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Abstract: In this work, AA1070 aluminium alloy sheets are joined using TIG and MIG welding after
three different edge preparations. Shearing, water jet and plasma-cut processes were used to cut
sheets, subsequently welded using ER5356 and ER4043 filler metals for TIG and MIG, respectively.
Mechanical properties of the obtained sheets were assessed through tensile tests obtaining a relation
between sheet preparation and welding tightness. Micro-hardness measures were performed to
evaluate the effects of both welding and cutting processes on the micro-hardness of the alloy, high-
lighting that TIG welding gives rise to inhomogeneous micro-hardness behaviour. After tensile tests,
surface fractures were observed employing scanning electron microscopy to highlight the relation
between tensile properties and edge preparations. Fractures show severe oxidation in the water jet
cut specimens, ductile fractures and gas porosities.

Keywords: AA1070; TIG welding; MIG welding; micro-hardness; tensile stress; microstructures

1. Introduction

The applications of aluminium alloys are mainly related to their excellent mechanical
properties, corrosion resistance and lightweight [1]. Furthermore, Al alloys have a low
melting point and high thermal conductivity [2]. These properties induce manufacturers to
use aluminium alloys for many different purposes.

Furthermore, aluminium alloys are weldable by arc welding, resistance welding and
friction stir welding processes [3]. In particular, tungsten inert gas (TIG) or metal inert gas
(MIG) are commonly used. A welded joint, in general, consists of three regions: the base
metal (BM), the heat-affected zone (HAZ) and the welded metal (WM). Various parameters
affect the welding of aluminium alloys, such as the thermal cycle, the specific welding
process, the metal’s thickness, the metal’s thermal conductivity and the possible preheating
before starting welding. In particular, various precautions, such as proper edge preparation
and careful choice of filler metal, are crucial to realize a metallurgical joint free of defects.

As reported in the ASM handbook [4], aluminium alloys are classified into non-
hardenable and hardenable alloys; hardenable alloys can be heat-treated to reach higher
mechanical properties. Precipitation hardening enables the precipitation of a second phase
into the aluminium matrix. Consequently, in the HAZ, mechanical properties may be lower
than those in the base metal, due to the solubilization or coarsening of the intermetallic
phases. For instance, Wang et al. [5] studied the microstructures and the mechanical
properties of a dissimilar MIG weld of alloys 6xxx and 7xxx using the filler metal ER5356.
The authors found a difference in the mechanical properties of the alloys’ HAZ that depends
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on the different strength mechanisms. The thermal cycles may cause the local dissolution
of the intermetallic phases.

The absence of precipitate-forming elements into the non-heat-treatable alloys may be
a positive feature for weldability: intermetallic phases permit precipitation hardening [4]
but may lead to hot cracking during the welding. However, heat-treatable alloys are used
for their higher mechanical properties concerning non-treated or annealed compositions.

Interestingly, pure aluminium has become essential in different industries because of
its properties. For this reason, various publications focus on commercially pure aluminium
alloys. Alloy AA1070, in particular, is a wrought and non-heat-treatable alloy; its me-
chanical properties can be successfully increased by cold or hot working. For instance, Al
Quasaab [6] assessed that after cold working, ultimate tensile stress in alloy AA1070 might
change from almost 30 to 160 MPa (30% and 80% reduction in thickness, respectively). At
the same time, the elongation at rupture drops from 13% to 4%.

Ashtiani et al. [7] used a constitutive model for the hot deformation behaviour of
alloy AA1070 to predict the flow stress with different initial grain sizes in the hot working
process. Barekatain et al. and Shankar et al. [8,9] successfully welded alloy AA1050 to the
commercially pure copper sheet through FSW. Lu et al. [10] focused on welding behaviour
in dissimilar joint AA1060-AISI 304. Jayakrishnan et al. [11] assessed the microstructure for
commercially pure aluminium sheets welded via flux-bounded-TIG, focusing on welding
parameters and flux particle size, finding that penetration depth increased for a smaller
powder particle size.

Edge preparation before welding is another essential feature and depends on the
metal’s thickness. The edge preparation affects the quality of the welding process and
facilitates weld penetration, as studied by Singh et al. [12]. Standard BS EN ISO 9692-3:2016,
in Europe, regulates the joint preparation to ensure an accurate edge preparation. Despite
that, the chamfering may be avoided if the sheet thickness is less than 4 mm.

In the publication by Akkurt et al. [13], authors studied the effect of the cutting process
on the surface microstructure and hardness of both pure aluminium and aluminium
alloy AA6061. They found that the heat-based cutting processes cause microstructure
modification near the cut surface, while cold deformation may occur after mechanical
cuttin AA1070 AA1070g.

Singh et al. [12] studied various cutting processes for cutting commercially pure
aluminium sheets, finding that the most detrimental process in terms of edge preparation
is the plasma cutting process.

As for the plasma cutting, literature research conducted by Stournaras et al. [14]
highlights that laser power and cutting speed plays the most crucial role in the cut quality
of aluminium sheets. Furthermore, a high laser power causes heat-affected zones into the
sheets, while high gas pressures result in effective materials removal.

Shear cutting is one of the most common processes for cutting metal sheets.
Stournaras et al. [14] studied the shearing of alloy AA6014 and noticed that slivers oc-
cur due to various parameters, such as the blank holders’ pressure and the adhesive
behaviour of aluminium alloys. Moreover, Al Quasaab [6] investigated the shear angle
during the orthogonal cutting, finding that suitable models may predict the shear angle.
Even a waterjet can cut aluminium alloys. Al Qassab [6] also focused on the waterjet cutting
process, underlining that the final sheet surface has two types of textures: a smooth surface
on the upper side of the sheet and a rough one on the bottom surface of the sheet.

Filler metal and surface preparation play an essential role in fusion welding, mainly
because they affect the mechanical and microstructural behaviour of the joint. For instance,
a filler metal similar to the base metal, ER1100 for alloy AA1070, may preserve the electrical
and corrosion resistance. On the other hand, it is possible to adopt other filler metals, such
as ER4043 or ER5356, to increase the mechanical properties of the joint.

In this work, aluminium AA1070 sheets were cut using three cutting processes (shear-
ing, waterjet and plasma) and then welded. The welding processes adopted in this work
are TIG and MIG, using the filler metals ER5356 (rod shape for TIG welding) and ER4046
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(wire shape for MIG welding), respectively. The obtained sheets were mechanically tested
to assess the effectiveness of the welding process through tensile tests, hardness and
micro-hardness measurements; the fracture surfaces and microstructures were studied to
highlight a relation between the cutting process and the tightness of the welding seam.

2. Materials and Methods

In this study, commercially pure AA1070 H16 aluminium alloy sheets were cut using
three different cutting processes (shearing, water jet and plasma) and then joined using TIG
or MIG welding. Filler metal ER5356 was used in the form of a rod to perform TIG welding,
while filler metal ER4043 in the form of wire was adopted in MIG welding. An external
supplier performed cuts and welding processes. The total dimensions of the welded sheets
were 250 mm × 350 mm × ca. 3 mm; for each welded sheet eleven specimens for tensile
tests and a small sample for micro-hardness and microstructural analysis were milled.
The composition of alloy AA1070 and fillers ER4043 and ER5356 were measured using an
optical emission spectrometer, GNR S7-MLP (G.N.R. S.r.l., Novara, Italy); compositions are
reported in Table 1.

Table 1. Material compositions (wt %) measured by an optical emission spectrometer.

Materials/Elements Si Mg Mn Fe Al + Trace Elements

AA1070 0.142 0.002 0.001 0.225 Bal.

ER 5356 - 2.170 0.010 0.298 Bal.

ER 4043 5.900 - - 0.400 Bal.

Cutting parameters are reported in Table 2, along with welding parameters. As for
plasma cutting, criteria followed the BS EN ISO 9013:2017 standard. Since there are no
standards for quality criteria of waterjet cutting, the same plasma standard was considered.
Regarding shearing, standard VID 2906-2 was used.

Table 2. Cutting and welding parameters.

Plasma

Current flow
rate (A)

Cutting speed
(mm·min−1) Plasma/Shield Torch-to-work Distance (mm)

50 1500 Air/Air 2.5

Waterjet

Pressure (MPa) Distance to work
piece (mm) Abrasive type Abrasive feed

rate (g/min)
Cutting Speed
(mm·min−1)

350 2 Garnet 80 mesh 300 1500

Shearing

Sheet orientation
angle (◦)

Blank holder
clearance (mm)

Edge radius
(µm) Lubricant

0 <0.5 50 Oil

TIG welding

Shielding gas Welding speed
(mm·min−1) Current (A) Filler diameter (mm)

Argon ca. 300 Max. 150 2.4

MIG welding

Shielding gas Welding speed
(mm·min−1) Current (A) Filler diameter (mm)

Argon ca. 495 Max. 120 1.6



Materials 2022, 15, 412 4 of 16

Sheets’ edges were observed after the cutting processes via optical microscope (LEICA
MEF4M, Leica Microsystems, Heerbrugg, Switzerland) and stereomicroscope (LEICA MS5,
Leica Microsystems, Heerbrugg, Switzerland).

Specimens for tensile tests were milled following the UNI EN ISO 4136:2012 standard
(Figure 1): gauge length 120 mm, length 150 mm, width 25 mm, thickness 3 mm. Test
parameters used were preload 50 N, test speed 8 N/mm2s−1 before yielding point Rp0,2

and 0.008 N/mm2s−1 after yielding point Rp0,2. Each welded sheet contained eleven
specimens: five specimens had a protruding weld, while in the other six samples the weld
was milled, as drawn in Figure 2. In fact, a protruded weld could be detrimental to the
mechanical resistance, and it is commonly considered a weld-shape defect. Tensile tests
were performed by a Zwick-Roell machine (Zwick-Roell BT1-FR100, Zwick Roell S.r.l.,
Genova, Italy).
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Figure 2. Drawing of micro-hardness measures path (red-diamond) along with BM, HAZ and WM
and near the edges. Representation of the weld in the protruded and in the milled state.

Cross-sectional micro-hardness measurements were performed on the welded samples
using a Vickers micro-hardness tester, LEICA VMHT (Leica Microsystems, Heerbrugg,
Switzerland), as shown in Figure 2. The parameters applied were 200 gf and 15 s. The
number of specimens and tests are reported in Table 3, while samples’ production in a
single welded sheet is shown in Figure 3.

Specimens for micro-hardness evaluation were resin-mounted and polished through
SiC paper from 180 up to 2400 grit, then polished on a cloth with colloidal silica and
finally etched with HF for 20 s. Scanning electron microscope (SEM, Zeiss E.V.O. 15, Zeiss,
Oberkochen, Germany) equipped with secondary and backscattered electrons detector
(EDS, Oxford Ultim Max, Oxford Instruments plc, Abingdon, UK) was used to analyse the
base metal, heat affected zones and the welded metals.
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Table 3. Specification for specimen studied/tested.

Specimens Realized Specimens Details

#2 sheets (ca. 175 × 250 × 2.9
mm) cut by shearing and welded

MIG (1) sample for micro-hardness after MIG welding;
(11) samples for tensile tests *.

Micro-hardness near the edge of
sheets (3 samples, one for each cut);
Micro-hardness along the weld,
passing from the heat-affected
zone HAZ to the base metal BM to
the welded metal WM.
66 Tensile tests samples. For each
type: 5 in as-welded condition; 6
with milled weld.

TIG
(1) sample for edge analysis;
(1) sample for micro-hardness after TIG welding;
(11) samples for tensile tests *.

#2 sheets (ca. 175 × 250 × 2.6
mm) cut by plasma and welded

MIG (1) sample for micro-hardness after MIG welding;
(11) samples for tensile tests *.

TIG
(1) sample for edge analysis;
(1) sample for micro-hardness after TIG welding;
(11) samples for tensile tests *.

#2 sheets (ca. 175 × 250 × 2.6
mm) cut by water jet and welded

MIG (1) sample for micro-hardness after MIG welding;
(11) samples for tensile tests *.

TIG
(1) sample for edge analysis;
(1) sample for micro-hardness after TIG welding;
(11) samples for tensile tests *.

* Overall 6 specimens were tested having milled welds instead of 5 because possible inadequate penetration is
expected (milled welding may present less-resistant areas).
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3. Results
3.1. Edges Preparation: Shearing

The aluminium sheets after the shearing process appear to have almost linear edges,
as clearly noticeable from Figures 4A and 5. The sheet microstructure is oriented along
the rolling direction (horizontal direction); after the chemical etching, the distortion of the
microstructure at the edges appears evident.
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Figure 5. Different zones of the edges after shearing.

Some microstructural measures were performed through image analysis software
(LEICA QWin, version 3.5, Leica Microsystems, Heerbrugg, Switzerland) to evaluate the
microstructural distortions. Shearing caused damage to the sheet’s edges and material
removal. Deformation angles were 27◦ (top sheet) and 17◦ (bottom sheet), while distortions
decreased from 419 on the top to 98 µm in the middle of the sheet (Figure 4B).

Micro-hardness measured along the edge after shearing did not show an increase
caused by plastic deformation near the edge; the micro-hardness resulted almost constant
along with the sheet (Figure 4B).

3.2. Edges Preparation: Water Jet

As for the water jet (Figure 6A), the initial distortion remained almost constant, with a
measured value of 382 µm in the middle of the sheet (Figure 6C). The bottom part of the
sheet showed an intense deformation and material removal; an angle of 141◦ was measured.
Only short variations in micro-hardness were documented (Figure 6B).
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3.3. Edges Preparation: Plasma

Plasma cutting (Figure 7A) caused higher specimen edge and microstructure orien-
tation distortions. The distortion near the surface was 510 µm and at the mid-thickness
611 µm (Figure 7B).

A slight increase in micro-hardness was detected near the sheet’s edge (Figure 7B).
Furthermore, significant damage was caused during the cutting process, with material

removal in the lower half of the sheet, with a measured angle of 159◦, while 180◦ was
expected for a plain surface. Almost 100 µm of material was removed during the cut,
causing a potential lack in penetration of the welding seam.

In the first 8 mm, the micro-hardness resulted lower, with a minimum of 37.5 HV, then
micro-hardness started increasing up to 45 HV.

3.4. Weld Microstructures

Weld microstructures were observed through an optical microscope and SEM.
Figure 8 shows SEM-EDS analysis for TIG welding. In the WM, Al and Mg were

observed, as expected, in the filler metal ER5356. Some intermetallic phases were observed,
for instance, the phase Al-Fe-Mg [15] in Spectrum 1. In the HAZ zone, Al-Si and Al-Fe
intermetallic phases were noticed [16].
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Figure 9 shows SEM-EDS analysis for MIG welding. Into the WM, it was possible
to observe the presence of Al and Si, typical elements for the filler metal ER4043. Some
intermetallic phases are found; for instance, in Spectrum 1 and Spectrum 3, the phase
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Al-Fe-Si is in the form of acicular phase β and polygonal phase α [17]. Even Al-Si and
Al-Fe phases occur in the HAZ zone.
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3.5. Tensile Tests and Fractography

Tensile tests were performed on samples shown in Figures 1 and 3.
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Results for TIG welding are summarized in Figure 11 through bar charts. The bar
charts represent the average tensile properties measured (Figure 11A), the average ten-
sile properties for the specimens as-welded (Figure 11B) and finally, the average tensile
properties for the specimens having the milled weld (Figure 11C).
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The average elongation at rupture A% in TIG-welded specimens is affected by the very
low A% in the milled specimens. Mechanical properties observed (Rm, tensile strength;
Rp0,2, yield strength) for sheared and water jet cutting appear similar.

The average mechanical values of MIG-welded specimens are shown in Figure 12.
Mechanical properties observed appear similar for each kind of sheet edge preparation,
and the A% appear similar with or without the weld milling.

To assess these hypotheses, SEM observations were performed. The fracture surfaces
were observed using SEM (Figure 13). Ductile fractures were noticed in all the specimens;
all fractures were located in the welded part. Some welding appears non-penetrating
along the entire thickness of the sheet. Furthermore, the weld seams appear rich in gas
porosities [19] and in dendrites that negatively affect the mechanical strength. A high
amount of oxide scale was observed, particularly in the water jet and plasma specimens
(Figure 13—Spectrum 2 and Spectrum 3).

3.6. Weld Micro-Hardness

The WM has a dilution ratio that depends on the welding process. WM comprises
AA1070 base metal and ER5356 filler metal for TIG welding and AA1070 and ER4043
for MIG welding. The micro-hardness in the welded samples was measured as drawn
in Figure 2, and results are shown in Figure 14. The different dilution ratios may affect
the average micro-hardness. Furthermore, in the WM, the micro-hardness is subjected
to a certain variation caused by defects or hardening phases. In TIG welding, specimens’
plasma-cuts show some inadequate penetration and porosities. This behaviour causes a
variation in the micro-hardness measured (red-square marker in Figure 14A).
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Moreover, porosities inside the weld cause a decrease in hardness near the BM values.
On the contrary, in MIG welded specimens, specimens after water jet cutting (orange-bullet
marker in Figure 14B) show low micro-hardness in WM. This behaviour is in line with the
mechanical results shown in Figure 12 (the worst in MIG welding specimens).
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Overall, higher micro-hardness was noticed in TIG welding with an average value
of 48 HV0.2, while in MIG welding, the average value was 40 HV0.2. This result is, in
turn, affected by the filler metal. In TIG welds, the micro-hardness in WM is higher than
the micro-hardness in the BM; on the contrary, in MIG welds, the micro-hardness resulted
similar in the BM and the WM. Micro-hardness values are average values depending on
the intermetallic phases. Considering that the number of intermetallic phases is low in
alloy AA1070, hardness in BM is almost the hardness of the α-Al phase: ca. 40 HV0.2.
Furthermore, the micro-hardness in the α-Al depends on the alloying elements dissolved
in the solid solution [20]. Intermetallic phases detected may affect the average values:
α-AlFeSi and β-AlFeSi are respectively ca. 883 HV and 765 ([21]), Al-Mg ca. 48 HV [22],
Al-Si ca. 80 HV [20].

4. Discussion

Sheet preparation before welding was conducted by three different cutting processes.
Mainly, shearing is a widespread process. Yousefi et al. in [23] demonstrated that welded
metal is formed on the tool at high-speed cutting, causing a material flow on the machined
surface. The weld metal formed on the tool edge causes an increase in the surface roughness.
On the other hand, no welded metal is formed at a very high cutting speed, and the surface
roughness is low.

Conversely, various authors studied sheets’ shearing, such as Hambli et al. in [24] and
Tekiner et al. [25]. Mainly, they highlight four different zones after the shearing, as shown
in Figure 5; the clearance between the punch and the die will affect the precision of the
sheet shape and extension of these zones.

The ideal cutting condition requires the lowest possible energy and the higher quality
of the blanked sheet. The punch penetrates the material during the shearing, and the
material is pulled down, creating the roll-over [26].

In terms of weldability, this configuration may affect the filler metal penetration,
causing inadequate welding penetration during the welding process. On the other hand,
despite the sheet edge shown in Figure 4 not being wholly planar, there was a proper
welding penetration in both the welding processes (TIG and MIG). After TIG, specimens
prepared by shearing resulted in the best mechanical values (along with water jet). On the
other hand, mechanical tests showed similar behaviour for shearing-cut specimens and
plasma-cut specimens after MIG processing.

Krinninger et al. [27] underlined that aluminium alloys’ adhesive tendency (galling) is
possible. Hence, the cutting surface in Figures 4 and 5 do not display the galling, while the
cutting surfaces result in being relatively planar.

After the shearing cut, only the first 98 µm of the material was distorted in the middle
of the sheet. For that reason, micro-hardness measures in the middle of the sample resulted
in constant values.

Fracture surface analysis highlights a good penetration of the welding in specimens
after shearing. Fractures happen in the welding seams; in fact, welding seams result in a
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consistent amount of oxides and dendrites that negatively affect mechanical strength. The
excellent preparation of the surfaces after shearing permits a good penetration of the filler
metal during both MIG and TIG welding, without lack in penetration.

Waterjet cutting is another cutting process that may be used in aluminium alloys.
Chithirai et al. in [28] demonstrated a linear relationship between the waterjet parameters
(pressure, abrasive mass flow rate, traverse speed and distance from the nozzle) and the
surface roughness of aluminium. Water pressure has a higher influence: an increase in
water pressure causes a decrease in the aluminium surface roughness. As the sheets are
thin, the roughness was not measured; on the other hand, it may be assumed low [29]. In
fact, from metallographic observation, it seems that the water pressure was high enough
to warp and remove material (Figure 6A), and this behaviour represents a possible shape
error during the water jet cutting [30,31]. The high deformation angle in the lowest part
of the sheet after the cutting process (up to 40◦) causes welding difficulties, with a lack
of penetration for both types of welds, penalizing the weld-milled samples in terms of
mechanical resistance. After milling the weld, the average strength Rm in specimens drops
from 79 to 49 MPa in TIG welds. On the other hand, Rm remains constant in MIG specimens.
Incorrect cleaning of the sheet surfaces before welding causes the oxide scales in the WM.
These scales may affect the mechanical resistance of the welding. A high amount of oxide
was noticed in TIG specimens (Figure 14). In this sense, oxide contamination could affect
the mechanical tightness, as noticed after the tensile tests.

The variation in micro-hardness inside the WM was caused by the high amount
of gas porosities found in the weld pool, as observed in the surface fracture analysis in
Figure 14. The reduction in the micro-hardness from the BM to the HAZ is attributable to
the intermetallic Al-Fe coalescence and the grain coarsening.

In [32], Wang et al. studied the kerf taper in aluminium alloy 6061, arguing that
reducing the cutting speed causes the reduction of the kerf taper. Slow cutting speeds can
produce a reverse taper, as seen in Figure 6, where the cut’s kerf width is wider at the
bottom than at the top. The jet stream removed more material at the bottom of the sheet
than at the top. The reverse taper can also occur when cutting very soft materials [33].
On the other hand, literature highlights that multipass cutting [34] may increase surface
finishing by obtaining flat surfaces.

From the literature, plasma cutting is considered the worst in terms of microstructural
modification; moreover, heat-affected zones may develop if plasma power is too high [12].
Figure 7 shows the sheet microstructure after the plasma process. High microstructural
distortions were noticed in the first half-width of the sheet. A consistent material removal
was observed in the lowest part of the sheet, with a measured angle of 159◦ (21◦ of
deformation in respect to the planar surface). With regards to micro-hardness, the first
indentation (near the sheet edge) resulted in ca. 44 HV0.2, probably caused by strain
hardening, then the micro-hardness decreased. In the first 7 mm, a slight heat-affected
zone was noticed, micro-hardness decreased to 37 HV0.2; away from the edge, the micro-
hardness increased up to 45–47 HV0.2.

Overall, plasma cut sheets present the lowest mechanical properties after TIG-welding;
although the A% appear similar for all specimens having the milled weld, E, Rm and Rp0,2
show a marked difference. E and Rp0,2 are mainly half of the values measured in shearing
and waterjet specimens. The plasma cut seems to affect the TIG welding behaviour causing
poor mechanical tightness. Conversely, specimens welded by the MIG process have E,
Rm and Rp0,2 doubled. According to these results, it appears evident that the plasma cut
process did not affect the possible tightness of the welding. Mechanical results depend
only on the welding process and filler metal adopted. In fact, in TIG specimens, large oxide
scales were detected in the surface fractures, as shown in Figure 14. In MIG welding, the
filler metal ER4043 gave higher castability overcoming the flatness issues.
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5. Conclusions

The present work studied the effect of the different cutting processes (shearing, water
jet and plasma) on welded joints’ microstructures and mechanical properties. After TIG and
MIG welding, the AA1070 aluminium alloy welded sheets were analysed in micro-hardness
Vickers, tensile tests and microstructural observations.

The following results were argued.
Near the edges, different cutting processes caused different effects on both microstruc-

tures and micro-hardness measured. Plasma cutting affects the micro-hardness near the
edges: the first micro-hardness value was slightly higher (ca. 40 HV0.2), while in the next
7 mm, the plasma effect occurs, resulting in a HAZ (see Figure 7).

The different cutting technologies seem only to affect the welding behaviour in TIG
welding. TIG-welded sheets present lower elongation at rupture, especially in samples
having the milled weld after plasma cutting. Plasma-cut and TIG welded sheets showed
the worst mechanical behaviour. Conversely, the best mechanical behaviour was obtained
with plasma-cut and MIG welded sheets. Both welding techniques coupled to water jet
or shearing cuts provided similar mechanical properties. These results indicate that the
welding process did not affect the mechanical properties of samples if the sheet surfaces
resulted in a planar shape.

Conversely, after plasma cutting, more than half width resulted in a non-planar shape,
with an angle of 21◦. This behaviour may affect the welding tightness after TIG welding,
where both torch and filler rod inclinations are essential to make a good weld joint. On
the other hand, the filler metal in the form of wire is already in the MIG torch, making the
process easier.

Micro-hardness along the welds clearly shows a decrease in the HAZ’s hardness and
an increase in the WM. Overall, BM presented similar micro-hardness values to WM in MIG-
welded specimens, where ER4043 filler metal was used. On the other hand, a difference
in micro-hardness was detected in TIG welded specimens, where ER5356 filler was used.
Intermetallic phases Al-Fe and Al-Fe-Mg contributed to increasing the WM hardness.

In conclusion, sheets welded by MIG welding present similar average values in as-
welded samples and with milled-weld samples. Only slight differences were noticed
between the preparation of the different sheets. On the other hand, sheet preparation seems
to affect mechanical properties in TIG welding. In particular, plasma cut sheets TIG welded
showed low mechanical strength and elongation at rupture, evidencing a flaw in weld
penetration. This behaviour may be due to the lack of surface flatness: in fact, almost the
half-width of the sheet (Figure 7) resulted in non-planar, limiting the filler penetration in
TIG welding mode.
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