaria and reduced prevalence of
Pichia species. Interestingly, the decrease in Pichia species that
normally suppress Candida has been related to the increased
prevalence of oral candidiasis in HIV infection (Annavajhala
et al., 2020). Herpes simplex virus infection has been shown to
antagonize oral epithelial cells against Staphylococcus aureus
adherence but facilitate Candida albicans adherence (Plotkin
et al., 2016). Following influenza virus infection, the number of
pathogenic pathogenic Pseudomonas and Bacilluswas significantly
increased and that of non-pathogenic Prevotella, Veillonella, and
Neisseria was decreased in the oropharynx of patients with
pneumonia (Leung et al., 2013). In hand foot and mouth
disease, the clinical manifestations have been suggested to be
due to the combined effects of the causative enterovirus and the
induced disruption of the microbiome (Ho et al., 2021).

Role of Tongue Film Epithelial Cells
Mammalian taste bud cells express several pro-inflammatory
cytokines that affect cell renewal, turnover, and function (Wang
et al., 2007). While commensal bacteria induce balanced
inflammatory responses and maintain host–microbe
homeostasis, dysbiosis secondary to viral invasions disrupts the
balance and upregulates inflammatory responses (Dominguez-
Diaz et al., 2019; Li et al., 2019; Gardner et al., 2020). In herpetic
infections, spectral cytopathology showed that the exfoliating oral
epithelial cells are morphologically normal but exhibit biochemical
composition consistent with degradation of host proteins and
synthesis of viral proteins (Papamarkakis et al., 2010). In HIV
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infection, increased exfoliation of lingual epithelial that exhibit
high nuclear/cytoplasmic ratio suggests accelerated turnover or
apoptosis that could contribute to the loss of taste (Pompermayer
et al., 2011; Dietrich et al., 2012). In influenza virus infection
reduced secretion of growth factors that inhibit stem cell activity,
mediate inflammation and apoptosis of taste bud cell apoptosis
have been suggested as mechanisms for the chronic taste and smell
loss (Henkin et al., 2013; Risso et al., 2020). Interestingly,
significant proportion of severely diseased SARS-CoV-1
individuals have been shown to present predominantly pale red
tongue supporting exfoliation of less differentiated cells (Zou
et al., 2003).
PATHOGENESIS OF TASTE
DYSFUNCTION IN LONG COVID-19

The oral epithelial cells including the taste bud cells have been
shown to express angiotensin-receptor-2 (ACE2), the entry
receptor for viruses of the Coronaviridae family including the
SARS-COV-2. Emerging evidence also suggest that the CoV-2
potentially uses multiple entry receptors such as the sialic acid
receptors and the toll like receptors (TLR) for host cell entry
(Vaira et al., 2020; Gadanec et al., 2021). Binding of SARS-CoV-2
to salivary sialic acid could interfere with the glycoproteins
mediated transport of tastants and contribute to loss of taste
(Milanetti et al., 2021). In-situ models of direct binding of
coronavirus spike protein with TLR1, 4 and 6 support the
specific roles of these TLRs in CoV-2 entry and COVID-19
(Choudhury and Mukherjee, 2020). Interestingly, taste bud cells
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
express TLRs more abundantly than the non-gustatory lingual
epithelium. Specifically, TLRs 2.3 and 4 are highly observed in
the gustducin-expressing type II taste bud cells (Wang
et al., 2009).

Thus, the expression of multiple entry receptors makes taste
bud cells highly susceptible for SARS-CoV-2 infections.
Significantly, SARS-CoV-2 viral infection and replication has
been shown to occur in human taste bud cells (Doyle et al., 2021).
Thus, direct infection of the taste bud cells and consequent
inflammation could affect taste perception (Wang et al., 2009;
Ambaldhage et al., 2014; Risso et al., 2020). Appropriately,
gustatory dysfunctions have been shown to correlate with high
serum IL-6, a key cytokine associated with acute and persistent
SARS-CoV-2 infection (Cazzolla et al., 2020). Additionally,
inflammation could increase epithelial cell exfoliation and
constitute potential sources of viral RNA in saliva. Since the
viral shedding has been observed for extended period after
SARS-CoV-2 infection, it is likely that these epithelial cells
could serve as reservoirs (Park et al., 2020; Yang et al., 2020).

Viral invasion also promotes a favorable environment for co-
infections that could lead to severe clinical outcomes and
mortality (Cox et al., 2020; Ngo and Gewirtz, 2021). In this
context, many opportunistic oral pathogens have been observed
in the bronchoalveolar lavage fluid supporting a role for oral
bacterial co-infections in COVID-19 lung pathology (Bao et al.,
2020). Analyzing oropharyngeal swabs from hospitalized
COVID-19 patients, Iebba et al. reported that a select panel of
oral bacteria and cytokines is predictive of neurological
symptoms including hyposmia and dysgeusia in SARS-CoV2
infected individuals. Specifically, the predominance of Prevotella
A B

FIGURE 1 | Schematic representation of potential mechanisms for taste dysfunction in long COVID-19. (A) The lingual epithelium is covered by a ‘tongue film’ that includes
extruded/exfoliated cells, microbiota, and residual saliva. The concentration of microbial metabolization products and the cellular density in the tongue film module taste
sensitivity. The tastants diffuse through the tongue film either unaltered or modulated by the microbial metabolization products to reach taste receptor cells through the apical
opening of the taste buds. Each taste bud includes tightly packed taste receptor cells, supporting (basal) cells as well as stem cells which replenish the continuously exfoliating
taste receptor cells. Commensal microbiota on the dorsum of the tongue form organized consortia largely around a core of keratinized epithelial cells. Dysbiosis secondary to
viral invasion disrupts the commensal homeostasis (increase pathogenic or opportunistic microbes) and induce innate inflammatory responses. Persistent irritation induced host
responses and increases epithelial proliferation, extrusion, and exfoliation. Pressure on replenishment for taste receptor cells places increased demand on stem cells and
thereby compromises taste bud homeostasis, which in turn affects taste perception. (B) Inset shows oral epithelial cells expressing multiple entry receptors for SARS-CoV-2.
LE, lingual epithelium; TRC, taste receptor cells; ACE-2, angiotensin converting enzyme-2; TLR, toll like receptor; GPCR, G-protein coupled receptor.
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salivae and Veillonella infantium correlated with the increase in
inflammatory cytokines in oral samples in COVID-19 patients.
More importantly, the oral bacterial signature and cytokine panel
correlated with the serum cytokine profile in hospitalized
COVID-19 patients (Iebba et al., 2020; Ma et al., 2021).
Interestingly, similar specific oral bacterial preponderance that
influenced pneumonia development was previously reported in
influenza infections (Gu et al., 2020).
OPINION AND DISCUSSION

Prolonged dysgeusia and viral shedding suggest anatomical
reservoirs for SARS-CoV2 that act as a source for active or latent
taste dysfunction in long COVID-19. Here, we propose that altered
epithelial homeostasis secondary to viral infection induced
dysbiosis and chronic inflammation characterized by increased
exfoliation and reduced taste receptor potentially contribute to
the persistent dysgeusia in long COVID-19 (Figure 1). Viral
persistence in the tongue epithelial cells including the taste
receptor cells for extended periods after infection could modulate
the host responses either by itself or by disrupting the commensal
microbiota. While the initial epithelial cell and innate immune
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
responses may prevent or suppress viral invasion, prolonged
perturbations of the commensal microbiota will likely precipitate
exaggerated inflammatory responses (Li et al., 2019). Mucosal
inflammation increases the epithelial cell exfoliation and
constitute potential sources of viral shedding in saliva (Herrmann
et al., 2002; Groeger andMeyle, 2019). The lag in replenishment of
lost cells togetherwith the reduced stemcell turnover could result in
fewer taste receptor cells potentially leading to the persistent taste
dysfunction. It will be interesting to investigate whether salivary
epithelial cell analyses could reveal specific markers of dysgeusia in
individuals with long COVID-19.
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